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Transition metal-catalyzed reactions of alkynes with alkenes have proven to be reliable and
important strategies for carbon-carbon bond formation.1 Previous efforts have focused
primarily on non-oxidative reactions such as isomerizations of enynes to synthesize cyclic
dienes and cyclopropyl derivatives,1a–g or cross-metathesis to synthesize acyclic dienes.
1e,h Extending alkyne-alkene reactivity to include oxidative couplings2 could provide
convenient access to additional organic functionality. We recently used DNA-templated
synthesis and in vitro selection to discover a Pd(II)-mediated alkyne-alkene cyclization reaction
that generates a macrocyclic α,β-unsaturated ketone.3 Here we describe the development of
an analogous intermolecular oxidative coupling reaction between alkynamides and terminal
alkenes to generate acyclic α,β-unsaturated ketones4 (eq 1). Our results reveal that amides can
mediate this mode of alkyne reactivity and provide efficient access to acyclic α,β-unsaturated
ketones under very mild conditions.

(1)

We began the development of this reaction by defining its basic requirements with respect to
the alkyne substrate and the reaction conditions. Several alkynes were examined for their ability
to react with styrene in the presence of various palladium salts. We discovered that alkynamides
possessing a pentyn- or hexynamide backbone were required for efficient α,β-unsaturated
ketone formation (Table 1). For example, slow addition of N-benzyl-N-methylpent-4-ynamide
to a mixture of 1.5 equiv. of styrene and 1.0 equiv. of Na2PdCl4 in MeCN-H2O (3:2) at room
temperature provided the E-α,β unsaturated ketone product in 53% isolated yield (Table 1,
entry 4), whereas the analogous propyn-, butyn-and heptynamide substrate did not generate
significant desired product under these conditions (Table 1, entries 2 and 8). Furthermore, no
α,β-unsaturated ketone was observed when water was omitted from the reaction (Table 1, entry
3). The use of p-benzoquinone as a stoichiometric oxidant enabled multiple turnovers with 0.2
equiv. of Pd(II) to provide enone products in 54–58% yield (Table 1, entry 6 and 7).

Based on the requirement for a pentynamide or hexynamide backbone, we hypothesized that
α,β-unsaturated ketone formation proceeds through a cyclic oxypalladation intermediate.5 To
test this proposal, we performed an 17O labeling experiment. When the reaction between N-
benzyl-N-methylpent-4-ynamide (1) and styrene was conducted in MeCN-17OH2 (3:2), 17O
NMR revealed the presence of broad peak at 318.5 ppm that is characteristic of an amide
C=17O (eq 2) but inconsistent with an enone C=17O (eq 3).6 This result strongly suggests that
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the reaction proceeds through a cyclic oxypalladation intermediate (eq 2), rather than through
an acyclic intermediate that would result from the direct hydration of a Pd(II)-alkyne complex
(eq 3).7

(2)

(3)

The scope of the reaction was further examined under optimized conditions using 0.15 equiv.
of Na2PdCl4 0.2 equiv. of CuCl2, and molecular oxygen as the terminal oxidant in MeCN-
H2O (5:1) (Table 2). Pentyn- or hexynamides containing both secondary and tertiary amides
were reactive under these conditions. In addition to styrene and α-methylstyrene, a variety of
terminal alkenes were effective substrates, including long-chain unactivated alkenes. Desired
α,β-unsaturated ketone products in Table 2 were obtained with > 99:1 E/Z stereoselectivity and
> 5:1 (for long-chain alkenes) to >20:1 (for styrenes) regioselectivity. The reaction is
compatible with ester, carbamate, nitrile, acetate, and alkyl bromide functionalities. The high
stereoselectivity in the reaction of long-chain unactivated terminal alkenes (Table 2, entries
10–16) is noteworthy in comparison with the intermolecular Heck reaction of unactivated
alkenes, which typically exhibits lower selectivity (E/Z = ~2.5:1 to ~6:18).

Although a cyclic oxypalladation intermediate has been proposed in the Pd(II)-catalyzed
hydration of alkynyl ketones,5 pentynyl ketones such as hex-5-yn-2-one and 2-prop-2-
ynylcyclopentanone were not reactive under the above conditions, further demonstrating the
necessity of the amide group. We also note that the Wacker oxidation product9 derived from
styrene, acetophenone, was not observed under these conditions.

Based on the above observations, a possible mechanism for the reaction is shown in Scheme
1. We propose that the initial step involves the activation of the alkynamide with Pd(II) to
provide the cyclic oxypalladation intermediate A. This intermediate is then hydrated to
generate acyclic oxypalladation intermediate B in which the oxygen from water is incorporated
into the amide carbonyl. Intermediate B reacts with an alkene substrate through a Heck-like
process10 resulting in Pd-alkyl species C. β-Hydride elimination generates a Pd-alkene
complex such as D and sequential olefin insertion-β-hydride elimination steps result in
migration of the olefin to the α,β position in E.11 Release of α,β-unsaturated ketone product
followed by reductive elimination results in Pd(0), which is oxidized to regenerate Pd(II).

In summary, we have demonstrated the Pd(II)-catalyzed intermolecular oxidative coupling of
alkynamides and alkenes to provide α,β-unsaturated ketones with high stereo- and
regioselectivity under very mild conditions. These findings identify alkynamides as efficient
oxypalladation precursors that undergo hydration followed by a Heck-type process. Further
studies to explore the reactivity of intermediates proposed in Scheme 1 are underway.
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Scheme 1.
Proposed Mechanism.

Momiyama et al. Page 4

J Am Chem Soc. Author manuscript; available in PMC 2009 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Momiyama et al. Page 5

Table 1
Initial observations.a

entry n Pd(II)/Oxidant additive yield (%)b

1 0,1 Na2PdCl4(1eq)/none none <1
2 0,1 Na2PdCl4 (1eq)/none H2O (1.6 mL) <1
3 2 Na2PdCl4 (1 eq)/none none <1
4 2 Na2PdCl4 (1eq)/none H2O (1.6 mL) 53
5 2 Na2PdCl4 (0.2 eq)/none H2O (1.6 mL) 8
6 2 Na2PdCl4 (0.2 eq)/p-Benzoquinone

(1.5 eq)
H2O (1.6 mL) 58

7 3 Na2PdCl4 (0.2 eq)/p-Benzoquinone
(1.5 eq)

H2O (1.6 mL) 54

8 4 Na2PdCl4 (0.2 eq)/p-Benzoquinone
(1.5 eq)

H2O (1.6 mL) <1

a
Reactions were conducted at r.t. with 0.15 mmol of alkene in MeCN (2.4 mL) and 0.1 mmol of alkyne added dropwise over 5 h.

b
Isolated yield.
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Table 2
Reaction scope of Pd(II)-catalyzed intermolecular reaction of alkynamides and alkenes.a

entry alkyne alkene product yield (%)b

1 53c

2 68c

3

PMB:p-MeO(C6H4)H2-

74c
4 62c

5 83c

6 58c
7 74c

8 72c

9 73

10 80d
11 65d

12 R5 = CN R5 = CN 71d
13 R5 = CO2Et R5 = CO2Et 54d
14 R5 =OAc R5 =OAc 75d
15 R5 =Br R5 =Br 76d
16 55d

a
Reactions were conducted at r.t. or 40 °C with 15 mol% of Na2PdCl4·3H20,20 mol% of CuCl2·2H2O,1 atm O2,1.5 equiv of alkene in MeCN-H2O

(5:1), and 1.0 equiv of alkyne added by dropwise addition for 8–12 h.

b
Isolated yield.
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c
>99:1 linear:branched regioselectivity.

d
Linear:branched regioselectivity >5:1.
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