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SUMMARY
The area under a receiver operating characteristic (ROC) curve (AUC) is a commonly used index
for summarizing the ability of a continuous diagnostic test to discriminate between healthy and
diseased subjects. If all subjects have their true disease status verified, one can directly estimate
the AUC nonparametrically using the Wilcoxon statistic. In some studies, verification of the true
disease status is performed only for a subset of subjects, possibly depending on the result of the
diagnostic test and other characteristics of the subjects. Because estimators of the AUC based only
on verified subjects are typically biased, it is common to estimate the AUC from a bias-corrected
ROC curve. The variance of the estimator, however, does not have a closed-form expression and
thus resampling techniques are used to obtain an estimate. In this paper, we develop a new method
for directly estimating the AUC in the setting of verification bias based on U-statistics and inverse
probability weighting. Closed-form expressions for the estimator and its variance are derived. We
also show that the new estimator is equivalent to the empirical AUC derived from the bias-
corrected ROC curve arising from the inverse probability weighting approach.
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1 INTRODUCTION
For a diagnostic test that yields a continuous test result, the receiver operating characteristic
(ROC) curve is a popular tool for displaying the ability of the test to discriminate between
healthy and diseased subjects. The continuous test result can be dichotomized at a specified
cutpoint and the sensitivity and specificity can be computed. When one varies the cutpoint
throughout the entire real line, the resulting pairs (1− specificity, sensitivity) form the ROC
curve. The area under the ROC curve (AUC) is commonly used as a summary index of the
accuracy of the diagnostic test. The AUC can be interpreted as Pr(T1 > T2), where T1 is the
test result from a randomly selected diseased subject and T2 is the test result from a
randomly selected non-diseased subject [1,2].

In the complete data case where the true disease status for every subject is verified using a
gold standard evaluation, the sensitivity and specificity at all possible cutpoints can be easily
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estimated by simple proportions. The nonparametric (empirical) estimate of the ROC curve
can then be obtained, and the area under the empirical ROC curve is a natural estimate of the
AUC. Equivalently, one can directly estimate the AUC using the nonparametric Wilcoxon
statistic [1,2].

In many situations, not all subjects given the new diagnostic test ultimately have their true
disease status verified. There are various reasons for this. For example, some gold standard
evaluations are expensive and time consuming, and some are based on invasive procedures
such as surgery. In these situations, subjects with negative test results may be less likely to
undergo a gold standard evaluation than subjects with positive test results. When the
decision regarding whether or not to verify the subject’s true disease status depends on the
test result (and possibly other subject characteristics), estimators of AUC based only on data
from the verified subjects may be badly biased [3–6]. This is called verification bias [3] or
work-up bias [7].

Most existing methods for correcting verification bias are applicable only for tests that yield
binary or ordinal results [3,8–17]. With few exceptions [10,12,13,16,17] these methods
assume that the true disease status, if missing, is missing at random (MAR) [18], i.e., that
the probability of a subject having the disease status verified is purely determined by the test
result and the subject’s observed characteristics, and is conditionally independent of the
unknown true disease status. Two recent papers have considered methods for bias correction
when the test result is continuous [19,20]. The examples cited in these papers clearly
illustrate the need for the development of methods for this case. Alonzo and Pepe [19]
extended Begg and Greenes’ approach [3] from a binary test with categorical covariates to a
continuous test with continuous covariates. Alonzo and Pepe [19] also recognized that a
study with verification-biased sampling can be thought of as a study with a two-phase or
double-sampling design; a good review of methodology for prevalence estimation under
these designs is provided by Carroll et al. [21]. Alonzo and Pepe [19] applied several of
these methods to the problem of correcting verification bias, including the inverse
probability weighting (IPW) approach [22], the mean score (MS) method [23,24], and a
semi-parametric efficient approach [25,26]. These methods can be used to estimate a bias-
corrected sensitivity and specificity pair at each possible cutpoint and an empirical bias-
corrected ROC curve can then be constructed. A bias-corrected estimate of AUC can be
derived as the area under the empirical bias-corrected ROC curve. There is no closed-form
expression for the variance of the AUC estimator; therefore resampling methods, such as the
bootstrap, are frequently used for inference.

Rotnitzky et al. [20] proposed a doubly robust estimator of the AUC. The estimator requires
specification of parametric models for the probability of disease and the probability of
verification of disease status, but it is consistent and asymptotically normal if either (not
necessarily both) of these models is correctly specified. The estimator can also be applied in
the situation where the missingness mechanism for the true disease status is nonignorable.

In this paper we develop a new method for directly estimating the AUC in the presence of
verification bias when the test result is continuous. We derive a closed-form expression for
its asymptotic variance. The new estimator is particularly useful in cases where the
mechanism for deciding whether or not to verify the subject’s true disease status is well
understood or can be controlled by the investigators. In Section 2, we give a brief review of
existing methods for estimating the AUC using an empirical bias-corrected ROC curve. The
new estimator and its properties are introduced in Section 3. A simulation study is presented
in Section 4, followed by an example in Section 5 in which the competing methods are
illustrated using data from a study of of depression in elderly primary care patients. The
paper concludes with a discussion.
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2 ESTIMATING AUC USING AN EMPIRICAL BIAS-CORRECTED ROC
CURVE

Let Ti denote the continuous test result and let Di denote the true disease status for the ith
subject, i = 1, 2, …, n, where Di = 1 indicates that the subject has the disease and Di = 0
indicates that subject does not have the disease. Only a subset of the subjects have their
disease status verified; let Vi = 1 if the ith subject has the true disease status verified, and Vi
= 0 otherwise. Let Xi be a vector of observed covariates for the ith subject that may be
associated with both Di and Vi. Without loss of generality, suppose that larger values of T
are more indicative of disease.

All of the methods reviewed in this section are based on the assumption that verification of
disease status is conditionally independent of the true disease status given the test result and
the observed covariates. In our notation, V ⊥ D|(T, X). This is the MAR assumption
discussed in the Introduction. The decision to verify the subject’s true disease status depends
on the true disease status only through X and T.

If all subjects have their disease status verified, i.e., Vi = 1, i = 1, 2, …, n, we have a
complete data set. For any cutpoint c, the sensitivity, Se(c), and specificity, Sp(c), of the test
can be easily estimated by simple proportions as

(1)

These estimators are unbiased for Se(c) and Sp(c), respectively.

If only some subjects are selected to have their disease status verified, the naïve estimators
of Se(c) and Sp(c) that apply the above methods to only the verified subjects are obtained as

(2)

The naïve estimators are unbiased only if the subjects are selected for verification
completely at random. Under the less restrictive MAR assumption, the naïve estimators are
biased.

Alonzo and Pepe [19] extended Begg and Greenes’ method [3] to high-dimensional X,
where some components of X may be continuous. The resulting estimators of Se(c) and
Sp(c) are:

(3)

Parametric models such as logistic regression models can be used to estimate Pr(Di =1|Ti,
Xi) using only data from verified subjects (MAR assumption).
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Alonzo and Pepe [19] recognized that a study with verification-biased sampling can be
thought of as a study with a two-phase or double-sampling design. They applied methods of
prevalence estimation in such studies to the problem of estimating sensitivity and specificity
in this setting. The mean score (MS) method proposed by Pepe et al. [23] and Reilly and
Pepe [24] (see also [27]) estimates Pr(Di = 1|Ti, Xi) by Di for verified subjects, and by

 for unverified subjects. The resulting estimators of Se(c) and Sp(c) are:

(4)

Note that the extended Begg and Greenes estimators estimate Pr(Di = 1|Ti, Xi) by
 for all subjects.

The inverse probability weighting (IPW) approach weights each verified subject by the
inverse of the selection probability to correct verification bias. This method dates back to
Horvitz and Thompson [22] and has a long history in the analysis of sample surveys. Let πi

= Pr(Vi|Ti, Xi). For the naïve estimator, if each verified subject is given weight , the
inverse of the estimated probability that the subject was selected for verification, the
estimators for Se(c) and Sp(c) are

(5)

The semi-parametric efficient approach (SP) of Alonzo et al. [28] is based on ideas first
suggested by Robins et al. [25] and Robins and Rotnitzky [26] and yields estimators that are
doubly robust in the sense that they are consistent if either πi or Pr(D|T, X) is estimated
consistently. The values Se(c) and Sp(c) are estimated as follows:

(6)

For each of the above methods, when c is varied throughout the real line, an empirical bias-
corrected ROC curve is obtained using the pairs  [19]. An estimate of the
AUC is easily derived empirically. A limitation to this estimator of AUC is that there is no
closed-form expression for its variance. Resampling methods such as the bootstrap are
needed to make inferences about the AUC.

3 DIRECT ESTIMATION OF AUC
3.1 A brief review of U-statistics

In this subsection we give a very brief account of the U-statistics theory required for our
derivations below. See [29] for more details.
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Let X be a random variable or vector with distribution F, and let θ(F) denote a real-valued
function defined for F. Suppose that there exists a real-valued function h(X1, …, Xm) such
that EF (h(X1, …, Xm)) = θ(F) for all F subject only to mild restrictions on h such as
continuity and existence of moments. Then for a sample of size n ≥ m, an unbiased estimator

of θ(F) can be constructed, namely , where Pm,n is the set of
all  permutations (i1, i2, …, im) of size m chosen from (1, 2, …, n). The statistic Un is
called a U-statistic with kernel h. Note that without loss of generality h may be assumed to
be a symmetric function of its arguments.

To describe the asymptotic distribution of the U-statistic Un, we introduce some notation.
Let , where (i1, i2, …, im) and (j1, j2, …, jm) are
permutations of size m chosen from (1, 2, …, n), and c is the number of integers in {i1, i2,
…, im} ∩ {j1, j2, …, jm}, 0 ≤ c ≤ m.

Theorem 1—Un is an unbiased estimator for θ(F). If , then

.

3.2 Direct estimation of the AUC in the presence of verification bias
In the presence of verification bias, due to the lack of a closed-form expression for the
variance, inference for the AUC based on an empirical bias-corrected ROC curve can only
be performed with the aid of resampling methods such as the bootstrap. Since these methods
are computationally-intensive, it would be convenient to have an estimator similar to the
Wilcoxon statistic for which the variance can be derived in closed form. The difficulty of
generalizing the Wilcoxon statistic to direct estimation of the AUC in this case lies in the
fact that the true disease status of those subjects who have not been administered the gold
standard evaluation is not known. Thus it is impossible to divide the whole sample into the
two subsamples: diseased and non-diseased. Instead we propose a one sample U-statistic
estimator described below.

Let Ti, Vi, Di and Xi be defined as before. Assume that the Si = (Ti, Xi, Vi, Di) are i.i.d. and
that Vi ⊥ Di|Ti, Xi, i = 1, …, n (MAR). So (Ti, Xi, Vi) is observed for everybody, but Di is
observed only if Vi = 1. Let λ be the disease prevalence, and let πi = Pr(Vi = 1|Ti, Xi) be the
verification probability. Also, let F1(t) be the distribution function of T for subjects with Di
= 1, and F0(t) be the corresponding distribution function for subjects with Di = 0. Finally, let
G1(t, x) be the joint distribution function of T and X for subjects with Di = 1, and G0(t, x) be
the corresponding distribution function for subjects with Di = 0.

Assume for the moment that πi is known, i = 1, 2, …, n. The new estimator is motivated by
the following observation:
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Note that  is computable for every subject even if Di is
unknown. This is because if Di is unknown, then Vi = 0, and therefore the value of the
expression is 0 regardless of the value of Di. So to get an estimator for the AUC, a statistic
that has expectation Pr(Di = 1) Pr(Dj = 0) could be used in the denominator. A natural

choice is , since  using an
argument similar to that given above.

We propose the following estimator of the AUC in the presence of verification bias:

(7)

Note that the reason for writing the estimator in the second form (symmetric form) is to
express it as a function of U-statistics.

The new estimator uses inverse probability weighting to correct verification bias, where the

weight  is attached to all possible pairs of verified subjects. Similar to IPW estimators,
the new estimator  is not unbiased, but it is consistent.

Theorem 2—The new estimator  is consistent.

The asymptotic distribution of  is given in the following theorem:

Theorem 3—Let . Then , where σ2 = ATΣA
and

can be expressed in terms of λ, F0, F1, G0 and G1.

The Appendix contains proofs of Theorems 2 and 3 and the derivations of the covariance
terms in Theorem 3.

Based on this theorem, one can estimate the variance of  by substituting λ ̂, which is

estimated by , and the EDFs F̂0, F̂1, Ĝ0 and Ĝ1 for their respective
population quantities and replacing integrals with sums.

The derivation of the asymptotic properties of  assumed that the πi = Pr(Vi = 1|Ti, Xi), i
= 1, 2, …, n, were known. It is not unusual in practice to encounter this situation [19].
Otherwise, π̂i (obtained by, say, logistic regression) can be substituted for πi in the
expressions for the estimator and its variance. Although the resulting estimated variance
does not properly account for the variation in the π̂i, this should not be a significant problem
in large samples since the variance in the π̂i will be relatively small. This is illustrated in the
simulation study presented in Section 4.
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The new estimator has an interesting property: it is identical to the empirical AUC based on
the IPW approach.

Theorem 4—The estimator  is equivalent to the empirical AUC based on the
empirical bias-corrected ROC curve obtained using the IPW approach.

The proof of Theorem 4 is also given in the Appendix.

4 SIMULATION STUDIES
4.1 Study design

In this section, the finite-sample behavior of the new estimator of the AUC relative to those
of existing estimators based on the empirical bias-corrected ROC curve is investigated via
simulation. The existing estimators include the naïve estimator and those based on methods
for constructing an empirical bias-corrected ROC curve: modified Begg and Greenes (BG),
mean score (MS), and the semi-parametric efficient approach (SP). Note that the new direct
estimator is equivalent to the area under the empirical bias-corrected ROC curve derived
using inverse probability weighting (IPW).

The simulation set-up is similar to that of Alonzo et al. [19,28]. The disease is considered to
arise from two underlying continuous disease processes, which remain subclinical until
some function of the processes exceeds a certain threshold, at which point the disease
becomes apparent. In particular, two independent random variables Z1 ~ N (0, 0.5) and Z2 ~
N (0, 0.5) were generated, and the disease indicator D was specified as D = I[g(Z1, Z2) > r].
Thus, by varying g(Z1, Z2) one can consider different disease processes, and by varying r
one can consider different disease prevalences. The continuous diagnostic test result T was
assumed to be related to D through Z1 and Z2: T = α1Z1 + β1Z2 + ε1, where ε1 ~ N (0, 0.25)
and is independent of Z1 and Z2. A single covariate X was chosen to be related to the two
separate components of the disease process: X = α2Z1 + β2Z2 + ε2, where ε2 ~ N (0, 0.25)
and is also independent of Z1 and Z2. By varying α1, α2, β1, and β2, one can vary the extent
to which the test result and the covariates capture the different components of the underlying
disease process, as well as the correlations between the test result and the covariates. The
values also affect the discriminatory abilities of T and X with respect to D. Finally, the
verification probability h(T, X) was chosen to be a specified function of T and X in keeping
with the MAR assumption.

Using this simulation set-up, we verified the results of Alonzo and Pepe [19] who showed
that, when the models for verification and disease are correctly specified, the BG, MS, SP,
and IPW (new) methods have minimal bias, with the BG and MS estimators being typically
more precise than the SP and IPW (new) estimators. When the disease model is
misspecified, however, the BG and MS estimators exhibit substantial bias, whereas the SP
and IPW (new) estimators have very little bias and are similar with respect to variance.

4.2 Performance of the variance estimator
Let g(Z1, Z2) = Z1 + Z2 and h(T, X) = δ + (1 − δ)I (T > tq), where 0 ≤ δ < 1 and tq is the qth

quantile of the distribution of T. The decision to verify the disease status of the subject thus
does not depend on X. In this simulation study, different values of α1 and β1 are considered
for T = α1Z1 + β1Z2 + ε1 and α2 = β2 = 1. The value of δ is chosen to be 0.20 and q is chosen
to be 80. Therefore, all subjects with a value of T above the 80th percentile, and 20% of all
other subjects, are selected to have their disease status verified. The probability of
verification in the population is thus 0.36. In the estimation procedure, the correct models
were assumed to hold for verification (V|T) and disease (D|T, X). For disease, a generalized
linear model for D given T and X with probit link is the correct model [19].
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The performance of the asymptotic variance estimator for the AUC as a function of sample
size, disease prevalence, and the value of the AUC was investigated. The threshold value r
was varied to yield different disease prevalences. Also, by varying α1 and β1, the extent to
which the test result T captures the different components of the underlying disease process is
varied, yielding different values of the true AUC. The simulation variance of the AUC was
calculated from 5000 realizations and can be considered to reflect the true variability of the
estimator. The performance of the variance estimator was assessed by examining the ratio of
the estimate (averaged over the 5000 realizations) to the simulation variance. To assess the
impact of using the estimated verification probabilities in place of the true verification
probabilities in the variance formula, we present the results for both cases. For comparison,
we also estimated the variances using the bootstrap approach with 500 bootstrap samples.
Table 1 provides the variance ratios for a range of sample sizes and AUC values when the
disease prevalence is 0.3 or 0.5. The asymptotic variance formula performs very well for
sample sizes as small as 100 when the disease prevalence is 0.5, and for sample sizes as
small as 200 when the disease prevalence is 0.3. There is virtually no difference in the
performance of the formula when the true and the estimated verification probabilities are
used, which indicates that the variation due to the estimation of the verification probabilities
is very small relative to the variation of the AUC even for sample sizes as small as 100.
When the sample sizes are relatively small, the asymptotic variance formula tends to
underestimate the variance, while the bootstrap approach tends to overestimate the variance.

5 Study of Depression in Elderly Primary Care Patients
We illustrate our proposed methodology using data from a longitudinal study of depression
in elderly patients (age ≥ 65) recruited from primary care practices in Monroe County, New
York. At the intake evaluation, 708 patients underwent a comprehensive diagnostic
assessment for depression using the Structured Clinical Interview for DSM-IV (SCID), an
intensive examiner-based assessment that can be considered as a practical gold standard for
this purpose [30]. Depression was defined based on the SCID as major or minor depression,
actively symptomatic (i.e., either current or partially remitted); 249 patients were classified
as having depression and 459 patients were classified as not having depression. Other
information collected as part of this study included the Hamilton Depression Rating Scale
(HAM-D), a 24-item observer-rated scale designed to measure the severity of depressive
symptoms [31]. In this example, the utility of the HAM-D as a screening marker for the
diagnosis of depression will be evaluated. The HAM-D takes approximately 15–20 minutes
to administer, compared to 1–3 hours for the SCID.

Data for both the SCID and the HAM-D were collected from all participating patients in this
study; therefore, we used a subset of these data that resemble data that would be obtained
from a two-phase design. In this subset, HAM-D results are available for all patients, but
SCID diagnoses are available only for certain patients selected according to the following
mechanism:

where the CIRS is the total score on the Cumulative Illness Rating Scale, a reliable and valid
measure of medical burden that quantifies the amount of pathology in each organ system
[32]. Thus, the verification mechanism preferentially selected patients who had a HAM-D
score > 7 or patients under the age of 75 with a relatively high cumulative illness burden.
Using this mechanism, 289 of the 708 patients (41%) were selected for SCID verification of
the depression diagnosis.
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We consider estimation of the AUC of the HAM-D for screening for depression and treat
age, gender, years of education, and CIRS total score as covariates (i.e., D = SCID
diagnosis, T = HAM-D and X = [age, gender, years of education, CIRS total score] in terms
of previous notation). The AUC was estimated using the new direct estimator, the naïve
estimator, and estimators derived from the empirical bias-corrected ROC curves, including
BG, MS, and SP; recall that the new direct estimator is equivalent to the IPW estimator.
Since the full data are available (in addition to the selected subset), the estimators in the
setting of verification bias can be compared to the “full data” estimator, which is not subject
to this bias.

The BG, MS and SP estimators require a model for Pr(D|T, X). A logistic regression model
was used for this purpose assuming linear relationships between log-odds of depression and
age, years of education, and CIRS total score. The IPW (new) and SP estimators require a
model for Pr(V|T, X), hence we used the observed fractions of subjects falling in the 8
categories defined by the combinations of I[HAM-D > 7], I[CIRS > 7] and I[Age < 75]. The
resulting estimates are presented in Table 2. The confidence intervals for the AUC were
computed using 500 replications of bootstrap resampling as well as the asymptotic variance
result from Theorem 3 for the IPW (new) estimate. As expected, the naïve estimate of the
AUC is noticeably biased. Although the true model for Pr(D|T, X) in this case is not known,
it is likely that there is some degree of model misspecification present. The BG and MS
estimators are biased. In this example, the verification mechanism is well understood and the
IPW (new) approach yields an estimate that is quite close to the full data estimate.
Surprisingly, the SP approach yields an estimate that differs somewhat from the full data
estimate in this example. Also, for the new estimate, the confidence intervals obtained via
the bootstrap and Theorem 3 are virtually identical.

6 DISCUSSION
In this paper we propose a direct estimator of AUC in the presence of verification bias when
the test result is continuous. The estimator is based on inverse probability weighting and has
a simple closed-form expression. Because the estimator is a function of U-statistics, a
closed-form expression for its asymptotic variance could also be derived.

Several methods exist for direct estimation of the AUC, but these have been derived for the
case when the test result T is ordinal and the relevant covariates X are categorical. Recent
work by Alonzo and Pepe [19] has developed methods for estimating the AUC for the case
where the test result is continuous and the covariates can be continuous. The general
approach is to first derive the empirical bias-corrected ROC curves, and then compute the
area under these curves using the trapezoidal rule. A limitation of this approach is that there
is no closed-form expression for the variance of the estimator and resampling techniques are
needed for inference. Our proposed direct estimator of the AUC is easily computed, as is its
approximate variance. The variance formula appeared to work quite well in our simulation
studies, comparing the results from the formula with the simulation variance results. An
interesting result is that the new estimator is equivalent to the AUC computed using Alonzo
and Pepe’s IPW approach [19]. It should be noted that the variance formula for the new
estimator assumes that the observations are independent. For situations where this
assumption is violated, resampling techniques can be used to accommodate the dependence.
Alonzo and Pepe [19] provide an example from a study of neonatal hearing screening in
which observations on the test result (T) and diagnosis (D) were obtained from both ears in
most of the subjects, resulting in dependent or clustered data. Our variance formula cannot
be applied in this situation.
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The results of our simulation studies show that when the models for disease and verification
are correctly specified, all existing methods for bias correction perform quite well. The BG
and MS methods appear to be somewhat more efficient than the SP and IPW (new) methods,
as noted by Alonzo and Pepe [19]. On the other hand, the SP method has the advantage of
being doubly robust to model misspecification. Also, the IPW (new) method requires correct
specification only for the model for verification of true disease status. It is often the case in
practice that the verification mechanism is well understood or can be controlled by the
investigators, in which case model misspecification is less of an issue. For the BG and MS
methods, the model for disease must be correctly specified, which may be more challenging
in practice. When this model is incorrectly specified, the estimators can have significant
bias.

Rotnitzky et al. [20] recently proposed a direct estimator of the AUC that is doubly robust
and can be applied in cases where the mechanism for missing true disease status is
nonignorable. Under the MAR assumption, this estimator is essentially the same as the
estimator based on the SP method. Indeed, both approaches are based on the idea of
replacing the disease status Di with

for all subjects. In fact, using the same strategy as that in the proof of Theorem 4, the
empirical AUC based on the SP approach can be derived as

where . This is exactly the same as the estimator of Rotnitzky et al.
[20], except that the latter estimator excludes the terms in the above expression for which i =
j. The numerical difference between the two estimators in practice is very small and they
have the same asymptotic properties. Hence, this is another method with a closed-form
expression for the estimator and its asymptotic variance. We (and others [19]) have shown
that these two estimators (SP and IPW) behave quite similarly when the model for
verification is correctly specified, regardless of whether the model for disease is correctly
specified. The SP estimator will be superior when the model for disease is correctly
specified but the model for verification is incorrectly specified. If, however, the verification
mechanism is well understood, the IPW method does not require the extra step of specifying
(and fitting) a model for disease. This step may not be straightforward in some situations
(e.g., when the disease prevalence is low and the resulting sparse data creates problems in
model-fitting).
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APPENDIX

Proof of Theorem 2

Let , and let
. As computed in Section 3.2, we have E [φ(Si, Sj)]

= λ(1 − λ)AUC, where λ = Pr(Di = 1).

By Theorem 1, we have . Also, since

. Hence .

Proof of Theorem 3
Let U = ΣΣ≠j φ(Si, Sj) and V =ΣΣ i≠jψ(Si, Sj). By Theorem 1, with m = 2,

, where μ = (λ (1 − λ)AUC, λ (1 − λ))T. Therefore, by the

multivariate δ-method, .

The matrix S can be expressed in terms of λ, F0, F1, G0, and G1. Since

in order to compute Σ, we need to compute
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Computation of E[φ(Si, Sj)φ(Si, Sk)]

Hence

.

Similarly,

,
and

.

Thus,

Proof of Theorem 4
Let c1 < … < cn be the ordered test results t1, …, tn. Then the points forming the empirical
ROC curve obtained using the IPW approach are

Thus the area under the empirical ROC curve is
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Since , the denominator of the
above expression equals the denominator of our estimator. It is therefore enough to show
that the numerators are the same. Now

Note that I(Ti < ck+1) − I (Ti < ck) = 0 if Ti < ck or Ti > ck+1, and is equal to 1 if Ti = ck.
Furthermore, if Ti = ck, then since Ti ≠ Tj for j ≠ i, Tj ≥ ck = Ti is equivalent to Tj ≥ ck+1,
hence

.

The numerator is thus equal to

, which is
exactly the numerator of our estimator.
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Table 2

Estimates of the AUC using data from a study of depression in elderly primary care patients.

Method Estimated AUC Bootstrap 95% Confidence Interval

Full Data 0.84 (0.81, 0.87)

Naïve 0.79 (0.74, 0.84)

BG 0.79 (0.73, 0.85)

MS 0.80 (0.74, 0.86)

SP 0.89 (0.83, 0.95)

IPW (new) 0.84 (0.77, 0.91)

* (0.77, 0.91)

*
Note: Confidence interval based on the asymptotic distribution (Theorem 3).
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