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Abstract

Background: Nkx2.7 is the tinman-related gene, as well as orthologs of Nkx2.5 and Nkx-2.3. Nkx2.7 and Nkx2.5 express in
zebrafish heart fields of lateral plate mesoderm. The temporal and spatial expression patterns of Nkx2.7 are similar to those
of Nkx2.5, but their functions during cardiogenesis remain unclear.

Methodology/Principal Findings: Here, Nkx2.7 is demonstrated to compensate for Nkx2.5 loss of function and play a
predominant role in the lateral development of the heart, including normal cardiac looping and chamber formation.
Knocking down Nkx2.5 showed that heart development was normal from 24 to 72 hpf. However, when knocking down
either Nkx2.7 or Nkx2.5 together with Nkx2.7, it appeared that the heart failed to undergo looping and showed defective
chambers, although embryos developed normally before the early heart tube stage. Decreased ventricular myocardium
proliferation and defective myocardial differentiation appeared to result from late-stage up-regulation of bmp4, versican,
tbx5 and tbx20, which were all expressed normally in hearts at an early stage. We also found that tbx5 and tbx20 were
modulated by Nkx2.7 through the heart maturation stage because an inducible overexpression of Nkx2.7 in the heart caused
down-regulation of tbx5 and tbx20. Although heart defects were induced by overexpression of an injection of 150-pg Nkx2.5
or 5-pg Nkx2.7 mRNA, either Nkx2.5 or Nkx2.7 mRNA rescued the defects induced by Nkx2.7-morpholino(MO) and Nkx2.5-
MO with Nkx2.7-MO.

Conclusions and Significance: Therefore, we conclude that redundant activities of Nkx2.5 and Nkx2.7 are required for cardiac
morphogenesis, but that Nkx2.7 plays a more critical function, specifically indicated by the gain-of-function and loss-of-
function experiments where Nkx2.7 is observed to regulate the expressions of tbx5 and tbx20 through the maturation stage.
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Introduction

The heart is the first organ to form and function in the vertebrate

embryos. The functional heart is formed after 72 hours post-

fertilization (hpf). During heart developmental processes, cell fate

determination, specification, differentiation and migration are all

involved. In view of this complexity, investigators have used model

systems, including Drosophila, Xenopus, zebrafish, chicken, and

mouse, in an attempt to understand the molecular regulatory

network of cardiogenesis [1–4]. These efforts have produced two

key findings important to the hypothesis of this paper: 1) that the

members of the homeobox gene family are important for heart

development [5] and 2) that the NK-class of homeodomain proteins

plays key roles in the establishment of myogenic lineages [6–11].

Among the homeobox genes, the vertebrate homologs of tinman

have been cloned in many species and are highly conserved in the

homeodomain structures and expression patterns. For example,

Drosophila tinman is involved in the specification of the heart primordial

cells. More specifically, in tinman null mutants, the heart-like dorsal

vessel is absent, indicating that tinman is a critical factor in Drosophila

heart-like formation [6]. The mouse tinman homolog is Nkx2.5, and

Nkx2.5-knockout mice exhibit the formation of a primitive heart tube,

which expresses most cardiac markers with the exception of mlc2v.

The mlc2v marker, however, displays a thinning ventricular

myocardium and, therefore, cannot undergo heart looping [7].

Unlike Drosophila tinman, mouse Nkx2.5 is required for murine normal

heart morphogenesis, but it is not essential for the cell fate

determination of heart precursors. This suggests that there may be

an Nkx homolog that compensates for the loss of function of Nkx2.5 in

mouse embryos. The most likely homolog of mouse Nkx2.5 is mouse

Nkx2.6 which shares identical expression patterns at pharyngeal

endoderm and at heart with Nkx2.5 [12]. Targeted disruption of

Nkx2.6 does not cause any abnormality, either in the pharynx or in

the heart [13]. In Nkx2.52/2Nkx2.62/2 double knockout mice, the

development of pharynx is totally abolished. Therefore, Tanaka et al.

(2001) demonstrated that Nkx2.5 can compensate for the function of

Nkx2.6 in the pharyngeal endoderm [14].

Many tinman (Nkx2.3, 2.5, 2.6, 2.7, 2.8) homologs of chicken,

Xenopus and zebrafish have been isolated [10,15–21]. The example

cited above, mouse Nkx2.5/ Nkx2.6, suggests a redundant activity
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for loss of a single Nkx homolog function. In chick, cNkx2.8

expression partially overlaps with cNkx2.5 and cNkx2.3. This is seen

in the onset of cNkx2.8, which appears at heart primordia and

retains its expression until primary heart tube formation. After

heart tube looping, however, cNkx2.8 is no longer expressed, and

cNkx2.3 initiates expression at this stage and continues to express

until adulthood [22]. Overexpression of cNkx2.8 can transactivate

a minimal promoter containing the cis-acting element for Nkx2.5

binding. In addition, cNkx-2.8 and serum response factor can co-

activate a minimal cardiac a-actin promoter like cNkx2.5 [21].

Still, there is no direct evidence to demonstrate that cNkx2.8 can

compensate for cNkx2.5 loss of function in early development of

chick heart.

In Xenopus, both XNkx2.3 and XNkx2.5 are expressed in cardiac

mesoderm and pharyngeal endoderm [23]. Injection of XNkx2.3 or

XNkx2.5 mRNA causes an abnormally enlarged heart [9].

Although the XNkx2.5 and XNkx2.3 dominant-negative en-

grailed-fusion repressor shows a reduced number of heart cells,

co-injection of both EnHD constructs appears to result in an even

more serious decrease of heart cells. This suggests that XNkx2.5

and XNkx2.3 act redundantly during heart formation [24].

In zebrafish, Nkx2.7 is the tinman-related gene, as well as

orthologs of Nkx2.5 and Nkx2.3. The transcription of zebrafish

Nkx2.7 is earlier than that of Nkx2.5 in cardiac mesoderm, and

Nkx2.7 is also expressed at pharyngeal endodermal precursors.

The temporal and spatial expression patterns of Nkx2.7 are similar

to those of Nkx2.5 [19]. While knockdown of Nkx2.5 in zebrafish

embryos displays no obvious defects in heart, overexpression of

Nkx2.5 did show an enlarged heart and even caused dorsoventral

axial defects [10]. Since it is not known which stages of cardiac

development or which pathways are affected by the Nkx family of

homologs, it may be necessary to knock down more than one of

these genes to discover their dual functions. Meanwhile, the

precise role played by tinman homolog genes in vertebrate cardiac

development remains to be clarified, particularly the dual roles

played by Nkx2.5 and Nkx2.7 in the cardiogenesis of zebrafish

embryos. In this study, we clearly demonstrate that, while Nkx2.5

and Nkx2.7 play redundant roles in the differentiation of

cardiomyocytes, Nkx2.7 has a more critical function, specifically

indicated by the gain-of-function and loss-of-function experiments

where Nkx2.7 is observed to regulate the expressions of tbx5 and

tbx20 through the heart tube stage.

Results

Nkx2.5 and Nkx2.7 double knockdown results in serious
zebrafish embryo heart defects

We designed Nkx2.5- and Nkx2.7-MO to study whether Nkx2.5

or Nkx2.7 is required for heart development of zebrafish. Heart-

specific-GFP transgenic line Tg (cmlc2::GFP) was used to monitor

the cardiac morphology in zebrafish embryos. By fluorescence

microscope, we observed that embryos injected with 10, 12, and

14 ng of Nkx2.5-MO developed normally from 24 to 72 hpf,

although we occasionally observed a small percentage of injected

embryos which had a slight degree of pericardial edema. This was

also observed in the wild-type embryos and in the embryos

injected with a high concentration of control MO (Table 1 and

Fig. 1A). In contrast, embryos injected with Nkx2.7-MO at the

same concentrations totally failed to complete heart looping

during 30 to 72 hpf (Table 1 and Fig. 1B). Moreover, double

knockdown of Nkx2.5 and Nkx2.7 (Nkx2.5/2.7-MO) by injection of

8 ng Nkx2.5-MO combined with 8 ng of Nkx2.7-MO into

embryos displayed a shrunken ventricle and an expanded atrium

with an incomplete heart looping. After 72 hpf, many symptoms of

heart defects appeared in both Nkx2.7 and Nkx2.5/2.7 mor-

phants, including regurgitation of blood, arrhythmia, string-like

heart and pericardial edema (data not shown). The rates of

defective heart occurrence in the Nkx2.7 and the Nkx2.5/2.7

morphants were dose-dependent (Table 1). Comparing the cardiac

defects among Nkx2.5 morphants, Nkx2.7 morphants and

Nkx2.5/2.7 morphants, we observed that the Nkx2.5 morphants

did not have any obvious heart defects, while the Nkx2.7

morphants exhibited an unlooping defect with a low percentage

of shrunken ventricles. The Nkx2.5/2.7 morphants displayed not

only the unlooping defect, but also shrunken ventricles (Table 1).

To confirm that the phenotypes of morphants were specifically

induced by the absence of Nkx2.5/2.7 function, we constructed

plasmids of pCS2-Nkx2.5-GFP and pCS2-Nkx2.7-GFP, in which

the binding sequence of MO was fused with the GFP cDNA.

Unlike the GFP was expressed in the embryos (n = 173) injected

Table 1. The cardiac phenotypes of embryos injected with Nkx2.5-MO, Nkx2.7- MO and Nkx2.5/2.7-MO.

Morpholino (ng) Survival numbers of Embryos Abnormal Phenotypes

Nkx2.5 Nkx2.7 Looping Defects Shrinking Ventricle pericardial edema

4 4 142/167 (85.0%) 85(59.8%) 75(52.8%) —

6 6 207/255 (81.2%) 166 (80.2%) 151(72.9%) —

8 8 183/233 (78.6%) 177 (97.8%) 162 (88.5%) —

0 10 115/137 (83.9%) 56(48.7%) 12(10.4%) —

0 12 139/177 (78.5%) 87(62.5%) 27(19.4%) —

0 14 183/246 (74.3%) 143(78.1%) 75(40.9%) —

10 0 24/188 (87.2%) 0 0 21/164(12.8%)

12 0 74/84(88.1%) 0 0 15/76 (19.7%)

14 0 82/98(83.7%) 0 0 19/82(23.2%)

Embryos derived from the transgenic line of Tg(cmlc2::GFP) were used, and the cardiac morphology was observed by fluorescence microscope. The major cardiac
phenotype of Nkx2.5/2.7-MO morphants revealed unlooping defects and shrunken ventricle; the major phenotype for Nkx2.7-MO morphants was looping defects with a
lesser rate of shrunken ventricle. The Nkx2.5-MO morphants displayed no obvious cardiac phenotype except pericardial edema. (‘‘—‘‘ represents no observation.) The
percentage of each abnormal phenotype was counted individually.
doi:10.1371/journal.pone.0004249.t001

Nkx in Cardiac Morphogenesis
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6 ng Nkx-specific MO together with 150 pg GFP mRNA, the GFP

expression was not observed in the embryos (n = 155) injected 6 ng

Nkx-specific MO together with 150 pg mRNA synthesized either

from pCS2-Nkx2.5-GFP or from pCS2-Nkx2.7-GFP (data not

shown). Embryos injected either with Nkx2.5-GFP and Nkx2.7-

MO, or with Nkx2.7-GFP and Nkx2.5-MO, distinctively express

GFP (data not shown). This evidence indicated that injection of

Nkx2.5-MO and Nkx2.7-MO can specifically block the translation

of the Nkx2.5 or Nkx2.7 mRNA, respectively. We also designed a 5-

bp mismatched binding sequence for Nkx2.7 MO, termed Nkx2.7-

MO-control, to serve as a control. Results showed that the

Nkx2.7-MO-control-injected zebrafish embryos exhibited the

wild-type-like phenotype when this control MO was injected at

a range of 6.0 to 16 ng. Thus, we conclude that the defective

phenotypes of morphants are induced specifically by the injection

of Nkx2.5/2.7-MO.

Nkx2.5 and Nkx2.7 function redundantly in zebrafish
heart development

To demonstrate the functions shared by Nkx2.5 and Nkx2.7, as

well as the specificity of MO for Nkx2.5 and Nkx2.7, the Nkx2.5

mRNA or the Nkx2.7 mRNA was co-injected with MO into

zebrafish embryos. Results showed that co-injection of 9 ng

Nkx2.7-MO with 10 and 20 pg of Nkx2.5 mRNA in embryos

decreased the occurrence of heart defects from 55% to 32% and

22%, respectively (Table 2), indicating that the defective

phenotype of Nkx2.7 morphants was specifically rescued by

Nkx2.5 mRNA. Co-injection of 8 ng Nkx2.5-MO plus 8 ng

Nkx2.7-MO with 25 and 50 pg of Nkx2.5 mRNA in embryos

decreased the occurrence of heart defects from 91% to 73% and

58%, respectively (Table 2). Furthermore, co-injection of 8 ng

Nkx2.5-MO plus 8 ng Nkx2.7-MO with 0.25 and 0.5 pg of Nkx2.7

mRNA in embryos decreased the occurrence of heart defects from

92% to 61% and to 43%, respectively (Table 2), indicating that the

heart defects in embryos were rescued specifically by Nkx2.5- and

Nkx2.7- mRNA. Taken together, the decrease of heart defects

across samples indicates that Nkx2.7 and Nkx2.5 function

redundantly during the heart development of zebrafish embryos.

However, since rescue experiments were performed by substan-

tially decreasing the concentration of Nkx2.7 mRNA, we can

conclude that Nkx2.7 plays a functionally more predominant role

in heart formation.

Nkx2.5 was overexpressed in the Nkx2.7-MO-injected
embryos

In the wild-type embryos, Nkx2.5 was expressed predominantly

in the ventricle and weakly in the atrium at 48 hpf (Fig. 2A),

limiting ventricle expression when embryos developed at 72 hpf

(Fig. 2C). Unlike the Nkx2.5 expression in the wild-type, Nkx2.7-

knockdown morphants retained robust Nkx2.5 expression in

ventricle (Figs. 2B and 2D). Because Nkx2.7 was knocked down

and Nkx2.5 was overexpressed, these results also support the

hypothesis that Nkx2.5 and Nkx2.7 play similar roles in cardiac

morphogenesis in zebrafish and that, moreover, in the absence of

one, the other can compensate for the loss of function.

The ventricle became smaller and consisted of a single
layer in the Nkx2.5 and Nkx2.7 double knockdown
embryos

In addition to monitoring cardiac morphology by using heart-

tagged GFP zebrafish line Tg(cmlc2::GFP), we used vmhc as a

Table 2. Functional redundant activities between Nkx2.5 and
Nkx2.7 in zebrafish heart development.

Morpholino (ng) mRNA (pg) Total (n)
Heart
Defects (%)

Nkx2.5 Nkx2.7 Nkx2.5 Nkx2.7

0 9 ng 0 0 177 55%

0 9 ng 10 pg 0 109 32%

0 9 ng 20 pg 0 113 22%

8 ng 8 ng 0 0 146 91%

8 ng 8 ng 25 pg 0 278 73%

8 ng 8 ng 50 pg 0 169 58%

8 ng 8 ng 0 0 166 92%

8 ng 8 ng 0 0.25 pg 189 61%

8 ng 8 ng 0 0.5 pg 206 43%

For rescue study, the Nkx2.5 mRNA was co-injected with Nkx2.7-MO into
embryos derived from zebrafish transgenic line Tg(cmlc2::GFP). The percentages
of heart defects were decreased compared to phenotypes which occurred in
the embryos injected with Nkx2.7-MO alone. Similarly, either the Nkx2.5 or
Nkx2.7 mRNA enabled embryos to be rescued from the defects as a result of the
injection of Nkx2.5/2.7-MO. n: total number of embryos analyzed.
doi:10.1371/journal.pone.0004249.t002

Figure 1. The defective phenotypes of zebrafish embryo heart
injected with Nkx2.5-MO, Nkx2.7-MO and Nkx2.5/2.7-MO. Eight
nanograms of MO were injected into one-cell stage embryos derived
from transgenic line Tg (cmlc2::GFP) to knock down the Nkx protein
specifically. The embryos are shown at 36 hpf (A, B, C), 48 hpf (D, E, F),
and 72 hpf (G, H, I). The heart phenotype of Nkx2.5-MO embryos was
similar to that of control embryos whose ventricle is located at the right
side of the atrium when embryos were observed at 36 hpf, 48 hpf and
72 hpf from the ventral view under fluorescence microscope (A, D, G).
However, embryos injected with Nkx2.7-MO displayed an unlooping
defect from 36 hpf to 72 hpf (B, E, H). Embryos injected with Nkx2.5/2.7-
MO displayed a shrunken ventricle and an expanding atrium (C, F, I). v:
ventricle; a: atrium.
doi:10.1371/journal.pone.0004249.g001

Nkx in Cardiac Morphogenesis
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ventricle-specific probe to determine the ventricular cell fate.

Compared to the wild-type, the ventricle of the Nkx2.5 and Nkx2.7

double knockdown embryos became smaller when they were

observed at 72 hpf. However, the expression level of vmhc in the

heart of the Nkx2.5/2.7- MO-injected embryos was similar to that

of wild type (Figs. 3A and 3B). It is worth noting that neither WT

nor Nkx2.5/2.7 morphant embryos expressed vmhc in the head

muscle until 72 hpf. Therefore, the Nkx2.5/2.7-MO morphants

did not appear less developed than WT embryos. This evidence

demonstrates that, although the ventricular fate is properly

determined in the Nkx2.5/2.7-MO-injected embryos, their

ventricular morphogenesis is abnormal.

In order to understand why the ventricle of Nkx2.5/2.7-MO-

injected embryos is smaller than that of wild-type embryos, we

performed a histological examination of the 72-hpf embryos.

Compared to the wild-type (Fig. 3C), a thinning layer of

myocardium with fewer cell numbers in the ventricle was observed

in the Nkx2.5/2.7 morphants (Fig. 3D). Additionally, the

endocardium was not observed to form an endocardial cushion

in these morphants (Fig. 3D). Finally, the TUNEL assay

demonstrated that the decrease of myocardium cell numbers in

the ventricle did not result from cell death, but rather from

defective proliferation of ventricular myocardium, which led to a

smaller heart with a thinning layer (Figs. 3E and 3F).

Heart deterioration occurring in the Nkx2.5/2.7
morphants results from defective myocardial
differentiation

The expressions of tbx5 and hand2 in the cardiac precursor

regions were normal in the Nkx2.5/2.7-MO-injected embryos at

12 hpf (Figs. 4A and 4C vs. 4B and 4D). These two markers were

present in the bilateral regions of the lateral plate mesoderm and

showed the correct anterioposterior localization with the same

expression level. Thus, the early cardiac marker genes were

transcribed normally in the Nkx2.5/2.7 morphants.

We also observed myocardial differentiation markers, such as

bmp4, versican, tbx5, and tbx20. BMP4 is one of the TGF-b
superfamily proteins and is involved in valve development during

the cardiac maturation stage. A ventricle-enriched expression of

bmp4 was the same between wild-type and Nkx-deficient embryos

from 31 to 33 hpf (data not shown). Moreover, in wild-type

embryos, bmp4 was found to express in the ventricle and inflow

tract at 48 hpf (Fig. 5A), and then it was expressed exclusively in

the atrioventricular junction at 72 hpf (Fig. 5D). However, unlike

the dynamic expression of bmp4 in the wild-type embryos, bmp4 in

the Nkx2.7 and in the Nkx2.5/2.7 morphants failed to change its

predominant ventricular and atrial expression pattern (Figs. 5B

and 5E; 5C and 5F). Similarly, versican was expressed broadly in

the atrium and weakly in the ventricle of the wild-type embryos at

33 hpf. This atrium-enriched expression of versican was the same

between wild-type and Nkx-deficient embryos (data not shown).

After 36 hpf, the versican expression of wild-type was restricted to

the AV boundary (Figs. 5G and 5J). However, Nkx2.7 and the

Nkx2.5/2.7 morphants still expressed a high level versican in the

atrium of the heart from 48 to 72 hpf (Figs. 5H and 5K; 5I and

5L). Nevertheless, we noticed that the versican was expressed in

otoliths of both the wild-type embryos and the Nkx-deficient

embryos by 72 hpf (Figs. 5J, 5K and 5L), indicating that the

Figure 2. Nkx2.5 was overexpressed in the Nkx2.7-knockdown
embryos. Nine nanograms of Nkx2.7-MO were injected into one-cell
stage of embryos. Nkx2.5 was expressed predominantly in ventricle (v)
and weakly in atrium (a) of wild-type (WT) embryos at 48 hpf (A), but
only minimally and weakly in ventricle at 72 hpf (C). However, the
Nkx2.7-MO-injected embryos retained robust Nkx2.5 expression in
ventricle both at 48 and 72 hpf (B and D). The embryonic stages were as
indicated, and embryos were observed ventrally. v: ventricle; a: atrium.
doi:10.1371/journal.pone.0004249.g002

Figure 3. Ventricle becomes smaller and consists of a single
layer in the Nkx2.5 and Nkx2.7 double knockdown morphants
(Nkx2.5/2.7-MO). Ventricular myosin heavy chain (vmhc) was used as
a probe to detect the ventricle morphology in (A) wild-type (WT) and (B)
Nkx2.5/2.7-MO embryos at 72 hpf. The ventricle of Nkx2.5/2.7-MO
embryos was smaller than that of WT embryos (indicated by arrows).
Hematoxylin and eosin staining showed that ventricular myocardium of
WT was two or more cell layers in thickness. However, only one cell
layer was retained in the ventricular myocardium of the Nkx2.5/2.7-MO
embryos. In addition, compared to wild-type embryos, the endocardi-
um of Nkx2.5/2.7-MO-injected embryos did not form endocardial
cushion (indicated by arrowheads in C and D). Like WT embryos, TUNEL
assay did not display the increase of TUNEL-positive cells in the heart
region of Nkx2.5/2.7-MO embryos at 40 hpf (indicated by boxes in E and
F). Embryos were observed ventrally (A–B) or laterally (C–F). v: ventricle;
a: atrium.
doi:10.1371/journal.pone.0004249.g003

Nkx in Cardiac Morphogenesis
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development of Nkx-deficient embryos was not delayed and that

the defects caused by Nkx-MO were specific in the heart, not in

otoliths (Figs. 5J, 5K and 5L).

In the wild-type embryos, tbx5 expression was slightly greater in

the atrium than the ventricle at 26 hpf, which was consistent with

what Garrity (2002) reported [25]. Then, the gradient expression

of tbx5 was changed from atrium-rich expression to ventricle-rich

expression at 48 hpf (Figs. 6A and 6D). However, in the Nkx2.7

and Nkx2.5/2.7 morphants, the tbx5 expression remained atrium-

rich at 48 hpf (Figs. 6B and 6C), and even beyond 48 hpf (Figs. 6E

and 6F). In an overview of the whole heart, the expression level of

tbx5 was greater in morphants than the wild-type embryos.

Although the dynamic change of tbx5 expression pattern from

atrium to ventricle in the wild-type at later stages did not occur in

the Nkx2.7 or the Nkx2.5/2.7 morphants, the expression level of

tbx5 in pectoral fin bud of morphants was the same as wild-type

embryos.

We also detected another myocardial differentiation marker,

tbx20, which was expressed during cardiac development. In the

wild-type, this marker was expressed more predominantly in the

ventricle than in the atrium at 48 hpf (Fig. 6G). The expression of

tbx20 was confined to the outflow tract, AV canal and inflow tract

at 72 hpf (Fig. 6J); however, its expression in the Nkx2.7 and the

Nkx2.5/2.7 morphants maintained a strong signal in the ventricle

and atrium of the heart (Figs. 6H and 6K; 6I and 6L). While this

behavior was unlike the tbx20 expression patterns in the wild-type

embryos, the expression level of tbx20 in the outflow tract of

morphants was, nevertheless, the same as wild-type embryos. Still,

we noticed that, like wild-type embryos, the expression level of

tbx20 in tegmentum of the Nkx2.7 and Nkx2.5/2.7 morphants

started to gradually decrease from 48 to 72 hpf (Figs. 6J, 6K and

6L), indicating that, although all these morphants developed to

later stages without delay, they also exhibited specific heart defects.

In summary, we examined the expression patterns of myocar-

dial differentiation markers, including bmp4, versican, tbx5 and

tbx20, in the Nkx2.7-MO- and Nkx2.5-/2.7-MO-injected embry-

os. While the expression levels of these markers were the same as

those at the early stage of the wild-type, we found that they

became more intensive than those of the wild-type at the later

stage, suggesting that myocardial differentiation is defective in the

morphants. We also noticed that the hearts of these Nkx2.7- and

Nkx2.5/2.7-MO-injected embryos finally deteriorated and be-

came string-like in form without undergoing further development.

Taken together, this line of evidence suggests that the late onset of

myocardial differentiation results in heart defects at a later

maturation stage of cardiogenesis in the Nkx-knockdown embryos.

Overexpression of Nkx2.7 or Nkx2.5 causes cardiac
defects similar to those induced by Nkx-knockdown

To examine whether Nkx2.7 plays roles similar to those of

Nkx2.5 in cardiogenesis, we studied the effect of Nkx overexpres-

sion on heart development by injection of either Nkx2.7 or Nkx2.5

mRNA into one-celled stage embryos derived from transgenic line

Tg(cmlc2::GFP), which has heart-specific GFP. By fluorescence

microscopy, we observed that overexpression of 5 pg Nkx2.7

Figure 4. Early cardiac markers express normally in the Nkx2.5
and Nkx2.7 double knockdown morphants (Nkx2.5/2.7-MO).
Whole mount in situ hybridization showed that the expression patterns
of hand2 and tbx5, lateral plate mesoderm markers, were similar
between wild-type (WT) and Nkx2.5/2.7-MO embryos at 10 hpf (A vs. B;
C vs. D, respectively). Arrows: heart field.
doi:10.1371/journal.pone.0004249.g004

Figure 5. Abnormal cardiac differentiation occurred in the
Nkx2.7-knockdown zebrafish embryos. The expressions of bmp4
(A–F) and versican (G–L) in hearts were compared between wild-type
(WT) (A, D, G, J), Nkx2.7-MO- (B, E, H, K) and Nkx2.5/2.7-MO- injected
embryos (C, F, I, L) at 48 (A–C, G–I) and 72 hpf (D–F, J–L). In WT embryos,
bmp4 was expressed in the ventricle and inflow tract at 48 hpf (A), and
then bmp4 was restricted in its expression at the AV boundary at 72 hpf
(D). However, in the Nkx2.7-MO (B, E) and Nkx2.5/2.7-MO (C, F) embryos,
bmp4 was still expressed predominantly in the ventricle and atrium
from 48 to 72 hpf. Similarly, in WT embryos, the versican expression was
more predominant in ventricle than in atrium, at about 31 to 33 hpf,
and then versican was confined in its expression at the AV boundary
after 33 hpf (G, J). In contrast, in the Nkx2.7-MO (H, K) and Nkx2.5/2.7-
MO (I, L) embryos, the versican was significantly expressed in the atrium
and ventricle. In addition, the versican expression pattern in otoliths
remained unchanged (J, K, and L). All images are ventral views, anterior
to the top. a: atrium; v: ventricle; i: inflow tract; av: atrioventricular
boundary; ot: otoliths.
doi:10.1371/journal.pone.0004249.g005
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mRNA caused defective phenotypes similar to overexpression of

150 pg Nkx2.5 mRNA. These defects included a small patch of

cardiac cells (64% in the 150-pg-Nkx2.5-overexpressed embryos;

28% in the 5-pg-Nkx2.7-overexpressed embryos), malposition of

cardiac migration (13% in the 150-pg-Nkx2.5-overexpressed

embryos; 2% in the 5-pg- Nkx2.7-overexpressed embryos), and

an enlarged heart (18% in the 5-pg- Nkx2.7-overexpressed

embryos) (Figs. 7A–F). Moreover, injection of Nkx2.5 mRNA in

the amount of 150 pg also caused 41% of embryos (62/150) to

have a dorsoventral axial defect, whereas injection of Nkx2.5

mRNA in the amount of 50 pg caused 22% of embryos (30 out of

135) to have an enlarged heart (data not shown). Based on this

evidence, we suggest that Nkx2.7 carries out functions similar to

those of Nkx2.5, but that Nkx2.7 appears to play a more prominent

role in zebrafish heart development. This conclusion is based on

the contrasting concentrations of mRNA required to generate

similar heart defects; i.e., 5 pg Nkx2.7 mRNA vs. 150 pg Nkx2.5

mRNA.

The expressions of tbx5 and tbx20 are modulated by
Nkx2.7

In addition to the cardiac defects occurring in the embryos that

were overexpressed in either Nkx2.5 or Nkx2.7, we noticed that

embryos injected with 150 pg of either Nkx2.5 or Nkx2.7 mRNA

suffered a severe defect in ventralization (data not shown).

However, this ventralization defect was not observed in the

embryos that were treated with either Nkx2.7- or/and Nkx2.5-

knockdown. This inconsistency between loss- and gain-of-function

of Nkx2.5 or Nkx2.7 may result from the possibility that either

Nkx2.7 or Nkx2.5 plays additional roles in zebrafish heart

development before the late-gastrula period. Therefore, in order

to further confirm the specific effects caused by the overexpression

of Nkx2.7 in the heart after gastrulation, we constructed a

dexamethasone-inducible plasmid in which the ligand-binding

domain of GR was fused with the coding region of Nkx2.7. When

we added dexamethasone to the 10-hpf embryos derived from the

transgenic line Tg(cmlc2::GFP), these embryos were fixed at 48-

hpf. Results showed that the cardiac maturation was defective,

including an unlooping or shrunken heart (Fig. 8B), although the

dorsoventral axis formation was not affected in the GR-Nkx2.7-

produced embryos (Figs. 8D and 8F). We also noticed that, unlike

wild-type embryos, the expressions of tbx5 and tbx20 in these GR-

Nkx2.7-produced embryos were reduced at 48 hpf (Figs. 8D and

8F). Moreover, compared to the unchanged expression levels of

tbx5 in eyes (Fig. 8C vs. 8D) and tbx20 in brain (Fig. 8E vs. 8F), the

effect of Nkx2.7 overexpression on the reduced expressions of tbx5

and tbx20 was heart specific. This evidence strongly suggests that

Nkx2.7 modulates the expression of tbx5 and tbx20, which, in turn,

affects cardiac differentiation.

Discussion

Using two Nkx2.5- and Nkx2.7-specific MOs, we demonstrated

that Nkx2.5 and Nkx2.7 are required for normal heart develop-

ment. Prior to the onset of cardiac looping, cardiogenesis

progresses normally in both Nkx2.7-MO and Nkx2.5/2.7-MO,

indicating that Nkx is not an essential requirement for the early

stage of heart development. However, at 36 hpf, when heart

development reaches the looping stage, Nkx2.7 morphants showed

an unlooping defect. Moreover, Nkx2.5/2.7 morphants not only

displayed an unlooping defect, but also a shrunken ventricle. In

addition, the expression of differentiated marker genes, including

bmp4, versican, tbx5 and tbx20, was abnormal either in the ventricle

or in both the ventricle and atrium (Figs. 5 and 6). Although the

formation of two distinct chambers was enabled in Nkx2.7 and

Nkx2.5/2.7 morphants, the hearts were not processed further,

remaining, instead, a linear tube, resulting in abnormal contrac-

tions and arrhythmia.

Nkx2.7, a member of the tinman family of related genes, contains

the tinman-like amino terminal decapeptide, homeobox, and NK2

domain. Nkx2.7 exhibits temporal and spatial expression patterns

very similar to Nkx2.5 during zebrafish cardiac development,

although the onset of Nkx2.7 at the 10.5 hpf comes somewhat

earlier than that of Nkx2.5. In addition, Nkx2.7 is also detected with

a co-localized expression pattern at pharyngeal endoderm

progenitors like Nkx2.3 [19]. These expression profiles indicate

that Nkx2.7 and Nkx2.5 are closely associated in the roles they play

in the context of the regulation of cardiac differentiation.

In Drosophila, tinman is essential for primary cell lineage

determination and early morphogenesis. Embryos that lack tinman

function do not develop any dorsal vessel or gut muscle progenitor

cells [6]. Nkx2.5, the mouse homolog of tinman, is an early marker

of cardiomyocyte precursors. In the knockout of Nkx2.5 by gene

Figure 6. Chamber maturation was affected in the Nkx2.7-
knockdown zebrafish embryos. The expressions of tbx5 (A–F) and
tbx20 (G–L) in hearts were compared between wild-type (WT) (A, D, G,
J), Nkx2.7-MO- (B, E, H, K) and Nkx2.5/2.7-MO- injected embryos (C, F, I,
L) at 48 (A–C, G–I) and 72 hpf (D–F, J–L). In WT embryos, tbx5 was
expressed strongly in ventricle, but weakly in atrium at 48 hpf and
beyond (A, D). However, in the Nkx2.7-MO (B, E) and Nkx2.5/2.7-MO (C,
F) embryos, tbx5 retained its strong expression in the heart, although
the expression pattern was gradually changed from ventricle-enriched
expression to atrium-enriched expression from 48 hpf to 72 hpf (B and
E; C and F). In WT embryos, tbx20 expression was similar to the
expression gradient of tbx5 in the heart at 48 hpf, and the tbx20
expression was stronger than that of tbx5. In addition, tbx20 expression
was also detected in outflow tract at 48 hpf (G), and tbx20 expression
was restricted to outflow tract and inflow tract by 72 hpf (J). However,
in Nkx2.7-MO (H, K) and Nkx2.5/2.7-MO (I, L) embryos, tbx20 was
expressed strongly in the heart and outflow tract from 48 to 72 hpf. All
images are ventral views, anterior to the top. v: ventricle; a: atrium. ot:
outflow tract; i: inflow tract.
doi:10.1371/journal.pone.0004249.g006
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targeting techniques, mouse embryos are arrested at the looping

stage [7]. Surprisingly, this mouse Nkx2.5-knockout embryo does

not exhibit the same defective phenotype of tinman null embryos,

indicating that there are other Nkx2.5 homologs to compensate for

Nkx2.5 loss of function in mouse heart development. For example,

Nkx2.6 compensates for Nkx2.5 functions in the pharyngeal

endoderm of mouse embryos, but not in hearts [14]. Recently,

mouse Nkx2.7 was found (GeneID: 108060). Thus, it is

worthwhile to study whether mouse Nkx2.7 functions redundantly

with mouse Nkx2.5 in a way that is similar to zebrafish Nkx2.7 and

Nkx2.5. In Xenopus, Cleaver et al. (1996) [9] suggested that XNkx2.3

and XNkx2.5 play the same roles in cardiac development. In

zebrafish, we demonstrate in this study that Nkx2.7 does

compensate for the loss of Nkx2.5 function in cardiac morpho-

genesis.

Recently, Targoff et al. (2008) [26] demonstrated that Nkx2.5/

Nkx2.7 morphants of zebrafish are well developed at early

embryonic stage; however, morphants fail to elongate normally

at heart tube stage. Thus, the authors concluded that abnormal

heart tube extension will cause cardiac differentiation effects on

ventricular and atrial cell numbers. In this study, we also observed

similar phenotypes of Nkx2.5/Nkx2.7 morphants in that the heart

tubes of Nkx2.5/Nkx2.7 morphants cannot extend further and the

ventricle portion displays shorter and wider than that of wild-type

embryo. However, in our study, we described the defective

phenotypes and studied the functions of Nkx2.5/Nkx2.7 in more

detail. To summarize, we first observed the cardiac phenotype at

various developmental stages, including the period from 26 to 55

hpf when zebrafish ventricle is undergoing differentiation and

proliferation. Targoff et al. (2008) [26], on the other hand, did not

investigate this important period of time. Second, by taking the

advantage of zebrafish transgenic line Tg(cmlc2::GFP), which

possesses the heart-specific GFP signal, we were able to observe

the dynamic change of ventricular morphology in live embryos. In

so doing, we found that the ventricle of Nkx2.5/Nkx2.7

morphants retained the pre-mature phase during this period

rather than undergoing further cardiac morphogenesis. Thus, we

suggested that the differentiation and proliferation of ventricle in

Nkx2.5/Nkx2.7 morphants may cease after 26 hpf, resulting in the

decrease of cell numbers of ventricle at the later stages. Third, by

detecting the differentiated markers, such as versican, bmp4, tbx5

and tbx20, we also found that the expression patterns of these

markers in Nkx-deficient embryos were the same as those of wild

type at early heart tube stage. However, the expressions of these

markers in Nkx-deficient embryos were not restrained to the places

where they should be confined at later cardiac differentiation

stage. Based on these lines of evidence, we suggest that the

decrease of ventricular myocardial proliferation and the defective

myocardial differentiation both result from the up-regulation of

bmp4, versican, tbx5 and tbx20 at late stage, even though these genes

are all expressed normally in hearts at an early heart tube stage.

Fourth, we performed a histological examination of the 72-hpf

embryos and found that, compared to the wild-type, a thinning

layer of myocardium with fewer cell numbers in the ventricle was

observed in the Nkx2.5/2.7 morphants and that the endocardium

of morphants did not form an endocardial cushion (Figs. 3C and

3D). Fifth, by using histological section of the Nkx2.5/2.7-MO-

injected embryos, we found that the formation of atrioventricular

valves was abnormal at 72 hpf (Fig. 3D).

We observed that the heart of Nkx2.5/2.7-MO double-

knockdown morphants appeared to have a vigorous and rhythmic

peristaltic contraction initially. Subsequently, however, the hearts

of these double knockdown morphants failed to undergo looping

morphogenesis, and the contractile function diminished progres-

sively. Moreover, blood was regurgitated within the heart chamber

after 72 hpf, and the heart became silent with cessation of blood

circulation by 84 hpf. These defective phenotypes could have

resulted from valve dysfunction. Interestingly, both bmp4 and

Figure 7. Overexpression of Nkx2.5 and Nkx2.7 in embryos resulted in serious heart defects. Amounts equaling 150 pg Nkx2.5 mRNA (A–
C) and 5 pg Nkx2.7 mRNA (D–F) were injected individually into one-celled stage embryos derived from transgenic line Tg(cmlc2::GFP), whose hearts
were specifically tagged with green fluorescent protein. We observed that there were many phenotypes of heart defects at 48 hpf resulting from the
overexpression of either Nkx2.5 mRNA or Nkx2.7 mRNA. These defects included malposition of the reducing heart (A, D), bilateral heart (B, E), small
heart (C) and large heart (F). Interestingly, overexpression by injection of Nkx2.7 mRNA as low as 5 pg caused an effect similar to that induced by
injection 30 greater times than that of Nkx2.5 mRNA. (A, C, D, F), lateral views; (B, E), dorsal views; Arrows: green fluorescent heart.
doi:10.1371/journal.pone.0004249.g007
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versican are restricted to atrioventricular boundary of heart at the

later stage of heart development [27]. Both genes are involved in

cardiac valve formation and both are examined in this study.

Moreover, it has been found that mutation of Apc [28] or NXT2

[29] of zebrafish showed that expression of bmp4 and versican genes

are upregulated and that domains are expanded throughout the

hearts. Similarly, in this study, we found that bmp4 and versican are

dramatically upregulated and that the domains of expression are

greatly expanded to the ventricle in the hearts of Nkx2.5/2.7

morphants. Therefore, we speculate that blood regurgitation

occurring in the Nkx2.5/2.7 morphants’ hearts resulted from valve

dysfunction, which, in turn, causes the defective morphogenesis

and function of heart.

Prall et al. (2007) [30] used cDNA microarray analysis to

compare the transcripts of mouse Nkx2.5 heterozygous and null

mutant embryos from E8.0 to E9.5 and found that tbx5 is

upregulated two-fold greater in null embryos at E8.0-E8.5. We

found that both Nkx2.7 and Nkx2.5/2.7 morphants exhibit

overexpression of tbx5 and tbx20 in heart, suggesting that Nkx2.5

and Nkx2.7 may be negative modulators of tbx5 and tbx20 in

zebrafish. Therefore, the finding of Prall et al. supports our present

study. On the other hand, Prall et al. (2007) [30] also demonstrated

that there is an Nkx2.5/Bmp2/Smad1 negative loop pathway to

regulate heart precursor specification and proliferation. They

pointed out that Nkx2.5 null mutants cause over-specification of

cardiac progenitors and that the area of over-specification of

cardiac progenitors appears to be a broad expression of early

cardiac markers in the cardiac crescents. Most importantly, Prall et

al. (2007) [30] further stated that impaired proliferation of

secondary heart field-derived cells, which contribute to most

ventricle cells, results from over-specification of cardiac progen-

itors. For this reason, Nkx2.5 null mutants have a thin ventricular

myocardium.

However, in our study, the expression of early cardiac markers,

tbx5 and hand2, do not exhibit expansion of cardiac progenitors

(Figs. 4A–4D), indicating that the over-specification of cardiac

progenitors does not occur. Instead, the Nkx2.5/2.7-MO-injected

embryos consist of a single layer of ventricle, which does not result

from over-specification of progenitors in a manner similar to

mouse Nkx2.5 null mutants. At the same time, tbx5 was

overexpressed in the ventricle and atrium of zebrafish (Fig. 6F).

The fact that overexpression of tbx5 in the heart inhibits

cardiomyocyte proliferation has been demonstrated in mice [31]

and chicks [32], suggesting that the function of tbx5 acts as growth

arrest signal to regulate cellular proliferation. Thus, it is reasonable

to conclude that the thin-layer of heart of zebrafish Nkx2.5/2.7

morphants may result from the effect of higher expression of tbx5.

Therefore, we reason that the heart defect induced by the

knockdown of Nkx2.5/2.7 is more likely to be caused by the late

onset of cardiac differentiation. It was also demonstrated in this

study that Nkx2.7 is a modulator of tbx5 and tbx20 expression,

which further supports the conclusion noted above and gives

added support to the prominent role Nkx2.7 plays in cardiac

morphogenesis.

Chen and Fishman (1996) [10] reported that overexpression of

Nkx2.5 (100 pg) in zebrafish causes a large hyperplastic heart with

normal function and chamber morphology. Moreover, injection of

a higher dose (250 pg) of Nkx2.5 mRNA affected the dorsoventral

axis of embryos severely. Cleaver et al. (1996) [9] also

demonstrated that overexpression of Nkx2.5 and Nkx2.3 in Xenopus

resulted in a hyperplastic heart. In our study, injection of 150 pg of

Nkx2.5 mRNA or 5 pg of Nkx2.7 mRNA obtained results similar to

Chen and Fishman (1996) [10]. Injection of 50 pg of Nkx2.5

mRNA caused 22% of embryos (30 out of 135; 30/135) to have an

enlarged heart and injection of 150 pg of Nkx2.5 mRNA caused

64% of embryos (67/104) to have a reduced heart, whereas

injection of 5 pg of Nkx2.7 mRNA caused 18% (32/182) and 28%

(51/182) of embryos to have a reduced heart and an enlarged

heart, respectively. Our data are supported by the paper published

by Chen et al. (1996) [10], who demonstrated that embryos

injected with 100 pg Nkx2.5 mRNA showed an enlarged heart, but

embryos injected with 250 pg Nkx2.5 mRNA displayed bilateral

beating heart, reduced heart or dorsal-ventral axial defects. We

speculate that ectopic expression of Nkx2.5 mRNA at the one-cell

stage results in nonspecific defects in zebrafish embryos. For

example, there are no reports about Nkx2.5 function in dorsal-

ventral axis formation. Based on this point, we suggest that Nkx2.7

carries out functions similar to those of Nkx2.5, but, because there

may be many unexpected effects on embryos from overexpression

of either Nkx2.5 or Nkx2.7, we performed a specific knockdown of

morpholino and a GR-inducible assay to learn the exact functions

of Nkx2.5 and Nkx2.7 in zebrafish development. Specifically, we

note that injection of 5 pg Nkx2.7 mRNA results in a phenotype

similar in defect to the injection of 150 pg Nkx2.5 mRNA (Fig. 7).

Compared to the injection dosage of Nkx2.5 mRNA, we notice

that only a one-thirtieth concentration of Nkx2.7 mRNA is

required to rescue the defects induced by Nkx2.5 and 2.7 double

Figure 8. The expressions of tbx5 and tbx20 were modulated by
Nkx2.7. Each embryo derived from transgenic line Tg(cmlc2::GFP),
whose heart was specifically tagged with green fluorescent protein, was
injected with 0.15 ng of plasmid, in which Nkx2.7 mRNA was
transcribed conditionally by adding dexamethasone. All embryos were
treated with dexamethasone at 10 hpf and took a ventral view at 48 hpf
to observe the cardiac development under the fluorescence micro-
scope. The cardiac morphologies of the control embryos and the GR-
Nkx2.7-overexpression embryos were shown. Compared to the control
(A), various cardiac defects were found in around 35% of embryos from
the GR-Nkx2.7-overexpression group, including unlooping and shrunk-
en heart (B). In addition, the expressions of tbx5 (C, D) and tbx20 (E, F)
were down-regulated in the GR-Nkx2.7-overexpresion embryos. How-
ever, the expression levels of tbx5 in eyes (indicated by arrows in C and
D) and tbx20 in brain (indicated by arrows in E and F) remained
unchanged. v: ventricle; a: atrium.
doi:10.1371/journal.pone.0004249.g008
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knockdowns (Table 2), suggesting that Nkx2.7 has more effective

function than Nkx2.5.

Finally, in the loss-of-function experiment, the ventralized

embryos were not observed in the Nkx2.5/2.7-knockdown

embryos. In contrast, these results were observed in the gain-of-

function experiment, in which Nkx2.5 and Nkx2.7 were overex-

pressed. However, based on the GR-Nkx2.7 inducible experiment

where Nkx2.7 is induced after gastrulation, we proved that Nkx2.7

has a specific effect on heart development, but not axis formation

(Fig. 8). Therefore, we speculate that this inconsistency between

gain-of-function and loss-of-function experiments may result from

the fact that Nkx2.5 and Nkx2.7 are not expressed until late-

gastrula stage. However, since either the overexpressed Nkx2.5 or

Nkx2.7 is injected at the one-cell stage, these misexpressional genes

can cause abnormal axis formation in embryogenesis. In

conclusion, we find that Nkx2.7 and Nkx2.5 act as functional

homologs of tinman in the zebrafish embryos. While Nkx2.5 and

Nkx2.7 play redundant roles in cardiac morphogenesis, Nkx2.7

appears to have a more critical function in its effect on cardiac

differentiation, as indicated by the gain-of-function and loss-of-

function experiments where Nkx2.7 is observed to regulate the

expressions of tbx5 and tbx20 through the heart tube stage.

Materials and Methods

Fish husbandry and observation
The wild-type AB strain [33] and the transgenic line Tg

(cmlc2::GFP) [34] of zebrafish were cultured at 28.5uC. Embryos

were staged by hours post fertilization (hpf) [35]. The phenotype of

heart formation was observed under a fluorescent stereomicro-

scope, MZ FLIII (Leica). Images were captured with a Fine pix S2

pro camera (Nikon) using the Camera Shooting software.

Morpholino (MO) knockdown
The MOs designed specifically for blocking the translation of

Nkx2.5 and Nkx2.7 mRNAs were TCATTTGGCTAGAGAA-

CATTGCCAT (Nkx2.5-MO) and GTCACAGGACTCGGAAG-

CATCGTGC (Nkx2.7-MO), respectively. A control MO specific

for Nkx2.7 was designed as GTgACAcGACTCcGAAG-

gATCGTcC (Nkx2.7-MO-control), in which a 5-bp mismatched

sequence of Nkx2.7 is indicated in lower case. All MOs were

prepared at a stock concentration of 1 mM and diluted to the

desired concentration for microinjection into each embryo.

Plasmid construct
In order to further demonstrate the specificity of MO targeting,

we constructed plasmids of pCS2-Nkx2.5-GFP and pCS2-Nkx2.7-

GFP, in which the binding sequence of either Nkx2.5-MO or

Nkx2.7-MO was fused with the GFP reporter cDNA. The NotI-cut

pCS2-Nkx2.5-GFP, pCS2-Nkx2.7-GFP or pCS2-GFP served as a

template to synthesize RNA using the mMessage Machine kit

(Ambion). The synthesized RNA (100 pg per embryo) was co-

injected with Nkx-specific MO or alone into one-celled zebrafish

embryos. The appearance of GFP in the treated embryos was

observed at the 24-hpf stage using green fluorescent microscopy.

In order to avoid nonspecific effect of the overexpressed Nkx2.7

in the early gastrula stage, we constructed a dexamethasone-

inducible plasmid, pCS2GR-Nkx2.7, in which the human

glucocorticoid receptor (GR) ligand binding domain was fused

with Nkx2.7.

Whole-mount in situ hybridization and TUNEL assay
Whole-mount in situ hybridization was performed as previously

described [36]. Antisense probes used in this study were as follows:

versican [27]; bmp4 [37]; tbx5 [25]; tbx20 [38] and vmhc [39]. The

TUNEL assay was performed as described previously [40] using

The DeadEndTM Colorimetric TUNEL System (Promega).

Rescue and overexpression experiments
Capped mRNA transcripts of Nkx2.5 and Nkx2.7 for either

rescue or overexpression experiments were synthesized by SP6 in

vitro transcription according to the protocol of the manufacturer

(Epicentre). We synthesized the truncated Nkx2.5 and Nkx2.7

mRNAs that did not include the specific MO-target site to avoid

affecting rescue efficiency. The resultant mRNAs were diluted to

the desired concentration (from 150 to 250 pg/ml), and approx-

imately 2.3 nl was microinjected into one-celled stage embryos.

For the GR-induced experiment, capped mRNA of a NotI-cut CS2

template contained an insert of the human GR ligand binding

domain fused with Nkx2.7. The resultant mRNAs were diluted to

2.3 nl of RNA at a concentration of 0.15 ng and were injected into

one-celled embryos. When the injected embryos developed at

gastrula stage (10-hpf), we immersed embryos with 10 um

dexamethasone in phenylthiourea water to induce the synthesis

of GR-Nkx2.7.

Histology
For paraffin section, embryos were collected at 72 hpf and fixed

in 4% PFA for 16 h. Then they were decalcified, dehydrated in a

graded series of ethanol, and embedded in paraffin for sectioning

into a 5-mm thickness [41]. The resultant sections were rinsed in

distilled water, washed with 0.01 M phosphate buffered saline,

and stained with hematoxylin and eosin.
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