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BRIEF DEFINITIVE REPORT

    Naive CD8 +  T cells diff erentiate into eff ector 
CTLs with the ability to lyse antigen-bearing tar-
get cells by exocytosis of lytic granules containing 
perforin and granzymes, and to produce infl am-
matory cytokines such as IFN- �  and TNF upon 
restimulation through the TCR ( 1, 2 ). In vivo 
experiments have elucidated many critical pa-
rameters governing the development and evolu-
tion of primary CTL responses ( 3, 4 ). In this 
study, we have used in vitro systems such as those 
developed to study CD4 +  T cell diff erentiation 
to defi ne the molecular basis of eff ector CTL dif-
ferentiation ( 5, 6 ). 

 The T-box transcription factors Eomeso-
dermin (Eomes) and T-bet are needed for im-
portant aspects of eff ector and memory CTL 
diff erentiation ( 7 ). In uninfected mice, com-
pound deletion of the  Tbx21  (encoding T-bet) 
and  eomesodermin  genes is associated with a selec-
tive loss of CD8 +  T cells with an IL-2R �  – high, 
memory phenotype ( 8 ). Mice defi cient for both 
T-bet and Eomes in T cells have impaired ex-

pression of cytolytic mediators, manifest poor 
cytolytic activity, and fail to control acute lym-
phocytic choriomeningitis virus infection ( 9 ). 
Nevertheless, the specifi c roles of T-bet and 
Eomes in clonal expansion and CTL diff erentia-
tion have not yet been resolved: in particular, it 
is not known whether these transcription factors 
function redundantly to control eff ector CD8 +  
T cell diff erentiation, and whether they do so 
directly by targeting specifi c eff ector cytokine 
and cytolytic genes. 

 Runx proteins, a family of three DNA-
binding transcription factors, control thymo-
cyte diff erentiation and the CD4/CD8 lineage 
decision ( 10 – 13 ). Runx3 and perforin mRNA 
are expressed by double-positive (DP) thymo-
cytes and CD8 +  single-positive (SP) thymo-
cytes but not in CD4 +  SP cells ( 14 ). Although 
Runx3 is not expressed in naive CD4 +  T cells, 
its expression is up-regulated during Th1 cell 
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In contrast, granzyme B ( Gzmb ) mRNA was low or unde-
tectable in naive T cells but was strongly up-regulated by day 
2 after stimulation and increased progressively until day 6 
( Fig. 1, A and B ); similarly, granzyme B protein was expressed 
by day 4 and remained high until day 6 ( Fig. 1 E ). As ex-
pected, a small fraction of naive T cells expressed the cyto-
kines IFN- �  and TNF in response to stimulation, and this 
capacity increased signifi cantly in diff erentiated cells ( Fig. 1 E ; 
see also  Fig. 2 A ). 

 We evaluated antigen-dependent cytolytic function in a 
short-term assay in which target cell death was measured 
within 2 h ( Fig. 1 F ). By limiting the duration of TCR stimu-
lation, this strategy minimizes cytolysis secondary to new gene 
expression during the period of the assay. Naive T cells did 
not display signifi cant cytolytic function in this short-term as-
say (unpublished data), most likely because they express im-
mature (unprocessed) forms of perforin and lack the capacity 
to degranulate ( 18, 19 ). Even after activation for 2 or 4 d, the 
cells showed poor cytolytic activity ( Fig. 1 F ), in striking con-
trast to their capacity for effi  cient cytokine production ( Fig. 1 E ). 
Only cells cultured until day 6 displayed robust cytotoxicity, 
as judged by their ability to induce apoptosis in a large num-
ber of target cells ( Fig. 1 F ). 

 These results show that after a strong priming stimulus 
through TCRs and co-stimulatory receptors in vitro, gran-
zyme B expression and the ability to produce eff ector cyto-
kines are programmed early, whereas perforin expression 
and cytolytic function are induced later, during the phase of 
clonal expansion in IL-2. Therefore, the two major eff ector 
functions of CTL, cytokine production and cytolytic activity, 
are not intrinsically coregulated. 

 Distinct kinetics of T-bet and Eomes expression 

during CTL differentiation 

 The T-box transcription factors T-bet and Eomes have been 
linked to the regulation of genes encoding eff ector cytokines 
(e.g.,  Ifn g) and genes important for cytolytic function (e.g.,  Prf1  
and  GzmB ) ( 20 ). We investigated the kinetics of expression of 
these transcription factors in our in vitro cultures ( Fig. 1, A – D ). 
T-bet mRNA and protein were not detectable in naive CD8 +  
T cells, but were strongly induced upon TCR priming (day 2) 
and remained expressed through day 6 of diff erentiation ( Fig. 1, 
A and C ; quantifi ed in  Fig. 1, B and D ). In contrast, Eomes ex-
pression was low or undetectable at both the mRNA and pro-
tein levels in naive CD8 +  T cells, and TCR priming in culture 
had only a modest eff ect on its expression at day 2 ( Fig. 1, 
A and C ). Strong induction of Eomes mRNA and protein 
was only observed at day 4 and later ( Fig. 1, A and C ). T-bet 
mRNA expression slightly preceded the expression of  GzmB  
mRNA; similarly, Eomes mRNA and protein were expressed 
 � 1 d ahead of the reexpression of perforin mRNA and pro-
tein, respectively ( Fig. 1, B and D ). 

 This detailed kinetic analysis suggested that, under our 
culture conditions, T-bet and Eomes contribute to distinct 
aspects of gene transcription during CTL diff erentiation. T-bet 
is required early for IFN- �  production, and our data suggested 

diff erentiation, and Runx3 infl uences Th1 cell diff erentiation 
and function through direct regulation of the  Il4  and  Ifng  cy-
tokine genes ( 15, 16 ). In contrast, all three Runx proteins are 
expressed in mature CD8 +  T cells ( 10, 12 ), and Runx3-defi -
cient CD8 +  T cells show reduced cytolytic activity ( 12, 13 ). 
We therefore tested whether Runx3 infl uenced cytolytic 
T cell diff erentiation. 

 In this report, we show that Runx3 and T-box factors syn-
ergistically regulate CTL diff erentiation and function. T-bet is 
induced quickly upon TCR stimulation and is required for 
early programming of cytokine production ( 17 ), whereas Eomes 
is induced later during diff erentiation and sustains IFN- �  ex-
pression. Runx3 is required for Eomes and perforin expres-
sion, and both Eomes and Runx3 bind at the  Prf1  locus; in 
contrast, perforin expression is unaff ected in T-bet – defi cient 
cells. T cells lacking Runx3 show decreased expression of 
IFN- �  and granzyme B, and Runx3 also binds the promoter 
regions of the  Ifng  and  Gzmb  genes. Collectively, these results 
provide evidence for a complex transcriptional network in 
which Runx3 is a primary regulator of  Gzmb  expression but 
synergizes with T-bet and Eomes, respectively, to promote 
transcription of the  Ifng  and  Prf1  genes. 

  RESULTS AND DISCUSSION  

 A cell culture system to monitor effector CTL differentiation 

 We used a simple cell culture system to examine the kinetics 
of eff ector gene expression during CD8 +  T cell diff erentia-
tion. Naive CD8 +  T cells from P14 TCR transgenic mice 
were activated for 2 d with anti-CD3 and anti-CD28 or with 
splenic APCs in the presence of Gp33 peptide, and were cul-
tured in media containing 100 U/ml of recombinant human 
IL-2 (rhIL-2). We used TCR transgenic mice for these ex-
periments because they provide a reliable source of CD8 +  
T cells that are truly naive; however, we chose not to stimu-
late cells with antigen in most experiments so as to avoid con-
tamination with proteins and nucleic acids derived from APCs. 
There were only minor diff erences in gene expression during 
diff erentiation induced by antigen/APC versus anti-CD3/
anti-CD28, and the major conclusions presented in this re-
port are the same for both activating conditions. 

 Under our culture conditions, activated CD8 +  T cells ex-
panded exponentially and accumulated for  > 8 d. We limited 
our analysis to the fi rst 6 – 8 d after activation, a period that 
coincides with clonal expansion of CD8 +  T cells after activa-
tion in vivo. 

 Distinct expression kinetics of perforin and granzyme B 

during CTL development in culture 

 Our experiments revealed clear diff erences in the kinetics of 
perforin, granzyme B, and cytokine expression during CD8 +  
T cell activation ( Fig. 1 ).  Naive T cells showed detectable 
expression of perforin mRNA as well as perforin protein 
( Fig. 1, A – D ). Relative to its expression in naive T cells, per-
forin ( Prf1 ) mRNA expression did not increase appreciably at 
day 2 but showed a reproducible decrease at day 4, followed 
by robust reexpression between days 4 and 8 ( Fig. 1, A – D ). 
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  Figure 1.     Kinetics of gene expression during CD8 +  T cell differentiation.  (A) Kinetics of  Prf1 ,  Gzmb ,  Tbx21  (T-bet), and  Eomes  mRNA expression in 

differentiating P14 CD8 +  T cells analyzed by Northern blotting. RNA from day 7 Th1 cells was used as a control. Sizes of mRNA transcripts are indicated. 

(B) Quantifi cation of relative mRNA amounts by phosphorimager analysis. (C) Kinetics of protein expression in differentiating P14 CD8 +  T cells analyzed 

by immunoblotting. Sizes of protein bands are indicated. (D) Relative protein amounts quantifi ed from the Western blots. (E) Intracellular staining for 

granzyme B, IFN- � , and TNF. Granzyme B staining was specifi c relative to an isotype control (not depicted). Cells were restimulated with PMA and iono-

mycin for 4 h. (F) FACS-based assay to measure cytolytic activity of P14 CD8 +  T cells against EL4 targets loaded with 0 ( � ) or 1 (+)  μ M Gp33 peptide 

(effector-to-target ratio = 5:1). Percentage of Annexin V +  (apoptotic) target cells in the CD8-negative EL4 target population (dot plots) was determined 

(histograms). Cytolytic activity was blocked by incubation with 2 mM EGTA (not depicted), confi rming involvement of the granule exocytosis (perforin –

 granzyme B) pathway. Data are representative of at least fi ve (A – E) or three (F) independent experiments.   
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that Eomes might not function during this early period but 
rather might contribute later to the control of perforin expres-
sion. Our data seemed most consistent with a model in which 
TCR signals induce T-bet, which in turn induces IFN- �  ( 17 ) 
and possibly granzyme B; subsequently, Eomes is induced 
during the period of clonal expansion in IL-2 and activates 
perforin expression. 

 Perforin and granzyme B expression are not appreciably 

regulated by T-bet 

 To test the model outlined in the previous paragraph directly, 
we compared the expression of IFN- � , perforin, and gran-
zyme B in CD8 +  T cells from WT and  Tbx21  (T-bet)-defi -
cient mice. As expected ( 17, 21 ), naive  Tbx21  � / �    CD8 +  T 
cells produced IFN- �  poorly upon activation ( Fig. 2 A ).  No-
tably, this deleterious eff ect of T-bet defi ciency was only ob-
served in diff erentiating CD8 +  T cells until day 4 of culture 
but was almost completely mitigated by day 6 ( Fig. 2 A ). This 
most likely refl ected compensation by Eomes, which was 
strongly induced between days 4 and 6 ( Fig. 1 ). In contrast, 
T-bet – defi cient T cells cultured for 6 d showed no defect in 
perforin mRNA expression ( Fig. 2 B , compare lanes 1 and 4). 
We consistently observed a modest reduction in  GzmB  
mRNA in T-bet – defi cient T cells ( Fig. 2 B , compare lanes 1 
and 4), which did not translate into a decrease in expression 
of granzyme B protein ( Fig. 2 C ). 

 To examine the role of Eomes, we transduced naive CD8 +  
T cells from WT and  Tbx21  � / �    mice with retroviruses con-
taining internal ribosome entry site (IRES) – GFP that were 
either empty or encoded a strongly transactivating version of 
Eomes (Eo-VP16) ( 8 ), and expanded them for 6 d under our 
culture conditions. Eo-VP16, but not the empty GFP retro-
virus, increased perforin expression in both WT and T-bet –
 defi cient CD8 +  T cells ( Fig. 2 B , lanes 2, 3, 5, and 6). As 
expected, Eo-VP16 also rescued the early defect in IFN- �  
production observed in T-bet – defi cient CD8 +  T cells ( Fig. 2 
D ). However, Eo-VP16 did not induce  GzmB  mRNA ex-
pression in either WT or T-bet – defi cient cells; thus, the par-
tial T-bet dependence of  GzmB  mRNA expression cannot be 
compensated for by Eo-VP16. 

 Runx3 controls multiple aspects of the CTL differentiation 

program, in part through induction of Eomes 

 Because Runx3 is highly expressed in peripheral CD8 +  
T cells, and because of the T-bet-Runx3 cooperation we 
observed earlier in CD4 +  T cells ( 15 ), we examined the 
role of Runx3 in eff ector CTL diff erentiation. We isolated 
CD8 +  T cells from  Runx3  � / �    (KO) mice of the outbred 
ICR background and their WT  Runx3 +/+   littermates by 
positive selection with anti-CD8 magnetic beads (Figs. S1 
and S2, available at http://www.jem.org/cgi/content/full/

  Figure 2.     Regulation of perforin, granzyme B, and IFN- �  expres-

sion by T-bet and Eomes in differentiating CTLs.  (A) IFN- �  expression 

by WT ( Tbx21 +/+  ) and T-bet – defi cient ( Tbx21  � / �   ) T cells. Naive CD8 +  T cells, 

or cells activated and cultured for 4 or 6 d, were restimulated with PMA 

and ionomycin for 6 h, and IFN- �  expression was assessed by intracellular 

staining. Numbers show the percentage of IFN- �  +  cells. (B) Northern blot 

analysis of  Prf1  and  GzmB  mRNA expression in WT or T-bet – defi cient 

CD8 +  T cells activated and either left uninfected (uninf) or transduced 

with retroviruses expressing Eomes-VP16 (Eo-VP16) or an empty IRES-

GFP cassette (GFP). Total cellular RNA was analyzed on day 6 of culture. 

The frequency of transduced cells in the cultures was equivalent for both 

constructs ( � 65 – 70% GFP +  cells; not depicted). (C) Granzyme B and IFN-

 �  expression by  Tbx21 +/+   and  Tbx21  � / �    T cells analyzed in restimulated 

cells that had been cultured for 5 d. (D) IFN- �  production by cells trans-

duced with Eo-VP16 or control (GFP) retroviruses (RV) measured on day 

4 after 6 h of restimulation with PMA and ionomycin. Numbers show 

the percentage of GFP +  IFN- �  +  cells. Results are representative of three 

(A and C) or two (B and D) independent experiments.   
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 To test this hypothesis, we used chromatin immunoprecip-
itation (ChIP) assays to ask whether Eomes and Runx3 bound 
regulatory regions of the  Prf1 ,  Ifng , and  Gzmb  genes ( Fig. 3 D ). 
Both proteins associated with gene regulatory regions in diff er-
entiated CTLs. Runx3 bound to the  Prf1  and  Gzmb  transcrip-
tion start sites (TSS); to a known IL-2 responsive enhancer 
located near  � 1 kb of the  Prf1  gene ( 23 ); to the distal CTL-
specifi c DNase I hypersensitive site 9 in the  Prf1  locus ( 24 ); to 
the  Ifng  promoter near the TSS, as previously reported for Th1 
cells ( 10 ); and to several DNase I hypersensitive sites in the  Ifng  
locus ( Fig. 3 D  and not depicted) ( 25 ). Eomes bound primarily 
to the  Prf1  TSS and the  � 1 kb enhancer; this binding was sub-
stantially greater than that observed at the promoter of the  Il2rb  
gene, a known direct target of Eomes ( 8 ), and comparable to 
that observed at the  Ifng  TSS, a known target of T-box proteins 
in both Th1 and CD8 +  T cells ( Fig. 3 D ) ( 17 ). 

 To determine whether Runx3 controlled the expression of 
CTL eff ector genes through its induction of Eomes, we retrovi-
rally expressed Runx3 and Eo-VP16 in CD8 +  T cells from 
 Runx3  � / �    mice. Because of the limited number of CD8 +  T cells 
in these mice, and because we saw no diff erence between 
 Runx3  � / �    CD8 + CD4  �   SP and CD8 + CD4 +  DP cells in our pre-
vious experiments, we used total  Runx3  � / �    CD8 +  T cells with-
out further fractionation as recipients for retroviral transduction. 
Reconstitution of  Runx3  � / �    CD8 +  T cells with Runx3 restored 
expression of Eomes as well as perforin, granzyme B, and IFN- �  
( Fig. 4, A and B ).  In addition,  Runx3  � / �    T cells showed a 

jem.20081242/DC1). Strikingly,  Runx3  � / �    CD8 +  T cells 
were strongly impaired in their ability to diff erentiate into 
eff ector CTLs, as judged by expression of perforin, gran-
zyme B, and IFN- �  ( Fig. 3 ).  Compared with WT T cells, 
perforin mRNA and protein expression were essentially un-
detectable in  Runx3  � / �    T cells at day 6 of culture ( Fig. 3, 
A and B ).  Runx3  � / �    T cells also had no detectable Eomes 
expression; in contrast, T-bet expression was unimpaired 
( Fig. 3 A ). Furthermore, Runx3 was required for maximal 
production of IFN- � , but not TNF or IL-2, by CD8 +  T 
cells restimulated at day 6 ( Fig. 3 C ). 

 We previously reported that Th1 cell diff erentiation was 
regulated through a feed-forward loop in which T-bet is up-
regulated early and induces Runx3, after which T-bet and 
Runx3 cooperate to induce IFN- �  and silence IL-4, thus pro-
moting stable diff erentiation toward the Th1 lineage ( 15, 22 ). 
Because (a) Runx3 appeared necessary for Eomes induction 
( Fig. 3 A ), (b) the kinetics of Eomes expression paralleled those 
of perforin expression ( Fig. 2 ), and (c) overexpression of Eo-
VP16 in either WT or T-bet – defi cient T cells led to an increase 
in both perforin and IFN- �  expression ( Fig. 2, B and D ), we 
asked whether CTL diff erentiation was also potentially regu-
lated by a feed-forward loop involving these same two classes of 
Runx and T-box transcription factors. Specifi cally, we asked 
whether Runx3, which was necessary for Eomes induction, 
then cooperated with Eomes to regulate transcription of the ef-
fector CTL markers perforin, IFN- � , and granzyme B. 

  Figure 3.     Key role for Runx3 in effector CTL differentiation.  (A) Western analysis of Runx3, Eomes, T-bet, and perforin expression in  Runx3 +/+   versus 

 Runx3  � / �    CD8 +  SP T cells differentiated for 6 d.  � -Actin was used as a loading control. (B) Northern blot analysis of  Prf1  mRNA expression in  Runx3 +/+   ver-

sus  Runx3  � / �    CD8 +  T cells differentiated for 6 d.  �  – Actin was used as a loading control. (C) Expression of granzyme B, IFN- � , TNF, and IL-2 by resting or 

restimulated (6 h)  Runx3 +/+   versus  Runx3  � / �    CD8 +  SP T cells differentiated for 6 d. The vertical gray line indicates the granzyme B MFI for WT GFP +  cells. 

Results in A – C are representative of two independent experiments. (D) ChIP analysis of binding of endogenous Runx3 and Eomes to the  Prf1  locus. Enrich-

ment of the indicated genomic regions was evaluated by real-time PCR of DNA from immunoprecipitated and input chromatin. The data are the means of 

duplicate measurements from two chromatin preparations from two independent CD8 +  T cell differentiations. The effi ciency of recovery of input for the 

 � 1-kb region of  Prf1  was 0.97% for the Runx3 ChIP and 0.5% for the Eomes ChIP.   
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cells are not entirely devoid of cytolytic activity and could still 
eff ectively kill targets, possibly by alternative mechanisms such 
as the Fas – Fas ligand pathway. 

 Runx3 and T-box factors control a complex program of 

transcriptional regulation during CTL differentiation 

 Collectively, these data provide evidence that Runx3, together 
with T-box factors, orchestrates a complex program of tran-
scriptional regulation in diff erentiating CTL ( Fig. 4 C ). Runx3 
is present in naive CD8 +  T cells before activation ( 12 ). It re-
presses Runx1 and has a positive role in the induction of 
Eomes, granzyme B, perforin, and IFN- � . Runx3 binds to 
promoters and putative regulatory regions of the latter three 
genes, suggesting a direct eff ect on gene expression. Additional 
experiments are needed to determine whether  Eomes  and 
 Runx1  are also direct target genes of Runx3. 

compensatory up-regulation of Runx1, which was suppressed 
upon reconstitution with Runx3, indicating that Runx1 is a tar-
get of repression by Runx3. Notably, Eo-VP16 did not up-reg-
ulate perforin expression when expressed in  Runx3  � / �    cells, 
even though it restored the capacity to induce IFN- �  expression 
upon TCR restimulation ( Fig. 4, A and B ). This result suggests 
strongly that perforin expression requires Runx3 and Eomes. 

 As expected from their defect in perforin and granzyme B 
expression,  Runx3  � / �    CD8 +  T cells showed defective cytolytic 
activity in a mixed lymphocyte reaction ( 12 ). However, TCR-
stimulated  Runx3  � / �    CD8 +  cells were as eff ective as WT cells 
in killing tumor cells in a redirected CTL assay ( 12 ). Further-
more, CD8 +  cells from the peritoneal cavity of  Runx3  � / �    mice 
immunized with certain tumor cells eff ectively killed these tar-
gets ( 13 ). Therefore, although activation of the perforin/gran-
zyme B machinery is defective in  Runx3  � / �    CD8 +  cells, these 

  Figure 4.     Runx3 controls Eomes, perforin, granzyme B, and IFN- �  expression in effector CTLs.   Runx3 +/+   or  Runx3  � / �    CD8 +  T cells were activated 

and transduced with retroviruses bearing an empty IRES-GFP cassette (GFP) or also encoding Eomes-VP16 (Eo-VP16) or Myc-Runx3 (Runx3). The frequency 

of transduced cells in the cultures was equivalent for all constructs ( � 75 – 90% GFP +  cells; not depicted). (A) Protein expression in whole-cell extracts (day 6) 

was analyzed by immunoblotting. Overexpression of Eomes-VP16 cannot be detected with the Eomes antibody, as the C-terminal epitope is within the region 

that has been replaced with the VP16 transactivation domain. (B) Expression of granzyme B and IFN- �  after culture for 6 d and restimulation for 4 h with 

PMA and ionomycin was determined by intracellular staining. The percentage of positively stained cells is shown above the gate; the mean fl uorescence 

intensity (MFI) of granzyme B staining for the total population is shown below the gate. The vertical gray lines indicate the MFI for WT GFP +  cells. Results are 

representative of at least two independent experiments. (C) Schematic diagram of the transcriptional network involving Runx3 and T-box factors. T-bet is 

induced by TCR signals and is essential for early IFN- �  expression. Runx3 is present in naive CD8 +  T cells and represses Runx1 and induces Eomes, perforin, 

granzyme B, and IFN- �  expression. Eomes may participate in sustaining late IFN- �  expression, whereas Runx3 and Eomes (but not T-bet) may cooperate to 

activate perforin expression. The dotted line indicates the partial effect of T-bet defi ciency on  Gzmb  mRNA but not granzyme B protein expression.   
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produced by the Groner laboratory. The following antibodies were used 

for immunoblotting: antiperforin (Abcam), anti-Eomes (Abcam), and anti –

 Pol-II (Santa Cruz Biotechnology, Inc.). The T-bet antibody was provided 

by L. Glimcher (Harvard School of Public Health, Boston, MA). 

 The following reagents were used for the experiments presented in this 

report: Annexin V – FITC Apoptosis Detection Kit (BD), CD8 Negative Iso-

lation Kit (Invitrogen), CD8 MicroBeads (Miltenyi Biotec), and SYBR 

Green PCR Core Reagents (Applied Biosystems). The Gp33 peptide 

(KAVYNFATC) was synthesized by the Tufts University Core Facility, and 

10 mM of stock solutions was prepared in DMSO. 

 Isolation and culture of primary CD8 +  T cells.   CD8 +  T cells from 4 – 8-

wk-old  Tcra  � / �     ×  P14 TCR transgenic (Taconic), C57BL/6J WT, or 

 Tbx21  � / �    (The Jackson Laboratory) mice were purifi ed ( > 95% purity) by neg-

ative selection (Invitrogen) from pooled spleen and lymph node cells. CD8 +  

T cells from  Runx3  � / �    mice on the ICR background were purifi ed by positive 

selection (Miltenyi Biotec). All mice were maintained in specifi c pathogen-free 

barrier facilities and used according to protocols approved by the Immune Dis-

ease Institute and the Harvard Medical School Animal Care and Use Commit-

tees. For stimulation, purifi ed CD8 +  T cells were cultured at 10 6  cells/ml 

(10 ml) in T25 fl asks coated with 1  μ g/ml each of anti-CD3 (clone 2C11) and 

anti-CD28 (clone 37.51) by pretreatment with 300  μ g/ml goat anti – hamster 

IgG. After 48 h, cells were removed from the TCR stimulation and recultured 

at a concentration of 5  ×  10 5  cells/ml in media supplemented with 100 U/ml 

rhIL-2. Every 24 h, viable cells were counted and readjusted to 5  ×  10 5  cells/ml 

with fresh media containing the corresponding amount of rhIL-2. 

 Isolation of CD8 +  T cells from Runx3  � / �   mice.   Runx3-defi cient T cells 

fail to silence CD4 expression normally (Fig. S1) ( 12, 13 ). We therefore fur-

ther fractionated the positively selected CD8 +  T cells from Runx3 KO mice 

into CD8 + CD4  �   SP or CD8 + CD4 +  DP cells by separation using anti-CD4 

magnetic beads. This yielded a Runx3 KO SP  “ enriched ”  population that 

contained 75% CD8 + CD4  �   cells and a KO DP enriched population that con-

tained 85% CD8 + CD4 +  cells (Fig. S1). The cells were stimulated with anti-

CD3 +  anti-CD28 for 2 d before removing them from the TCR stimulus and 

culturing them in media containing 100 U/ml IL-2. As previously reported, 

TCR-induced proliferation of  Runx3  � / �    CD8 +  T cells was severely impaired, 

irrespective of CD4 expression (Fig. S1) ( 12, 13 ). However, the  Runx3  � / �    

cells showed cell-surface expression patterns indicative of activated cells, in-

cluding up-regulation of CD25 and CD69 (Fig. S1). As expected from their 

ability to up-regulate CD25,  Runx3  � / �    CD8 +  T cells responded to IL-2 sup-

plementation after day 2 and effi  ciently expanded until day 6 of the culture 

period, albeit at slower rates compared with WT cells (Fig. S1). Although a 

fraction of the KO DP cells silenced CD4 expression after activation, the ratio 

of SP/DP cells in each enriched population remained constant thereafter, and 

we did not observe any major diff erences between these two populations 

throughout the culture period, indicating that in terms of eff ector CTL diff er-

entiation and under our culture conditions,  Runx3  � / �    CD8 +  T cells that also 

coexpress CD4 are indistinguishable from those that do not. The data pre-

sented in Fig. S2 are from Runx3 KO SP cells, whereas those shown in  Figs. 

3 and 4  are from total Runx3 KO CD8 cells. 

 FACS-based cytotoxicity assay.   To measure cytotoxicity, EL4 thymoma 

target cells were loaded with 0 or 1  μ M Gp33 peptide for 2 h before a 2-h 

coincubation with P14 CD8 +  T cells at the eff ector-to-target ratios indi-

cated in the fi gures in 96-well round-bottom plates. After the coincubation 

period, cells were stained with Annexin V – FITC and anti-CD8 – allophyco-

cyanin. Data analysis was performed with FlowJo software (Tree Star, Inc.); 

EL4 target cells (CD8-negative events) were gated, and the percentage of 

Annexin V +  target cells was determined. 

 Cytokine and surface marker staining.   To assess cytokine production, 

cells were restimulated with 10 nM PMA + 1  μ M ionomycin for 6 h (unless 

indicated otherwise in the fi gures), and intracellular cytokine stains were per-

formed as previously described ( 28 ). To detect expression of surface molecules, 

 Surprisingly, Runx3 contributed to the optimal expression 
of TNF, IL-2, and IFN- �  at day 4 (Fig. S2). For TNF and IL-2, 
the requirement for Runx3 subsides by day 6 ( Fig. 3 C ), possi-
bly because of compensation by Runx1, which is derepressed 
in  Runx3  � / �    cells ( Fig. 4 A ). Runx3 continues to be required 
for IFN- �  expression even at day 6, perhaps because of its role 
in the induction of Eomes expression ( Fig. 4 A ). 

 An unexpected fi nding was that the two T-box transcrip-
tion factors, T-bet and Eomes, are up-regulated with very dif-
ferent kinetics in CD8 +  T cells under our culture conditions 
and have nonredundant roles in the subsequent expression of 
key eff ector proteins ( Fig. 4 C ). T-bet is needed early to confer 
on activated CD8 +  T cells the competence to produce IFN- �  
upon restimulation, but its function is less important at later 
times. Eomes, which is induced late and functions downstream 
of Runx3, may substitute for T-bet in promoting the acute 
expression of IFN- �  in restimulated CTLs ( 8 ). Indeed, T-bet 
and Eomes both contribute to perforin expression in NK cells 
( 8, 26 ), and Eomes induces granzyme B as eff ectively as T-bet 
in developing Th2 cells ( 7 ); thus, the relative roles of these T-
box transcription factors vary depending on cell type. 

 Surprisingly, however, Eomes and T-bet appeared nonre-
dundant in their ability to induce two other markers of CTL 
function,  Prf1  and  Gzmb  ( Fig. 4 C ). Rather, T-bet and Eomes 
were involved in regulating granzyme B and perforin expression, 
respectively: up-regulation of T-bet and Eomes mRNA and 
protein closely preceded up-regulation of  Gzmb  and  Prf1  mRNA 
and protein, respectively. T-bet had no role in perforin expres-
sion under our culture conditions, and Eo-VP16 did not aff ect 
granzyme B expression when expressed in  T-bet  � / �    or  Runx3  � / �    
cells. Because conventional Eomes-defi cient mice die before 
precursor cells can be isolated for bone marrow transfers ( 27 ) and 
because T cells conditionally defi cient in Eomes have only re-
cently been described ( 9 ), we were unable to introduce Runx3 
into Eomes-defi cient CD8 +  T cells to test formally whether 
Eomes cooperated with Runx3 to induce perforin expression. 

 Collectively, our data are consistent with a transcriptional 
network in which preexisting Runx3 cooperates with the in-
duced T-box factors T-bet and Eomes and IL-2R �  signals 
(unpublished data) to orchestrate CTL diff erentiation ( Fig. 4 C ). 
Our data recall the  “ feed-forward ”  interaction between T-bet 
and Runx3 that we previously described in CD4 +  (Th1) 
T cells ( 15 ) but are distinct in two respects: in diff erentiating 
Th1 cells, T-bet is induced by TCR signals and IFN- � , and in 
turn induces Runx3 ( 15 ), whereas in diff erentiating CD8 +  
T cells, preexisting Runx3 is required to induce the T-box 
transcription factor Eomes. Whole-genome experiments in 
these and other systems will be required to establish whether 
cooperation between T-box and Runx family transcription 
factors is a general feature of cellular diff erentiation programs. 

 MATERIALS AND METHODS 
 Antibodies and reagents.   The following antibodies used for intracellular 

or surface stains were obtained from eBioscience: anti – IL-2, anti – IFN- � , 

anti-TNF, anti – granzyme B, anti-CD8, anti-CD25, and anti-CD44. Anti-

CD69 was purchased from BD. For ChIP experiments, the anti-Eomes an-

tibody was obtained from Abcam and the anti-Runx3 antibody was 
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sion in 100 U/ml IL-2 with lysis buff er (50 mM Tris [pH 7.5], 150 mM NaCl, 

10% glycerol, 5 mM EDTA, 1% NP-40) by resuspending samples in 10  μ l per 

10 6  cells and incubating on ice for 30 min in the presence of protease inhibi-

tors. Immunoblot analysis was performed with the antibodies indicated in the 

fi gures after SDS-PAGE (10 – 30  μ g of total protein was loaded per well). 

Quantifi cation of detected protein was performed with an Intelligent Dark 

Box unit (LAS-3000; Fujifi lm) and normalized for loading with the amount 

of RNA Pol-II detected in each lane. 

 Online supplemental material.   Fig. S1 shows the characterization of periph-

eral CD8 +  T cells from  Runx3  � / �    mice. Fig. S2 shows eff ector protein expres-

sion by Runx3 WT and KO cells at day 4 of in vitro culture. Primer sequences 

used for ChIP experiments are shown in Table S1. Online supplemental material 

is available at http://www.jem.org/cgi/content/full/jem.20081242/DC1. 
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cells were washed in PBS, resuspended in FACS wash buff er (3% FBS, 0.1% 

sodium azide, 30 mM Hepes, 1 ×  PBS) containing the antibodies indicated in 

the fi gures at previously optimized concentrations, incubated for 15 min at 

room temperature (RT), washed, and resuspended in 2% formaldehyde fi xa-

tive solution before acquisition on a FACSCalibur (BD). 

 Retroviral transduction of primary CD8 +  T cells.   For transduction ex-

periments, viral supernatants were generated by calcium phosphate transfec-

tion of Phoenix cells and concentration by overnight centrifugation at 6,000  g . 

At  � 42 h after the initial TCR activation of 10 6  CD8 +  T cells per well in 

12-well plates, the culture media was removed and replaced with complete 

media supplemented with 8  μ g/ml polybrene containing fresh plus concen-

trated virus. The plates were centrifuged at 700  g  for 1 h at RT before return-

ing to 37 ° C for an additional 5 h. Retroviral constructs for Eomes-VP16 and 

the MIG control empty vector were a gift from S.L. Reiner (University of 

Pennsylvania, Philadelphia, PA) ( 8 ). 

 ChIP and real-time PCR analysis.   20  ×  10 6  CD8 +  T cells per immuno-

precipitation were fi xed by adding a 1/10th volume of fi xation solution 

(11.1% formaldehyde, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 50 

mM Hepes) to 1 volume of culture media and were incubated for 10 or 30 

min at RT. Fixation was stopped with 120 mM glycine on ice for 5 min. 

Fixed cells were washed 2 ×  with cold PBS, 1 ×  with cold solution I (10 mM 

Tris [pH 7.5], 10 mM EDTA, 0.5 mM EGTA, 1% Triton X-100), and 1 ×  

with cold solution II (10 mM Tris [pH 7.5], 1 mM EDTA, 0.5 mM EGTA, 

200 mM NaCl). After washes, cell pellets were resuspended at 40  ×  10 6  

cells/ml in ChIP lysis buff er (150 mM NaCl, 25 mM Tris [pH 7.5], 1% Tri-

ton X-100, 0.1% SDS, 0.5% deoxycholate plus protease and phosphatase in-

hibitors), and chromatin was sheared with a sonicator to yield 0.5 – 1-kb 

DNA fragments. After preclearing the sheared chromatin with protein A –

 sepharose beads and removing 5% as input chromatin, immunoprecipitation 

was performed by adding optimized antibody amounts (per 20  ×  10 6  cell 

equivalents: 2.5  μ g anti-Eomes, 1:100 dilution anti-Runx3), followed by 

overnight incubation at 4 ° C; protein A – sepharose beads were added for the 

last 3 h of the incubation period. Beads were washed 2 ×  with RIPA buff er 

(50 mM Tris [pH 8], 150 mM NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 

0.5% deoxycholate), 1 ×  with high salt buff er (50 mM Tris [pH 8], 500 mM 

NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS), and 1 ×  with TE buff er. After 

the last wash, DNA was eluted by resuspending the beads in elution buff er 

(1% SDS, 100 mM NaHCO 3 ). Both input and ChIP chromatin were then 

treated with RNase A (5  μ g total) for 1 h at 37 ° C, followed by the addition 

of proteinase K (100  μ g total) and overnight incubation at 65 ° C to reverse 

cross-linking. DNA was then purifi ed with QIAquick columns (Gel Extrac-

tion Kit; QIAGEN) according to the manufacturer ’ s instructions and resus-

pended in a 50- μ l volume. For real-time PCR detection of immunoprecipitated 

targets using the SYBR Green PCR Kit, a standard curve was obtained with 

serial dilutions of input DNA for each sample, and 1  μ l ChIP DNA was used per 

PCR reaction (performed in duplicates). Melt curves and agarose gels were 

analyzed to ensure amplifi cation of specifi c target sequences. Refer to Table 

S1 (available at http://www.jem.org/cgi/content/full/jem.20081242/DC1) 

for a list of primer sets. The data are presented as the number of immunopre-

cipitated target sequences relative to input chromatin, assuming two copies 

of target sequence per cell equivalent used for the ChIP. 

 Northern and Western blot analyses.   RNA isolation and Northern blot 

analysis was performed as previously described ( 29 ). In brief, 10  μ g of total 

RNA was loaded per lane and transferred to positively charged nylon mem-

branes (Hybond-N + ; GE Healthcare), which was confi rmed by ethidium 

bromide staining of ribosomal RNA species on the membrane. Membranes 

were hybridized with 1 ng/ml  � -[ 32 P]dCTP – labeled trichloroacetic acid 

precipitable probe in ExpressHyb hybridization buff er (Clontech Laborato-

ries, Inc.). All cDNA probes were confi rmed to have the appropriate single-

copy specifi city under these conditions using genomic Southern blot analysis. 

Band intensities were acquired by phosphorimaging analysis. 

 For Western analysis, whole-cell protein lysates were obtained from 

CD8 +  T cells at the time points indicated in the fi gures during clonal expan-
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