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Abstract
We present a lookup table (LUT)–based inverse model for determining the optical properties of turbid
media from steady-state diffuse reflectance spectra that is valid for fiber-based probe geometries
with close source-detector separations and tissue with low albedo. The lookup table is based solely
on experimental measurements of calibration standards. We used tissue-simulating phantoms to
validate the accuracy of the LUT inverse model. Our results show excellent agreement between the
expected and extracted values of the optical parameters. In addition, the LUT represents a significant
improvement in accuracy at short source-detector separations (300 μm) and low albedo (~0.35). We
also present in vivo data from clinically normal and malignant nonmelanoma skin cancers fit to the
LUT-based model.
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Diffuse optical spectroscopy (DOS) has widely been used to noninvasively characterize tissue
optical properties for disease diagnosis. DOS uses optical fiber probes to measure broadband
diffuse reflectance spectra from the tissue surface. Collected reflectance spectra are analyzed
to extract optical scattering and absorption properties that indicate tissue pathology (i.e., tissue
microarchitecture and function).1,2 Many current strategies for analyzing diffuse reflectance
rely on the solution to the diffusion approximation of the radiative transport equation,3 or a
modified form.2 However, the diffusion approximation is not valid at source-detector
separations less than approximately one reduced mean free path [ ] and in tissues with
low albedo [ ]. In addition, many inverse solutions employing the diffusion
approximation are computationally intensive.

Because most cancers originate in the epithelial layer at the tissue surface, DOS systems that
sample spectra from the tissue surface are highly desirable.4 Also, an important indicator of
early cancer, angiogenesis, can lead to significantly higher absorption due to blood at a level
comparable to scattering. Unfortunately, the diffusion-approximation-based inverse models
are not accurate in many of these regimes. To overcome this limitation, several recent models
based on Monte Carlo5 or higher-order approximations6 to radiative transport have been
developed. In addition, researchers have also developed novel probe strategies and techniques
for sampling shallow tissue depths.7–9 We present, for the first time to our knowledge, a lookup
table (LUT)–based model that is valid at very short source-detector separations (~300 μm) as
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well as highly absorbing media (albedo ~0.35). This method relies solely on a LUT generated
from experimental measurements on tissue-simulating phantoms and does not depend on an
analytical or computational model of light propagation.

The system we used to collect the diffuse reflectance is described in detail elsewhere.10 Briefly,
we used a custom-built clinical spectrometer to collect steady-state, spectrally resolved diffuse
reflectance in the wavelength range of 350–700 nm. We used a (i) pulsed xenon flash lamp
(L7684, Hamamatsu Photonics) as our light source, (ii) an imaging spectrograph (SP-150,
Princeton Instruments) in combination with a 12-bit-cooled CCD (CoolSnap HQ,
Photometrics) to collect diffusely reflected light, and (iii) a fiber-optic probe (diameter=200
μm; NA=0.22), where the central fiber illuminated the sample and six surrounding fibers
collected the diffusely reflected light. We employed a source-detector separation of 300 μm
(center-to-center distance). We averaged over three white-light acquisitions to improve the
signal-to-noise ratio. The spectral resolution of our system is ~0.78 nm.

We generated the LUT by measuring the functional form of the reflectance using tissue
phantoms with known optical properties (calibration set). These phantoms were fabricated
using polystyrene microspheres (diameter=1 μm; Polysciences) and India ink (Salis
International) dissolved in water to simulate scattering and absorption, respectively. We used
Mie theory to calculate  of the tissue phantoms and measured μa of a stock India ink solution
using a spectrophotometer (DU 720, Beckman Coulter). We created a matrix (4 × 6)of 24 tissue
phantoms with varying scattering ( ) and absorption parameters [μa(λ)
= 0–5.33 mm−1], based on previously reported values for tissue.11 We found 24 phantoms to
be sufficient for overlap in the wavelength-dependent scattering and absorption properties for
different phantoms to cover the entire range of the LUT matrix. For example, for consecutive
phantoms of increasing , the lowest  of each subsequent phantom overlapped with the
highest  of the previous phantom. The probe was placed in contact with the surface of the
tissue phantoms, and white-light spectra from the phantoms were recorded [Fig. 1(a)].
Reflectance was calculated by dividing white-light intensity measured from the phantom by
white-light intensity from a reflectance standard (Labsphere). Both measurements were
background corrected to account for CCD dark current and ambient light. The measurement-
measurement variation in the diffuse reflectance spectra was <2%.

The mapping of the spectrally resolved diffuse reflectance (R) on to a unique LUT is shown
in Fig. 1. The spectral dependence of R results from the wavelength-dependent optical
properties,  and μa(λ). Because  and μa(λ). are known for the tissue phantoms, R can
be mapped from wavelength space to the two-dimensional optical property space. This
mapping creates a sparse matrix [Fig. 1(b)] for R. We then interpolated this sparse matrix to a
grid of uniformly spaced data points of  and μa to obtain a LUT for diffuse reflectance [Fig.
1(c)]. The limits of the LUT correspond to the range of  and μa over which diffuse reflectance
spectra were recorded.

Because the LUT is generated with experimental data, using the same absorber to generate the
LUT as well as validate it might influence the inverse model while fitting the diffuse reflectance
spectra. Therefore, we created a separate matrix (3×6) of 18 tissue phantoms (validation set)
with hemoglobin (Sigma-Aldrich) as the absorber.

To fit our diffuse reflectance spectra and extract the optical properties, we implemented a
nonlinear optimization fitting routine (average fit time ~ few seconds). We constrained the
reduced scattering coefficient to the form . (λ/λ0)−B, where λ0 =630 nm. We
assumed the absorption in the visible range to be due to oxy-and deoxy-hemoglobin. The
absorption coefficient was calculated using the absorption cross-sections (σHb and σHbO2) of
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these chromophores as μa(λ) =[Hb] (ασHbO2 + (1− α) σHb), where α is the oxygen saturation
and [Hb] is the total hemoglobin concentration. Depending on the type of tissue sampled and
the wavelength range of interest, the expression for μa(λ) can be modified to include the
absorption cross sections of other absorbing chromophores.

The diffuse reflectance spectrum and corresponding fit from a sample validation phantom is
shown in Fig. 2(a) demonstrating excellent agreement between the model and the experimental
data. Scatter plots of the extracted versus expected values of  [Fig. 2(b)] and μa(λ) [Fig.
2(c)] demonstrate a high degree of accuracy in extracting optical properties. The LUT inverse
model estimated the reduced scattering and absorption coefficients over a wide range
(  and μa(λ) = 0–2.99 mm−1) with mean root-mean-square (rms)
percent errors (calculated across wavelength and phantoms) of 5.9% and 11.6%, respectively.
These scatter plots show the extracted  and μa(λ) for the entire validation set. Figures 3
(a) and 3(b) illustrate extracted physical parameters for each tissue phantom of the validation
set. The average errors in estimating  and [Hb] over the entire validation set were 4.9%
and 9.6%, respectively. We fit the experimental data to the LUT inverse model three times for
each phantom, and the variance in the extracted parameters was <2%. All the experiments were
performed immediately after preparation of the phantoms. Therefore, we did not expect the
oxygen saturation values to vary, and this was evident in the fits where the values did not vary
by >2%.

We compared the performance of the LUT-based model to a diffusion approximation (DA)-
based model described by Farrell et al.3 At a source-detector separation of 300 μm, the LUT
model improved the accuracy in recovering scattering at 630 nm [ ] and hemoglobin
concentration ([Hb]) by factors of 2.3 and 5.7, respectively. Also, at the lowest value of albedo
seen in the validation set (0.35), the LUT model was able to estimate the  and [Hb] with
errors of 6.2 and 8%, respectively.

We are currently conducting a clinical feasibility study to determine the sensitivity and
specificity of spectral diagnosis for the early detection of skin cancer. Figure 3(c) shows
representative spectra from two groups: clinically normal and malignant basal cell carcinoma
(BCC). The plot shows good agreement between the predicted (LUT fit) and measured in
vivo reflectance. In addition, our preliminary data revealed statistically significant differences
in scattering between normal (n=21; ) and malignant (n=1);

) tissue. This difference is consistent with previously reported results
for other tissue.2

Our analysis indicates that the errors for the LUT-based model are close to 10% for determining
both scattering and absorption. A certain component of the error in our inverse model could
arise from the uncertainty in optical properties of the calibration set used to generate the LUT.
The experimental error is on the order of a few percent and will propagate through our final
inverse solution. Other sources of error include knowledge of bead size and the ink extinction
coefficient, presence of electronic noise in the collected reflectance, and fabrication of the
tissue phantoms. Minimizing these errors could lead to a significant improvement in the
accuracy of the LUT-based model.

Although there have been recent computational models (analytical and numerical Monte Carlo)
developed for probes designed for superficial sampling of tissue, more sophisticated probe
geometries may be difficult to represent computationally. In addition, unknown system
responses (e.g., refractive index mismatch and losses) can be difficult to incorporate into these
models. However, an experimental model that is calibrated with the same probe geometry as
that used for in vivo measurements should incorporate these factors. Recently, several research
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groups have developed empirical models calibrated with a set of known optical standards for
measuring tissue optical properties.12,13 However, these techniques either required a probe
geometry with multiple source-detector separations12 for developing the model or used a
separation well within the diffusion limit.13 Our LUT approach extends the bounds of validity
imposed by traditional diffusion models to distances very close to the source as well as highly
absorbing tissue—an important hallmark of tumors. The model can also possibly be adapted
to a wide array of probe geometries. In addition, LUTs can afford a computationally simple
and fast approach to inverse solutions.
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Fig. 1.
(a) Spectrally resolved diffuse reflectance [R(λ)] for a subset of tissue phantoms,
[  and four different ink concentrations corresponding to μa(λ) = 0–5.33
mm−1], from the calibration set. (b) Diffuse reflectance as a sparse matrix mapped to optical
property space, {R[ , μa(λ)]}and (c) the resulting lookup table, [R( , μ;a)].
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Fig. 2.
(a) Diffuse reflectance spectrum [  and [Hb] = 2 mg/ml] and the LUT-fit
from a tissue phantom (validation set). Scatter plot of the known versus measured values of
(b) and  and (c) μa(λ) for all tissue phantoms. The solid line indicates perfect agreement.
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Fig. 3.
(a) and (b) Physical parameters extracted from the LUT inverse model (  (□),
1.83 mm−1 (○) and 2.75 mm−1 (◇)). The solid line indicates perfect agreement. Error bars for
these measurements were too small to show (<2%). (c) In vivo reflectance spectra from two
representative groups: clinically normal and BCC. The thin solid line indicates the model fit.
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