
A model of efficiency: Stress tolerance by Streptococcus 
mutans

José A. Lemos1, Robert A. Burne2

1 Center for Oral Biology and Department of Microbiology and Immunology, University of 
Rochester Medical Center, Rochester, New York, 14642

2 Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, 
32610

Abstract

The complete genome sequence of Streptococcus mutans, a bacterial pathogen commonly 

associated with human dental caries, was published in 2002. The streamlined genome (2.03Mb) 

revealed an organism that was well adapted to its obligately host-associated existence in 

multispecies biofilms on tooth surfaces; a dynamic environment that undergoes rapid and 

substantial environmental fluctuations. However, S. mutans lacks many of the sensing systems and 

alternative sigma factors that bacteria often use to coordinate gene expression in response to stress 

and changes in their environment. Over the past seven years, functional genomics and proteomics 

have enhanced our understanding of how S. mutans has integrated the stress regulon and global 

transcriptional regulators to integrate responses to environmental fluctuations with modulation of 

virulence in a way that ensures persistence in the oral cavity and capitalizes on conditions that are 

favorable for the development of dental caries. Here, we highlight advances on dissection of the 

stress regulon of S. mutans and its intimate interrelationship with pathogenesis.

Introduction

Caries is a classic biofilm disease that develops when changes in the oral environment 

enhance the growth of cariogenic bacteria, which are highly efficient at converting 

carbohydrates to the organic acids that demineralize tooth enamel. Microbiological 

assessment of caries-active sites and studies with experimental animals implicated 

Streptococcus mutans as the primary causative agent of human dental caries (Loesche, 

1986). The virulence of S. mutans resides in three core attributes; its abilities to form 

biofilms on the tooth surface, to produce large quantities of organic acids (acidogenicity) 

from a wide range of carbohydrates, and to tolerate environmental stresses, particularly low 

pH (aciduricity) (Lemos et al., 2005). In addition to dental caries, S. mutans is often an agent 

in sub-acute bacterial endocarditis, a life-threatening inflammation of heart valves.

Unlike most infectious diseases, in which classic virulence factors, such as a toxin, play a 

clear role in the damage elicited by the organism, the pathology of dental caries is associated 
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almost exclusively with bacterial metabolism. Catabolism of the nutrients in saliva and the 

host’s diet creates stressors in the form of acids, reactive oxygen species (ROS), and other 

agents that damage biomolecules. Thus, stress tolerance by the bacteria is intimately 

intertwined with virulence. The purpose of this review is to highlight post-genomic research 

on genetic, biochemical and physiologic mechanisms that have evolved in S. mutans to 

modulate its pathogenic potential in response to nutritional, chemical and physical stresses 

encountered in complex biofilms.

Seven Years P.G. (Post Genome)

In 2001, the complete genome sequence of a serotype c strain of S. mutans became available 

(Ajdic et al., 2002). Through the application of functional genomics, transcriptomics and 

proteomics, researchers were able to make rapid progress in dissecting the mechanisms of 

stress tolerance utilized by this pathogen. One theme that emerged from these studies is that 

S. mutans has streamlined its genome by using pathways that cope with environmental 

insults to regulate a variety of virulence attributes.

A few years after the completion of the UA159 genome sequence, S. mutans microarray 

slides became available, with generous support from the NIDCR, through the J. Craig Venter 

Institute (formerly The Institute for Genomic Research, TIGR). To date, microarrays have 

been used to probe the responses of S. mutans to amino acid starvation (Nascimento et al., 
2008), oxygen (Ahn et al., 2007), sugar transport (Ajdic & Pham, 2007), and manganese-

depletion (Arirachakaran et al., 2007); to identify genes that are differentially expressed in 

biofilms of S. mutans compared with free-living cells (Shemesh et al., 2007); and to evaluate 

the consequences of gene-specific mutations (Abranches et al., 2006; Abranches et al., 2008; 

Lemos et al., 2008; Merritt et al., 2005; Nascimento et al., 2008; Sztajer et al., 2008; Wen et 
al., 2006).

Proteomic studies have been instrumental in identifying proteins and pathways that 

participate in acid tolerance and acid adaptation (Len et al., 2004a; Len et al., 2004b; 

Rathsam et al., 2005a; Rathsam et al., 2005b; Welin et al., 2003; Welin et al., 2004; Wilkins 

et al., 2002; Wilkins et al., 2003). Of particular interest is a report by Nick Jacques and co-

workers that used continuous culture to catalogue changes in the expression of proteins 

involved in energy metabolism when the growth pH was lowered from 7 to 5 (Len et al., 
2004b). By coupling proteomic data with measurements of end products of carbon 

utilization, the authors were able to propose that S. mutans tolerates growth at low pH by 

expending energy to extrude H+, by modulating the production of acid end products, and by 

using branched chain amino acid biosynthesis as a potential mechanism to reduce acid 

production and moderate intracellular pH (Len et al., 2004b).

Comparison of the proteome of mature biofilm and planktonic cells of S. mutans cells grown 

at neutral pH revealed that multiple proteins associated with carbon uptake and cell division 

were down-regulated in biofilms, whereas proteins required for the development of genetic 

competence were up-regulated (Rathsam et al., 2005a); the latter finding being consistent 

with the observation that the transformation efficiency of S. mutans is optimal during 

biofilm growth (Li et al., 2001b). This observation is thought to have significance in terms of 
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plaque ecology. Specifically, co-ordinated production of bacteriocins from S. mutans and the 

development of competence have been documented in high-cell density environments, 

suggesting that the organism could use competence-induced cell lysis to acquire DNA from 

neighboring species (Kreth et al., 2005; Kreth et al., 2006; Kreth et al., 2007). Notably, a 

study with S. mutans implicated the presence of DNA released from competence-induced 

cell lysis in the extracellular matrix with proper biofilm maturation (Petersen et al., 2005). It 

remains to be determined whether S. mutans biofilms acquire DNA from the external 

environment to provide a nutrient source, to increase genetic diversity, or both (Spoering & 

Gilmore, 2006). In addition to the potential impact on commensal organisms in oral 

biofilms, a direct correlation between production of the competence stimulating peptide 

(CSP) and activation of autolytic pathways with biofilm formation and persistence of S. 
mutans has been noted. In particular, when administered at doses beyond the levels 

necessary to induce competence, CSP of S. mutans was found to induce cell lysis (Qi et al., 
2005), suggesting the presence of an altruistic programmed cell death pathway. In this case, 

the “sacrifice” of a subset of cells may enable the establishment and survival of the 

remainder of the population.

Stress Survival Pathways

Bacteria in dental plaque experience a wide range of stresses. The intermittent ingestion of 

food by the host results in dramatic changes in nutrient availability and pH, but significant 

variability in oxygen tension and osmolality are also observed (Lemos et al., 2005). 

Although it has been noted that oral biofilms experience a “feast or famine” lifestyle, 

organisms residing in the oral cavity are really not exposed to severely-oligotrophic 

environments. For this reason, studies of the stress responses of S. mutans have served as an 

excellent model to reveal critical differences in the ways that obligately host-associated 

bacteria cope with environmental stresses when compared with bacteria that have both free-

living and host-associated lifestyles. These studies have revealed important contrasts in the 

way this organism copes with stresses and uses stress regulons/enzymes to coordinate 

virulence and survival compared to more widely-studied bacterial paradigms (Fig. 1).

ΔpH homeostasis and metabolic pathways

The membrane-bound F-ATPase (H+-translocating ATPase) is considered the primary 

determinant of acid tolerance of S. mutans because it allows the organism to maintain a 

cytoplasmic pH that is more alkaline than the extracellular environment (Lemos et al., 
2005). Work from the laboratory of Marquis correlates acid tolerance in oral streptococci 

with the pH optima and absolute level of activity of the F1FO-ATPase (Bender et al., 1986). 

Moreover, it was recently demonstrated that the F-ATPase of S. mutans, and other oral 

bacteria, can function as an ATP synthase in starved cells grown at low pH (Sheng & 

Marquis, 2006). The authors demonstrated that in starved cells, a sudden drop in pH result in 

a rapid increase in ATP, followed by a rapid loss, that enhance protection against acid 

killing. By using specific inhibitors of F-ATPase, the authors were able to demonstrate that 

this increase in ATP comes from the enzyme acting as an ATP synthase. Thus, the F-ATPase 

may play a dual role in acid tolerance - extruding protons out of the cells and, under certain 

conditions, generating ATP for growth and persistence (Fig. 2).
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A mechanism for acid resistance used by many oral streptococci is the production of 

ammonia by urease enzymes or the arginine deiminase system (ADS) (Burne & Marquis, 

2000). Organisms carrying these enzymes can convert urea or arginine, respectively, to 

produce CO2 and ammonia, which can neutralize acids and give the organisms a competitive 

advantage in acidified biofilms. Although S. mutans is not capable of generating significant 

quantities of alkali as it lacks urease and ADS pathways (Ajdic et al., 2002), an agmatine 

deiminase system (AgDS), analogous to the ADS, was characterized in S. mutans UA159 

(Griswold et al., 2006). The AgDS converts agmatine, a decarboxylated derivative of 

arginine that is found in human dental plaque, to putrescine, ammonia and CO2. Whereas the 

ADS and urease pathways catalyze substantial environmental alkalinization and appear to be 

associated with caries resistance, the AgDS of S. mutans is expressed at relatively low levels 

and is unlikely to elicit a significant alkalinization of the environment. However, the 

production of ammonia from agmatine is believed to contribute to the competitive fitness of 

S. mutans at low pH by increasing the cytoplasmic pH and generating ATP that can be used 

for growth or to extrude protons (Fig. 2) (Griswold et al., 2006).

Another contributor to acid tolerance of S. mutans is malolactic fermentation (MLF), which 

catalyzes the conversion of dicarboxylic L-malate, a major acid in fruits such as apple, to the 

monocarboxylic lactic acid and CO2. It was demonstrated that although malate did not serve 

as a catabolite for growth of S. mutans, it did serve to protect the organism against acid 

killing by increasing the pH of the cytoplasm via production of CO2 (Fig. 2) (Sheng & 

Marquis, 2007).

Protection, Repair and Quality Control of Macromolecules—One consequence of 

exposure to environmental stresses is the accumulation of abnormal proteins due to 

increased errors in transcription and translation. Moreover, aging cells present in mature 

biofilms are prone to mistranslation and aggregation. In this context, molecular chaperones 

and proteases, which modulate the stability of proteins and prevent accumulation of 

misfolded proteins, are central to physiologic homeostasis. In support to this concept, 

proteome analysis of S. mutans grown at steady-state in continuous culture at pH 7 or 5 

identified several molecular chaperones, proteases and DNA repair enzymes as up-regulated 

during growth at low pH (Len et al., 2004a).

The GroEL and DnaK chaperones take part in several cellular processes, including protein 

folding, renaturation, and presentation of proteins for degradation. In S. mutans, DnaK and 

GroEL appear to be indispensable, and the essential nature of these chaperones was 

confirmed by forced down-regulation of groEL and dnaK expression (Lemos et al., 2007b). 

Lowering of DnaK levels resulted in impaired capacity to form biofilms in the presence of 

glucose and rendered the strain more sensitive to low pH, elevated temperature and H2O2 

(Lemos et al., 2007b). The acid-sensitivity of the DnaK knock-down strain was attributed, at 

least in part, to the DnaK chaperone participating in the biogenesis or stabilization of the F-

ATPase complex (Lemos et al., 2007b). Downregulation of GroEL also resulted in high 

temperature sensitivity and impaired capacity to form biofilms, but did not affect growth at 

low pH or in the presence of H2O2(Lemos et al., 2007b). Wen and colleagues showed that 

the ribosome-associated peptidyl-prolyl isomerase RopA (trigger factor) is important for 

adherence and formation of biofilms and for tolerance to low pH and H2O2 (Wen et al., 
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2005). Inactivation of the surface-associated HtrA protease or the cytoplasmic ClpP 

peptidase generated multiple stress-sensitive phenotypes in S. mutans, and was also linked to 

altered biofilm formation and reduced genetic competence (Ahn et al., 2005; Biswas & 

Biswas, 2005; Deng et al., 2007b; Lemos & Burne, 2002). Notably, in all these cases, a 

unifying theme is the intimate connection between stress responses and biofilm formation, 

suggesting that the stress regulon of S. mutans may be responsible for controlling a broader 

set of biological functions when compared to organisms with more complex genomes.

Many of the stresses encountered by oral bacteria induce DNA damage, in particular acid 

and oxidative stresses increase the formation of abasic sites in DNA. Earlier reports have 

demonstrated an overlap between DNA repair systems and stress response pathways, 

including RecA, the endonuclease Smn and the UV repair excinuclease UvrA (Hahn et al., 
1999; Hanna et al., 2001; Quivey et al., 1995). More recently, Faustoferri and colleagues 

characterized the Smx exonuclease in S. mutans and showed that an smx mutant strain was 

highly sensitive to DNA damage caused by the production of hydoxyl radicals via Fenton 

reaction (Faustoferri et al., 2005).

Cell Envelope Alterations—The importance of cell membrane integrity and composition 

in relation to changes that affect proton permeability and F-ATPase activity in S. mutans has 

been documented (Lemos et al., 2005). Fozo and Quivey showed that, in response to the 

acidification of its environment, S. mutans increases the proportion of monounsaturated 

membrane fatty acids (Fozo & Quivey, 2004b), which is thereby predicted to decrease 

proton permeability. Inactivation of the gene responsible for biosynthesis of 

monounsaturated fatty acids, fabM, resulted in a strain that was extremely sensitive to low 

pH and unable to maintain ΔpH (Fozo & Quivey, 2004a). Rats infected with the fabM 
mutant exhibited substantially reduced caries, as compared to the parent strain (Fozo et al., 
2007).

The significance of membrane protein biogenesis to stress tolerance was demonstrated in a 

study with mutated strains lacking the signal recognition particle-translocation (SRP) 

pathway or the membrane-localized chaperone YidC, both involved in the translocation and 

assembly of membrane proteins. Once considered essential for the viability of all organisms, 

the SRP pathway was found to be dispensable in S. mutans (Hasona et al., 2005), although 

mutants lacking proteins of the SRP pathway or YidC were impaired in growth under a 

variety of stress conditions (Hasona et al., 2005). The authors observed that YidC and a 

functional SRP pathway is necessary for optimal insertion of membrane proteins, including 

the F-ATPase, providing a partial explanation for the diminished acid tolerance of strains 

lacking YidC or components of the SRP pathway (Hasona et al., 2005; Hasona et al., 2007). 

Notably, mutations in SRP-related genes were also associated with decreases in biofilm 

formation, providing another example of the overlap between pathways that govern stress 

tolerance and biofilm formation (Hasona et al., 2007).

Finally, the surface-associated protein BrpA was found to play a role in biofilm 

development, autolysis, cell division and stress tolerance (Wen et al., 2006). A comparison 

of the transcriptomes of the brpA mutant and the parent reveal significant alterations in the 

expression of genes involved in cell wall biogenesis, stress tolerance and adherence (Wen et 
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al., 2006). Although the function of BrpA has not been defined, increased autolysis in the 

ΔbrpA strain indicates that this protein may play a role in modulating cell wall integrity 

through modulation of autolytic activities, which could mechanistically link BrpA to the 

increases in susceptibility to acid and oxidative stresses observed in the BrpA-deficient 

strain (Wen et al., 2006).

Two-component signal transduction systems—S. mutans lives almost exclusively in 

densely-populated biofilms that form on the tooth surface. The structure and composition of 

these biofilms are influenced by the capacity of its constituents to adapt to environmental 

changes. As is typical of bacteria with specialized niches, there are very few alternative 

sigma factors in the UA159 genome (Ajdic et al., 2002). Thus, regulatory systems, such as 

two-component systems (TCS), which integrate various chemical and physical signals to 

coordinate appropriate gene expression patterns, play a central role in stress tolerance and 

are viewed as desirable targets for the development of new antimicrobial therapies.

TCS are composed of a transmembrane sensor kinase that detects environmental changes 

and a cytosolic response regulator, which is a DNA binding protein that modulates 

expression of target genes when phosphorylated by the kinase. In streptococcal species, the 

number of TCS is small compared to organisms with a free living life-style, ranging from as 

few as 10 in S. thermophilus, to more than 20 in S. agalactiae. Sequence analysis initially 

revealed the presence of 13 TCS in S. mutans UA159 (Ajdic et al., 2002), but the Biswas lab 

identified an additional pair in this same strain (Biswas et al., 2008).

Over the past few years, studies that evaluated the role of TCS in S. mutans have shown that 

they regulate virulence gene expression, induction of competence, biofilm development, 

bacteriocin production and stress tolerance (Biswas et al., 2008; Chen et al., 2007; Deng et 
al., 2007a; Levesque et al., 2007; Li et al., 2001a; Li et al., 2002a; Li et al., 2002b; Qi et al., 
2004; Senadheera et al., 2005; Zeng et al., 2006). In particular, two studies from independent 

laboratories systematically inactivated the genes encoding sensor kinases of all TCS and 

evaluated their role in stress tolerance by S. mutans (Biswas et al., 2008; Levesque et al., 
2007). In the study by Lévesque and colleagues, smu1814c (scnK) and smu1965c (levS) 

mutants displayed significantly slower growth at pH 5.5, whereas the smu1128c (ciaH) 

mutant grew better than the parental strain in the presence of NaCl or H2O2 (Levesque et al., 
2007). Biswas and co-workers found that inactivation of three sensor kinases, smu486 (liaS), 

smu1128c (ciaH) and smu1516c (vicK), affected stress tolerance of strain UA159 (Biswas et 
al., 2008). However, the vicK mutant showed an increased tolerance to puromycin, which 

causes premature chain termination during protein synthesis (Biswas et al., 2008). The liaS 
and ciaH mutants showed reduced growth when incubated in aerobic conditions or on agar 

medium supplemented with H2O2 (Biswas et al., 2008). The liaS and ciaH mutants also 

showed increased sensitivity to puromycin, while the ciaH mutant showed significant 

reduction of growth at pH 5 and displayed increased sensitivity to DNA damage caused by 

mitomycin C (Biswas et al., 2008). Notably, previous reports have also shown that 

inactivation of ciaH resulted in an acid sensitive phenotype in strains UA159 and UA140 

(Ahn et al., 2006; Qi et al., 2004). The S. mutans VicRK system was shown to respond to, 

and protect against, oxidative stress in one particular study (Deng et al., 2007a). A role in 

oxidative stress response was also assigned to ScnRK, as scnRK mutants were more 
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sensitive to H2O2 and more susceptible to phagocytic killing in non-activated macrophages 

(Chen et al., 2007). Studies from the Cvitkovitch lab have shown that inactivation of LiaS or 

ComDE conferred an acid-sensitive phenotype to strains NG8 and BM71, respectively (Li et 
al., 2001a; Li et al., 2002a), although comD (smu1916c) or comE (smu1917c) do not appear 

to affect acid tolerance in strain UA159 (Ahn et al., 2006). Finally, the smu927-smu928 
TCS, designated relRS, that is co-transcribed with a newly described (p)ppGpp-synthetase 

(relP) has been implicated in survival and persistence as it may help regulate (p)ppGpp 

metabolism (Lemos et al., 2007a).

In S. pyogenes, the TCS CovRS regulates expression of approximately 15% of the genome, 

including key virulence genes (Graham et al., 2002). In S. mutans UA159, CovR is an 

orphan response regulator that controls expression of genes related to biofilm formation and 

virulence (Biswas et al., 2007; Biswas & Biswas, 2006). Similar to what has been observed 

for the S. pyogenes covRS, expression of the S. mutans covR is autoregulated, optimal 

during exponential-growth and induced by addition of Mg2+ in a dose-dependent manner 

(Chong et al., 2008). The extent of the genes controlled by CovR in S. mutans is not known 

but based on the findings obtained in other streptococci, it is expected that CovR participate 

in the stress responses.

Collectively, these data support the idea that there may be substantial heterogeneity among 

strains in the role of specific TCS, not only in the genes they regulate, but also in the 

external stimuli to which they respond. Nevertherless, CiaRH have been consistently found 

to play a role in the stress responses by S. mutans. Moreover, CiaRH have also been 

implicated in competence development, bacteriocin production and biofilm formation (Ahn 

et al., 2006; Levesque et al., 2007; Qi et al., 2004). More recently, it was demonstrated that 

the ciaRH operon of S. mutans consists of three genes with the first gene, ciaX, encoding a 

small, double-glycine signaling peptide that allows CiaRH to modulate its own expression in 

response to calcium (He et al., 2008). Inactivation of ciaX, or point mutations in its calcium-

binding domain resulted in diminished biofilm formation that was rescued by addition of 

calcium. Human saliva is saturated in calcium (Agha-Hosseini et al., 2006) and calcium is 

the principal cation in tooth enamel, so calcium signaling may be an important regulator, 

through CiaRH, of stress responses and virulence in S. mutans.

Other regulators—Metal ions, including iron and manganese, have been implicated in the 

regulation of virulence expression by S. mutans. In particular, the SloR metalloregulator was 

shown to modulate S. mutans biofilm formation, genetic competence and oxidative stress 

tolerance in response to manganese availability (Rolerson et al., 2006). Work from the 

Spatafora lab has linked SloR repression of the transcriptional regulator gcrR with acid 

stress tolerance (Dunning et al., 2008). More specifically, a gcrR mutant was more sensitive 

to low pH and this phenotype was linked to the inability of the mutant to maintain ΔpH 

homeostasis.

As mentioned above, the AgDS has been proposed to enhance acid resistance through 

alkalinization of the cytoplasm (Griswold et al., 2006). The AgDS of S. mutans is subject to 

complex regulation by substrate, catabolite control, and relevant environmental stresses. A 

LuxR-like transcriptional regulator, named aguR, was identified upstream the aguBDAC 
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operon. Inactivation of aguR decreased AgD activity and eliminated agmatine induction, 

indicating that AguR is a major regulator of AgDS (Griswold et al., 2006).

Nutritional Regulators and alteration of catabolic pathways—In order to thrive in 

dental plaque where there is considerable fluctuation in the nutrient pools, S. mutans must 

be able to adjust its metabolism and gene expression patterns to maximize the use of 

available substrates (Lemos et al., 2005). Despite the need to endure periods of nutrient 

limitation, abrupt exposure to an excess amount of carbohydrate in the diet can result in the 

rapid accumulation of toxic glycolytic intermediates, acidification of the environment, and 

osmotic stress. To survive nutrient starvation, to cope with the detrimental effects of 

glycolytic intermediates, and to maintain proper NAD/NADH+ balances, S. mutans has 

developed a sophisticated regulatory nextwork that combines transcriptional regulation with 

allosteric modulation of enzymatic activities to coordinate optimal flow of carbohydrates.

Carbohydrate source and availability are key factors affecting the pathogenic potential of 

oral biofilms. The sugar phosphotransferase system (PTS) is the major carbohydrate 

transport system in oral streptococci, especially under carbohydrate-limiting conditions. In 

addition to participating in sugar uptake, PTS components influence many other cellular 

processes. Mutations in the ManL PTS permease influenced biofilm development, regulation 

of acid tolerance and global control of gene expression, in particular carbon catabolite 

repression (Abranches et al., 2006; Abranches et al., 2008). Two global regulators of central 

metabolism genes, CcpA and CodY, have been shown to impact acid tolerance and the 

expression of other virulence traits of S. mutans (Abranches et al., 2008; Lemos et al., 
2008). CcpA, a regulator of carbon-metabolism in Gram-positive bacteria, has been shown 

to globally regulate transcription in response to carbohydrate availability, and a CcpA-

deficient strain was substantially more acid resistant than its parent (Abranches et al., 2008). 

The enhanced acid tolerance of the CcpA mutant has been associated with increases in the 

expression of the PTS that result in higher rates of ATP generation through glycolysis. 

Microarrays revealed that CodY, a regulator that helps cells to adapt to poor nutritional 

conditions, is indeed a global regulator of gene expression in S. mutans (Lemos et al., 2008). 

Phenotypic studies revealed that the codY mutant had reduced capacities to form biofilms 

and was more sensitive to growth at low pH (Lemos et al., 2008).

The nutritional alarmone (p)ppGpp also appears to play an important role in orchestrating an 

appropriate response to multiple environmental and physiologic inputs that S. mutans 
encounters in the oral cavity (Fig. 3). When limited for essential amino acids, bacteria 

accumulate (p)ppGpp by enzymatic phosphorylation of GDP and GTP, resulting in down-

regulation of genes for macromolecular biosynthesis and up-regulation of genes for amino 

acid biosynthesis and stress tolerance. In Gram-positive bacteria (GPB), RelA is a bi-

functional enzyme with potent (p)ppGpp-synthetic and -degradative activities. In S. mutans, 

RelA was shown to play major roles in the regulation of phenotypic traits that are required 

for establishment, persistence and survival (Lemos et al., 2004; Nascimento et al., 2008), 

further supporting an overlap between circuits that govern nutrient starvation, general stress 

tolerance and biofilm fomation. Until recently, RelA was considered the sole enzyme 

responsible for synthesis and degradation of (p)ppGpp in Gram-positive bacteria. However, 

our group recently identified two novel enzymes, designated RelP and RelQ, with (p)ppGpp-
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synthase activities in S. mutans that could be found in a number of related GPB (Lemos et 
al., 2007a). A relAPQ triple mutant was auxotrophic for the branched-chain amino acids 

(BCAA) leucine and valine, but not isoleucine, a phenotype that was directly related to 

CodY-dependent repression of genes involved in the synthesis of BCAA (Lemos et al., 
2008). As mentioned above, RelP is co-transcribed with, and apparently regulated by, the 

RelRS TCS (Lemos et al., 2007a) suggesting that S. mutans may use environmental signals 

to optimize cell growth and survival in a manner that allows the organism to balance growth 

during dietary intake by the host with the capacity to rapidly mount an adaptive response 

during fasting periods. Consistent with the role of (p)ppGpp in bacteria, homologues of 

RelRS in S. pyogenes, designated SptRS, were shown to be critical for this bacterium to 

survive in saliva (Shelburne et al., 2005).

Concluding Remarks

Genomic and proteomic studies have enabled researchers to make rapid progress on the 

identification of genes, proteins and pathways that are associated with stress tolerance in S. 
mutans. Because there is a strong overlap between stress tolerance and biofilm development 

pathways, some of these gene products are attractive targets for the development of new 

anti-caries therapies (Matsushita & Janda, 2002). In particular, strategies that short-circuit 

regulatory pathways used by S. mutans to sense and respond to environmental signals may 

have a potent capacity to disrupt cariogenic biofilms.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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