PLOS

OPEN 8 ACCESS Freely available online

Integrating Computational Biology and Forward
Genetics in Drosophila

Stein Aerts"2?, Sven Vilain"'>3®, Shu Hu"%3?, Leon-Charles Tranchevent*®, Roland Barriot?”, Jiekun
Yan'?, Yves Moreau®, Bassem A. Hassan"*3*, Xiao-Jiang Quan'?®

1 Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium, 2 Department of Human
Genetics, Katholieke Universiteit Leuven School of Medicine, Leuven, Belgium, 3 Doctoral Program in Molecular and Developmental Genetics, Katholieke Universiteit
Leuven School of Medicine, Leuven, Belgium, 4 Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

Genetic screens are powerful methods for the discovery of gene-phenotype associations. However, a systems biology
approach to genetics must leverage the massive amount of “omics” data to enhance the power and speed of functional
gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for
their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide
computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To
discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human
candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-
scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and
RNAI collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction
network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten
receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for
functional prioritization in Drosophila, called Enpeavour-HicHFLy, and the Atonal network, are publicly available resources. A
systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly
enhances the process of gene function and gene-gene association discovery.
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Introduction Clearly, the power of genetic approaches is that they produce -
by definition - data that is directly relevant in a living system.
Genetic screens, either for specific phenotypes or for modifiers of
gene function, are thus a valuable source of large-scale interaction

data. However, the main disadvantage of large-scale genetic

The demand by systems biology for bona fide, in vivo validated,
biochemical interaction data and high quality functional annota-
tions is much higher than the supply that geneticists are able to

provide, principally because genetic approaches mainly focus on
generating data on a gene-by-gene basis. On the other hand,
computational predictions of gene function alone remain far from
being accurate enough to be considered high-quality biological
data. Integrated solutions, that combine the advantages of several
approaches, should in theory provide both fast and physiologically
relevant genetic data, while simultaneously increasing our
understanding of biological processes. Genetic interactions in
model organisms constitute a potentially invaluable source of in
viwo Interaction data for systems biology provided that throughput
and speed can be increased. Currently, the number of known
genetic interactions remains much smaller than the number of
annotated physical interactions. For example, the BioGRID [1]
database currently contains approximately 53,000 genetic inter-
actions compared to almost 100,000 physical interactions.
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screens is that they are costly, labor intensive, and time consuming.
Turning ¢ viwo genetic screens into a staple of systems biology by
making them easier and faster without compromising their
accuracy would therefore represent a major advance.

In the bioinformatics community, process- or disease-related
genes are, as of recently, being computationally predicted by
taking advantage of the large amount of available sequence,
function, annotation, and interaction data [2—13]. However to our
knowledge, none of these methods have been used in combination
with large-scale genetic experiments. Therefore, it remains unclear
to what extent genome-wide, or even large-scale, computational
predictions of gene-gene or gene-pathway associations, are
biologically meaningful. Carrying out such screens on a large
scale is difficult in human or mouse genetics, but the availability of
genetic tools in Drosophila melanogaster together with collections of
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Author Summary

Genome sequencing and annotation, combined with
large-scale molecular experiments to query gene expres-
sion and molecular interactions, collectively known as
Systems Biology, have resulted in an enormous wealth in
biological databases. Yet, it remains a daunting task to use
these data to decipher the rules that govern biological
systems. One of the most trusted approaches in biology is
genetic analysis because of its emphasis on gene function
in living organisms. Genetics, however, proceeds slowly
and unravels small-scale interactions. Turning genetics into
an effective tool of Systems Biology requires harnessing
the large-scale molecular data for the design and
execution of genetic screens. In this work, we test the
idea of exploiting a computational approach known as
gene prioritization to pre-rank genes for the likelihood of
their involvement in a process of interest. By carrying out a
gene prioritization—supported genetic screen, we greatly
enhance the speed and output of in vivo genetic screens
without compromising their sensitivity. These results mean
that future genetic screens can be custom-catered for any
process of interest and carried out with a speed and
efficiency that is comparable to other large-scale molecular
experiments. We refer to this combined approach as
Systems Genetics.

deficiency lines, mutants, and insertion lines, makes it an ideal
model organism to investigate the concept of integrating genetic
screens with gene prioritization methods.

Here, we integrate genetics and computational biology to identify
genetic interactions underlying neural development in the Drosophila
Peripheral Nervous System (PNS), a well-established model for
neurogenesis. Proneural genes encoding proteins of the basic-helix-
loop-helix (b HLH) super-family of transcription factors are essential
for the initiation of neuronal lineage development in all species [14—
18]. They act by forming heterodimers with the widely expressed
bHLH E-proteins to bind a DNA motif called the E-box [19] and
regulate the transcription of target genes. The highly conserved
members of the Atonal (Ato) family are one example of proneural
genes whose activity is required for the development of multiple
lineages in vertebrates and invertebrates [14,20-22]. Despite a solid
understanding of when and where afo-like genes are required in the
Drosophila PNS and how they interact with Notch signaling to select
neural precursor cells (NPCs), the mechanisms that mediate their
activity within NPCs and their specificity in inducing neuronal
differentiation remain largely obscure.

To identify genes involved in ato mediated neural development
we propose a strategy for functional gene prioritization in
Drosophila called ENpDEAVOUR-HIGHFLY that uses the same data
fusion method and user interface as the human gene prioritization
method ENDEAVOUR [3,23]. We identify 18 genes that interact with
ato in two different contexts, including 2 previously uncharacter-
ized genes, and use them to predict a core Ato interaction network.
Furthermore, to broaden our strategy to other developmental
processes, we prioritize the entire Drosophila genome for each of ten
canonical biological pathways and generate a freely available
database of candidate members or interactors for each pathway.

Results

Identifying Modifier Loci of atonal-Induced Neurogenesis
in the Drosophila PNS

Three amino-acids within the basic domain of the first helix have
been shown to mediate the specificity of ato function [24], and the
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same motif enables specific transcriptional activation of the nicotinic
acetylcholine receptor beta-3 subunit by the afo orthologue Athb
[25]. Substituting the same amino acids in the Ato-related mouse
proneural protein Neurogenin 1 (Ngnl) for Ato group-specific
residues (Ngn"**°) allows Ngn1 to induce neurogenesis in Drosophila.
This induction mimics that caused by Ato itself and depends on the
fly E-protein Daughterless (Da) and the proneural co-factor
Senseless (Sens). Also, like endogenous proneural activity, it is
antagonized by the Notch signaling pathway. Expression of the
“Atonalized” form of mouse Ngnl, NgnbATO (Figure 1A) under the
control of dpp-Gal4 induces an average of ~30 ectopic sensory
bristles on the adult wing vein (n=30; Figure 1B, C). This is in
contrast to an average of only ~7 bristles induced by Ngnl itself
(n=26; p<<0.001), but is similar to the number induced by Ato
(n=26, n.s.; Figure 1C). However, unlike Ato, Ngn"*T© induces
significantly less lethality and many fewer wing deformities making
it much easier to use in a large scale, quantitative genetic screen. In
addition, just like for Ato, removal of one copy of sens reduces the
number of Ngn"*T®-induced bristles by 55.6% (Figure 1C). In
order to bring the screen to a dosage critical value, a heterozygous
sens mutant was introduced into the background of UAS-:Ngn™'7?;
dpp-Gal4. The number of ectopic bristles with this system provides a
sensitized and quantitative read out in which to screen for modifiers
of Ato function.

To test the feasibility of isolating dominant modifiers of the
number of ectopic bristles, we crossed UAS:Ngn"™/ Cyossens,dpp-
Gal4/ TM6e, flies to da or Notch mutant flies. We find that removal
of a single copy of da almost completely suppressed NgnbATO
induced bristle formation (average of 0.7+0.9 bristles; n=27,
p<<0.001), while removal of one copy of Notch strongly enhanced
the phenotype (average of 43.5%4.1 bristles; n=23, p=0.002;
Figure 1C). All together, these data suggest that the assay is both
robust and sensitive and should enable the identification of specific
quantitative modifiers involved in afo-dependent neurogenesis in
the Drosophila PNS.

Following this strategy, a deficiency screen of the second and the
third chromosomes for modifiers of Ngn®™ misexpression was
performed. The deficiency kit is a collection of fly stocks that each
carries a deficiency, or deletion, chromosome uncovering multiple
genes. The different deficiencies encompass most of the chromo-
some and deficiency screening is an established and rapid assay to
identify chromosomal regions with enhancer and suppressor loci
for a given phenotype or pathway [26]. To identify chromosomal
loci that influence ato-induced neural development, 180 deficiency
fly lines were crossed to UAS:Ngn" / Cyo;sens,dpp-Gal4/ TM6e, flies.
Loci were considered positive if they altered the number of ectopic
bristles on the adult wing vein by more than 30% compared to the
number of bristles induced in sibling control flies, as well as in wild
type Canton S flies, and if the change in bristle number was
strongly statistically significant (p<<0.01). Following these stringent
criteria, 17 positive regions on chromosome 2 and 14 positive
regions on chromosome 3 were identified. Since induction of
ectopic bristles is a common property of all proneural genes, the
identified loci might be involved in both achaete-scute and ato
dependent neurogenesis. In order to identify Ato-specific loci, the
individual candidate deletion stocks were tested with flies
expressing UAS::ato, UAS:ngnl, and UAS::sc, respectively, under
the control of dpp-Gal4. The loci which modified Ato misexpres-
sion, but not that of Sc or Ngnl were considered to be Ato-specific
loci. Of the 31 loci identified in the primary screen, only one failed
to interact with any of the genes in the secondary screen. We find
that 15 of the 31 loci interact with both ato and at least one other
proneural gene, while 2 loci interact only with ngn/ and 1 locus
interacts only with sens (data not shown). The remaining 12 loci (6
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Figure 1. Overexpression of Ngn in the sens mutant background provides a robust and sensitive phenotype for screening of ato
dependent enhancers and suppressors. (A) Amino Acid sequence of the basic domain of Ngn (green) and Ato (red). The functionally critical
amino acids are shown in separate colors. (B) Bristle phenotype on the third wing vein induced by Ngn®*®° driven by dpp-Gal4. (C) Quantitative assay
of ectopic bristle formation induced by Ngn®®'° in wild type, sens/+, da/+;sens/+ and N/+; sens/+ backgrounds. Ato and Ngn are shown as positive and
negative controls, respectively. Removing one copy of senseless reduces the amount of ectopic bristles. Removing one copy of da in a sens/+
background results in a suppression of the phenotype, whereas removing one copy of N results in an enhancement of the phenotype. (D) Cytological
position of the deficiency regions and amount of genes found within each atonal positive deficiency region on chromosome 2 and chromosome 3.
doi:10.1371/journal.pgen.1000351.g001

64
genes

bato

on chromosome 2 and 6 on chromosome 3) interact specifically
with ato. Examining the breakpoints of the overlapping deletions
uncovering these 12 loci shows that they harbor 1056 annotated
genes (Figure 1D and Table S1). Each of these loci is expected to
harbor one or more ato-interacting genes.

@ PLoS Genetics | www.plosgenetics.org

The identification of the individual modifier genes from these
regions is similar to the problem in human genetics where for a
given human phenotype and its underlying chromosomal locus,
identified by cytogenetic studies or linkage mapping for example,
the individual disease-causing gene(s) need(s) to be identified.
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Besides directly providing interaction candidates, the twelve
positive regions resulting from the deficiency screen provide an
excellent opportunity to test the principle of gene prioritization on
a large scale and in an unbiased setup. First we present a redesign
of an existing gene prioritization approach that is specifically tuned
towards the Drosophila genome, and then we use it to select the
most promising candidates from the 1056 genes within the twelve
positive regions.

Enpeavour-HigHFLY: A Tool to Prioritize Drosophila Genes

through Genomic Data Fusion

To prioritize Drosophila genes we upgraded the existing
ENDEAVOUR tool for gene prioritization [3,23] by including
Drosophila data sources (Table 1 and Materials and Methods) and
we name this version ENDEAVOUR-HIGHFLY, or HiGHFLY for short.
To test the performance of each individual Drosophila data source
we carried out leave-one-out cross-validations (LOOCV; see
Experimental Procedures) on several gene sets. Each set contains
genes that are “similar” to each other for different reasons, for
example genes with similar expression patterns or genes from the
same pathway. We tested whether HiGHFLY could identify the
correct members of each set by leaving out one gene at a time and
calculating the similarity between the left-out gene and the rest of
the set. We found that HIGHFLY ranks highly the left-out genes
when at least one data source holds the information that this gene
is related to the remainder of the gene set (for example, the
expression data source is informative for the expression-related
gene set) (Figure 2). Importantly, regardless of which particular
data sources show the strongest performances, the performance of
the combined or fused ranking (last column in Figure 2) is highly
robust for all sets, it is not influenced by non-informative data
sources, and it is almost always greater than 90% compared to a
performance of ~50% for randomly assembled sets of genes
(Figure 2). These results validate the technical aspects of the
implementation and suggest that HIiGHFLY performs robust
prioritizations on Drosophila data sources.

Table 1. HicHFLy data sources.

Systems Genetics in Drosophila

Next, we investigated whether HIGHFLY would be capable of
finding genes that interact m vivo with afo. A training set, called
TRAIN_Atol was assembled with the following genes: ato, Brd, rho,
Takr86C, pnt, dpp, Egfr, da, wg, sens, chn, and sca. Because different
sizes and compositions of training sets are possible, we tested the
suitability of this training set for ato-related gene prioritization, by
performing two tests. First, we assessed the content of some of the
trained submodels. The trained GO submodel for this set contains
“peripheral nervous system development”, “cell fate specifica-
tion”, “eye morphogenesis”, “‘sensory organ development”, etc. as
highly over-represented terms (p value<<10™°%). The Text
submodel contains stemmed terms like “cell fate”, “notch”,
“egfr”, “disc”. The InterPro submodel has no highly over-
represented domains, but “Basic helix-loop-helix dimerization
region bHLH” is marginally over-represented (corrected p-
value =0.07). Secondly, we tested the homogeneity of TRAI-
N_Atol, by subjecting it to LOOCV and obtained an AUC
performance of 98.5%, suggesting that TRAIN_Atol is a coherent
and internally consistent training set. To test the possibility of
obtaining biologically meaningful prioritizations, we performed a
pilot test by prioritizing the right arm of chromosome 3 (chr3R)
using TRAIN_Atol and then divided all the genes on the list into
three groups: the top 1/3, the middle 1/3, and the bottom 1/3.
From each group the top 30 genes for which stocks with mutant
alleles are available from the public stock centers were examined
for their modification of ato’s proneural activity, using the same
bristle induction assay described above. Four positive genes were
found in the top group (m, Antp, gro, and pros), none in the middle
group, and none in the bottom group (Table 2 and Table S2).
Although the power of this preliminary test is greatly limited due
to the relatively small number of genes tested (90) and the
variability of available alleles, we found these results sufficiently
encouraging to proceed with HIGHFLY prioritizations of all twelve
modifier loci found in the deficiency screen. However, to further
evaluate HIGHFLY, we intentionally chose a less stringent threshold
of further validating the top 30% of ranked genes so as to compare

Data type Data source

Training

Scoring

Functional annotation Gene Ontology [27]

PubMed abstract profiles

SwissProt keywords [43]
KEGG [44]

Gene expression Life cycle of Drosophila microarray

data [39]

Tissue-specific gene expression in
Drosophila larvae [40]

In situ expression [45]

GO term over-representation

Text-mining using gene-reference relations
from FlyBase; average term weight vector

Term over-representation
Pathway over-representation

Collection of all the expression profiles of
the training genes

Collection of all the expression profiles of
the training genes

FBbt term over-representation

Fisher's omnibus

Cosine similarity

Fisher's omnibus
Fisher's omnibus

Average of 50% best Pearson
correlation

Average of 50% best Pearson
correlation

Fisher's omnibus

Protein sequence InterPro [43] Domain over-representation Fisher's omnibus
BLAST [46] Ad hoc BLAST database of training genes Blast test seq. to ad hoc db; rank by e-
prot. seq. value
Allele phenotypes FlyBase records “phenotype manifest FBbt term over-representation Fisher's omnibus
in” [27]
Genetic interactions and BioGRID [1] List of training genes and all their Overlap between the test gene plus its
protein-protein interactions interactors interactors and the training list
STRING [29] Idem BioGRID Idem BioGRID

HicHrLy training and scoring strategies for each data source.
doi:10.1371/journal.pgen.1000351.t001
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Figure 2. HicHFLY cross-validation results. The performance values, measured as Area Under the ROC Curve (AUC), obtained for all individual
data sources (on the x-axis) are shown for several validation sets (each validation set is plotted in a different color; see legend). The AUC values for the
overall prioritization, obtained by integrating all individual rankings, are also shown. Go: Gene Ontology; Sw: SwissProt keywords; Ipr: InterPro protein
domains; Kegg: pathway database; Insitu: BDGP in situ hybridization data; Pheno: FlyBase mutant phenotypes; BioGrid: genetic and protein-protein
interactions; String: protein-protein associations from STRING; Arbeitman: microarray data [39]; White: microarray data [40]; Blast: sequence similarity;
Txt: Text-mining PubMed abstracts; Combined: or fused ranking by order statistics. Genes that are functionally related (e.g., same GO annotation or
co-occurrence in abstracts) are prioritized well with the GO and text submodels, but also with the STRING and BioGRID submodels. Similarly,
prioritization of genetically interacting genes works well with the BioGRID, STRING, GO and Text submodels. Genes that share similar microarray
expression profiles or similar in situ expression patterns are prioritized well with their respective submodels. Lastly, genes that share similar protein
domains are prioritized best by the InterPro and BLAST submodels.

doi:10.1371/journal.pgen.1000351.g002

sources (Table S3). For all genes that were ranked within the top
30%, a mutant stock, when available, was ordered from the public
stock centers. Each mutant was then crossed to the sensitized tester
fly stock (uas:ngn"™ / Cyosens,dpp-Gal4/ TM6c) and the bristles at the

the rankings of positive and negative genes with a sufficiently large
sample size at the end of the screen.

Identification of Novel ato Interacting Genes through the
Integration of Gene Prioritization and Functional Genetic
Modifier Assays

To identify candidate genes within the positive regions, all genes

in each of the twelve positive regions were prioritized separately
using TRAIN_ATO] as training set and all 12 HicHFLY data

anterior-posterior margin (where dpp-Gal?4 1s expressed) were
counted and compared to the number of bristles observed in the
control flies as described above. For twelve genes, namely toc, fillz,
Sbb, fj, mus209, zip, shg, Egfr, dom, smg, cas and ppan, the number of
bristles was significantly lower or higher (p<<0.01) than in the
control flies (Table 2, bottom panel). Each of these mutants were

@ PLoS Genetics | www.plosgenetics.org 5

Table 2. Validation of the HicHFLy screen results.

Rank on Rank ratio on Rank on Rank ratio on
Name Flybase ID Chromosome test region test region chromosome chromosome Phenotype® P-Value
Antp FBgn0000095 chr3 44/3341 1.31% 67/6027 1.10% —31.40% <0.001
gro FBgn0001139 chr3 58/3341 1.74% 84/6027 1.40% —69.90% <0.001
pros FBgn0004595 chr3 33/3341 0.99% 48/6027 0.80% dead
m FBgn0003263 chr3 13/3341 0.39% 21/6027 0.40% 44.20% <0.001
cas FBgn0004878 chr3 1/103 0.97% 123/6027 2.00% —33.60% <0.001
dom FBgn0020306 chr2 12/287 4.18% 413/5252 7.90% —31.40% <0.002
Egfr FBgn0003731 chr2 1/287 0.35% 2/5252 0.03% —51.30% <0.001
fi FBgn0000658 chr2 3/118 2.54% 63/5252 1.20% —50.00% <0.001
lilli FBgn0041111 chr2 3/64 4.69% 245/5252 4.70% —35.40% <0.002
mus209 FBgn0005655 chr2 2/44 4.55% 484/5252 9.20% —36.70% <0.005
ppan FBgn0010770 chr3 3/58 5.17% 642/6027 10.70% —33.60% <0.002
sbb FBgn0010575 chr2 2/118 1.69% 207/5252 3.90% —33.60% <0.001
shg FBgn0003391 chr2 2/287 0.70% 30/5252 0.60% —66.40% <0.001
smg FBgn0016070 chr3 3/18 16.67% 279/6027 4.60% —100% <0.001
toc FBgn0015600 chr2 1/64 1.56% 834/5252 15.90% —33.60% <0.001
zip FBgn0005634 chr2 1/51 1.96% 123/5252 2.30% —38.10% <0.001
Validation of HicHrLy on prioritized 3R chromosome and on different prioritized deficiency regions.
*The average percentage change of the number of ectopic bristles, compared to wild type controls.
doi:10.1371/journal.pgen.1000351.t002
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then tested against uas::sc; uas:ngnl, and wuas::ato under the control
of dpp-Gal4 to check for the specificity of ato interaction. All of the
genes modified only the afo gain of function phenotype (data not
shown). We note that although mutants of genes that ranked in the
top 30% of each locus were tested, 11 of the 12 ranked in the top
6% of their locus (Table 2 and Table S3), suggesting that HicHILy
prioritizations enrich strongly for positive interactions. Similar
prioritizations were obtained by using a different high-quality
training set (LOOCV AUC =99.5%), assembled by selecting all
18 known interactors of afo from BioGRID (data not shown). In
contrast when the same 12 genes were prioritized using 100
randomly assembled training sets, the median rank ratio was 0.247
compared to 0.02 for the ato training set (Figure 3).

An alternative analysis, instead of prioritizing each deficiency
region separately, is to pool all candidate genes from the positive
deficiency regions and prioritize this set in one analysis. We
performed such a prioritization as post-analysis and found all 12
positives ranked in the top 10% (Table S1 and Figure S1). An
examination of the contribution of individual data sources to the
high rankings of the positive genes shows that for all positives, their
high ranking is caused by high rankings for several data sources,
rather than a single high ranking for one of the data sources
(Figure S1), which supports our initial assumption of the added
value of data integration for gene prioritization. In a second post-
analysis, by comparing HIGHFLY with existing online tools such as
FlyBase [27], UCSC Gene Sorter [28], and STRING [29], we
found that the use of a training set of genes related to ato is more
favorable than a single gene query; and also that a gene ranking is
more favorable for gene identification than a gene filtering (e.g.,
using a selection of Gene Ontology terms or a selection of FlyBase
expression terms) (Text S1).

Functional inspection of the 16 positive genes (12 from the
deficiency screen +4 from the pilot screen of 90 genes on
chromosome 3R) by Gene Ontology statistics [30] revealed that
this gene set is significantly enriched for developmental processes
that require ato such as eye development and regulation of

Systems Genetics in Drosophila

transcription (Table 3). Finally, we compared the phenotypic
distribution of the effects of the modifier genes identified in our
screen with the distribution documented for saturating forward
genetic screens and cellular siRNA screens [31]. We find that
despite the relatively small number of genes that need to be tested
in a HigHFLY screen, the distribution of phenotypes mirrors that
obtained in genome wide forward and reverse genetics screens
(Figure 4). These data further support the power and accuracy of
the integration of computational biology and genetics.

ato acts as a proneural gene for two different types of founder
cells. The first is a subset of sense organ precursor (SOP) of the
body wall and appendages and the second is the R8 founder cell of
the retina. The major difference between the SOP and the R8 is
that the SOP undergoes cell division to generate the sensory
organ, whereas the R8 cell terminally differentiates. However,
both cells share the property of recruiting neighboring cells into
the afo-dependent fate; a property unique to afo, not shared by
other proneural genes. We assessed whether genes identified in
one context, also operate in the other. To this end, we tested the
relationship between afo and its putative interactors in the
developing fly retina, where ato function is well described [32].
In the retina, ato specifies the first photoreceptor, or R cell, the R8
(Figure S2A, B). The R8 then releases an ato-dependent EGF
signal that organizes the rest of the retinal field and specifies the
R1-R7. Loss of ato function in the retina results in the complete
failure of retinal specification [33]. Expression of an ato-RNA:
construct (A kind gift of A.P. Jarman) in the eye in afo heterozygous
flies (uas::ato-RNAGh-Gal4, ato’; see Materials and Methods) reduces
R8 specification and consequently the recruitment of other R cells
in a dose dependent fashion (Figure S2C,D). One copy of ato-RNA:
produces a smaller eye with approximately half the normal
number of ommatidia (Figure 5A,B). Mutants for the 16 genes
identified in the screen were crossed to the alo-RNA: flies and
scored for their ability to dominantly modify the ato RNAi
phenotype. Ten of the 16 tested genes, namely gro, m, EGFR, cas,
ppan, toc, sbb, fj, shg and dom dominantly enhanced the ato-RNA:
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i + -4 [ F--——-—- Jos . R
dom + - [ b - : ¢
smg + + [ A -
toc 4 # F-————- 4+ o+ g
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Gene rank

Figure 3. Ranking specificity of the ato interacting genes in the bristle assay. The observed rank of a positive gene, using the Atonal specific
training set is compared to its rank obtained with a random training set (100 times). Shown is a boxplot of the 100 rankings of each positive gene
using random training sets (y axis). The green asterisk represents the rank of the positive for the Atonal training set.

doi:10.1371/journal.pgen.1000351.g003
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phenotype, with nine showing further reductions in eye size to
approximately 250 ommatidia (Figure 5C, D). An 11" gene, pros,
was semi lethal. The remaining five genes, namely Antp, smg, Lil,
mus209, and zip, did not appear to alter the ato-RNA: induced small
eye size.

The data thus far suggest that at least 10 of the 16 genes we
identified in the sensory bristle screen also interact with afo during
retina development. Some of these genes such as pros are known

Table 3. Enrichment of GO-terms among the positive genes of the screen.

GO ID Genes Group count Total count P value GO term

GO0:0007444 rn; pros; lilli; fj; ppan; EGFR 6 259 0.000214 imaginal disc development
G0:0046530 pros; lilli; sbb; EGFR 4 72 0.000255 photoreceptor cell differentiation
GO0:0016477 zip; shg; dom; sbb; EGFR 5 160 0.000276 cell migration

GO0:0000904 pros; lilli; shg; sbb; EGFR 5 162 0.000284 cell differentiation

G0:0003700 rn; cas; pros; lilli; Antp; sbb 6 314 0.000447 transcription factor activity
G0:0007417 cas; pros; shg; EGFR 4 95 0.000622 central nervous system development
G0:0007420 cas; shg; EGFR 3 34 0.000693 brain development

G0:0007560 rn; pros; lilli; fj; EGFR 5 210 0.000764 imaginal disc morphogenesis
G0:0035218 rn; fj; EGFR 3 37 0.000811 leg disc development

G0:0001745 pros; lilli; fj; EGFR 4 108 0.000811 compound eye morphogenesis
GO:0007164 fj; zip; EGFR 3 38 0.000811 establishment of tissue polarity
G0:0000278 zip; ppan; toc; mus209; EGFR 5 223 0.000811 mitotic cell cycle

Selection of enriched GO-terms across the 16 positive genes. Full results table is available at http://med.kuleuven.be/cme-mg/Ing/HighFly. All genes from chr2 and chr3
are used as background set.

doi:10.1371/journal.pgen.1000351.t003

for their role in neurogenesis [34], while the EGF receptor is well
known for its close interactions with ato [35]. However, most of the
genes we identified as genetic interactors of ato have not, to our
knowledge, been previously shown to play a role in ato-dependent
neurogenesis. Next we asked if these genes might be co-expressed
with ato in the various PNS anlagen that derive from afo expressing
precursors. We were able to obtain LacZ enhancer trap lines from
stock centers for 10 of the 16 interacting genes (dom, fj, lillr, mus209,

50

© N
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Average number of bristles
h*]
o

10

300

Assayed fly crosses

Figure 4. Distribution of the phenotypic range of the average number of bristles per genotype (n>10) plotted for all ~600 assayed
genotypes (y-axis). The shape of the curve conforms to the expectations for quantitative screens [31].

doi:10.1371/journal.pgen.1000351.9g004
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Figure 5. Effect of modifiers on eye size in atonal sensitized eyes. (A) Wild type eye with around 800 ommatidia. (B) effect from ato-RNAi on
amount of ommatidia resulting in a population of flies with about 400 ommatidia per eye. (C) enhancement of ato-RNAi phenotype resulting in a
population with smaller eyes with around 250 ommatidia per eye. (D) Overview of phenotypes observed when modifiers were crossed with atoRNAi
flies, removal of one copy of the modifier results in a larger population of flies with smaller eyes for 9 of the previously identified modifiers. The other
5 modifiers did not show an alteration in eye phenotype, compared to the ato-RNAi phenotype in controls.

doi:10.1371/journal.pgen.1000351.g005

pros, m, sbb, shg, toc and zip) to examine their expression patterns in
the third instar larval (L3) imaginal discs. In the eye, antennal, leg
and wing L3 discs, Ato marks the progenitor pools and the very
early precursor cells of specific neuronal lineages. Senseless then
marks the precursor cells during and after Ato expression. One
enhancer trap, m, did not show any obvious expression
relationship to ato. Two of the 10 genes, mus209 (fly PCNA) and
sbb are generally expressed. An additional two lines, foc and zip
showed expression in the posterior part of the eye disc (Figure
S3A), suggesting a later function than that of ato. Finally, other five
of the 10 tested enhancer traps showed a clear expression
relationship with Ato (Figure S3). We observed strong lacZ
expression in the L3 discs in Ato-expressing and Ato-dependent
cells in the eye disc (f, &lli, shg, pros), in the antennal Johnston organ
precursor cells (dom, shg, pros), in the chordotonal organ precursor
cells of the wing and leg imaginal disc (dom, shg, pros) (Figure S3 and
data not shown). It should be noted that enhancer trap lines might
reflect only part of the total expression pattern of the trapped gene.

Identification of Uncharacterised ato Interacting Genes
The data above support the feasibility of rapidly and accurately
identifying gene function through the fusion of i silico gene
prioritization and i viwo genetic screens. One issue that faces all
gene prioritization approaches is an expected bias towards genes
with at a large amount of pre-existing information in several

@ PLoS Genetics | www.plosgenetics.org

databases. Although this is still valuable in assigning novel
functions to known genes, we reasoned that it would be interesting
to test the performance of HIGHFLY in the prioritization of genes
about which there is little explicit information. Genes with limited
annotations can potentially be ranked high due to data sources
that are independent of existing knowledge, such as sequence
similarity, protein domains, gene expression data, or protein-
protein interaction data from high-throughput experiments.
Indeed, 30 out of 96 genes, known only by their CG numbers,
ranked in the top 10% of the ato-specific deletion loci identified in
the initial bristle screen (Table S4). The recent availability of a
genome-wide i vivo Drosophila RNAA library [36] allowed us to test
these genes for their interaction with ato.

When no off-target effects were predicted, available RNAi lines
were ordered and crossed to the ato-RNA: flies driven by the A-Gal4
driver in an afo heterozygous background (uas::ato-RNA#h-Gal4, ato”),
as well as two different control lines; -Gal4, ato’ and h-Gal4 alone.
To avoid potential artifacts resulting from the RNAi approach, we
set relatively stringent criteria: we searched for genes that show
synthetic lethality specifically and only in combination with alo-
RNAi, but show no phenotype under the two control conditions.

We were able to obtain a total of 36 RNAIi lines for 24
uncharacterized genes ranking in the top 10% of positive
deficiency regions. Eleven RNAi lines were lethal under all
conditions and could not be evaluated further. The 25 remaining
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RNAI lines allowed us to perform knockdown of 17 genes. Of
these, 2 genes (CGI1024, CGI218)) caused lethality only in
combination with afoRNAi, but not under control conditions
(Table 4). As a further confirmation for the specificity of these
interactions, we tested 51 RNAI lines for the bottom 10% ranking
genes in each deficiency. None of these lines showed specific
synthetic lethality in combination with atoRNA: (data not shown).
Thus, the combination of HiGHFLY prioritization, the RINAi
library and genetic screening allows the rapid functional
identification of previously uncharacterized genes.

An Atonal Interaction Network

The combination of forward and reverse genetics tools and
computational biology allowed the identification of 18, mostly
novel, genetic interactions with the proneural gene ato. We sought to
determine if the identified positive genes are functionally associated
with each other, with afo, and with any of the other training genes
that were used originally to identify these genes. To this end we used
the STRING [29] protein-protein association predictions at 0.8
confidence level and determined the optimally connected sub-
network that can be formed among the 18 positive genes, via
maximally two other proteins (see Materials and Methods). We find
that a network can be constructed that includes 12 of the 16 known
genes (data not shown). As expected, the 2 unknown genes play no
role in this analysis because of the lack of STRING data at this high
confidence level. This analysis discovers Ato itself as member of the
best network that connects the positive genes. We found that the
maximal confidence level at which Ato is still part of the network is
0.842, and therefore used this stringency for further analyses. The
network formed by the 16 known genes at this confidence level
(Figure 6A) contains 84 nodes and 250 edges, and now includes 12
of the 16 positive genes and 6 training genes, including ato. Fgfr is
directly connected to ato; fj, Antp and gro are connected to ato via one
other protein; pros, m, shg, lilli are connected to ato via two other
proteins and cas, smg, zip, mus209 via three other proteins.

To determine the significance of finding a large interconnected
network, which includes ato, starting from the 16 positive known
genes, we generated 1000 random sets of 16 known genes.
Specifically, we used only genes with a name in FlyBase and at
least one GO biological process annotation. Only 29 of the 1000
networks contain afo and, on average, they contain 0.70
(S.D.=1.13) training genes, 7.83 nodes (S.D.=9.09), and 13.07
edges (S.D.=19.28). An example of such a network is shown in
Figure 6B. With a p-value of 0.029 to find Ato in the real network,
p<<0.001 to obtain 84 nodes, p<<0.001 to obtain 250 edges, and
p=0.001 to recover 6 of the 11 training genes, we conclude that
the positive genes we identified are strongly associated with each
other and with Ato and its known interactors.

A Database of Genome-Wide Gene Prioritizations in
Drosophila for Ten Canonical Signalling Pathways

A particular feature of the HIGHFLY tool is the speed of
prioritization. We wondered whether this computational efficiency

Systems Genetics in Drosophila

makes it possible to prioritize whole chromosomes or even the
entire genome. To this end we asked if it is possible to rank the 16
known genes identified in our screen on their respective
chromosomes, and if so, whether these rankings would be high.
Table 2 shows the chromosomal rankings of these genes. All
except one of the known genes rank within the top 10% of their
respective chromosome (Table 2).

These data suggest that it is possible to obtain strongly
meaningful gene prioritizations across large data sets. We sought
to illustrate the general applicability of fly gene prioritization and
simultaneously generate a second community-wide resource by
prioritizing the entire genome to identify genes that are related to,
or potentially involved in, either of ten signaling pathways, namely
Transforming Growth Factor beta (TGFP) receptor signaling
pathway (GO:0007179), Epidermal Growth Factor Receptor
(EGFR) signaling pathway (GO:0007173), Fibroblast Growth
Factor Receptor (FGFR) signaling pathway (GO:0008543), Notch
(N) signaling pathway (GO:0007219), Sevenless (Sev) signaling
pathway (GO:0045500), Smoothened/Hedgehog (Smo/H) signal-
ing  pathway (GO:0007224), Toll signaling pathway
(GO:0008063), Extracellular signal-Regulated Kinase (ERK;
G0:0007259), JAK-STAT (GO:00016055) and Wnt signaling
pathway (GO:0016055). To investigate the rankings in terms of
biological processes we calculated GO over-representations for
each top 100 ranked genes, excluding the training genes. We also
excluded genes that were ranked in the top 100 for more than two
pathways and GO-terms that were over-represented in more than
four pathways. We find that typical overrepresented functions are
cell adhesion and photoreceptor fate commitment for EGFR-
related genes; cell migration for FGFR; neuroblast fate determi-
nation and equator specification for Notch; defense response for
Toll; and ectoderm development for Wnt, suggesting that the
prioritizations are biologically meaningful. Finally, we compared
prioritizations for 4 of the 10 pathways- namely ERK, Wnt, Hh
and JAK-STAT- for overlap with published genome-wide siRNA
screens. We find significant overlap between the top 10% of the
genome as prioritized by HIGHFLY and the genes scored as
positives in these screens for 3 of these pathways (Figure 7). Only
the Hh pathway screen shows poor overlap with the prioritiza-
tions. Prioritizations and functional analyses, as well as the
HicHFLY software, are available at http://med.kuleuven.be/
cme-mg/Ing/HighFly.

Discussion

The molecular unraveling of biological processes in the post-
genome era i3 characterized by the use of high-throughput
experiments and the integration of prior knowledge (e.g., the use of
GO-statistics to select microarray generated gene clusters), and is
therefore supported and guided by bioinformatics. Genetic screens
in model organisms such as Drosophila melanogaster are also high-
throughput experiments, but they are yet to be aided by
computational techniques, as an integral part of the screen itself.
We sought to demonstrate the power of an integrated approach

Table 4. Synthetic lethal modifiers of ato-RNAi among the unknown genes.

Clone CG number Rank CG-RNAi+atoRNA ;hGal4, ato' CGRNAi+hGal4, ato’ CGRNAi+hGal4
18597 CG1024 7.7% Lethal No Effect No Effect
31685 CG1218 6.6% Lethal No Effect No Effect

Results of the phenotypes observed from RNAi screen.
doi:10.1371/journal.pgen.1000351.t004
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Figure 6. Protein-protein association subnetworks. The subgraphs are extracted from STRING connections with confidence score above 0.842,
and aim to connect as many seed genes as possible. Seed genes may be connected through maximally two edges from either side. (A) The 16
positive ‘known’ genes are used as seed genes to validate their potential relationship. The resulting network is significantly larger and more
interconnected than expected by chance and recovers Ato itself as member of the sub-network. (B) Example of a subgraph generated from a random
selection of seed genes that does recover Ato. Only 29 out of 1000 random networks recover Ato by chance. These networks are significantly smaller
than the network formed by the 16 genes from the screen. Green nodes are positive genes from our screen, while all other nodes are drawn from

STRING interaction data (square nodes were part of the training set).
doi:10.1371/journal.pgen.1000351.g006

that combines high-throughput @ silico and i wvivo genetic
approaches. This integration allowed us to quickly identify novel
genetic interactions during neural development in the fly PNS,
while significantly reducing the workload of the genetic screen.
First, a classical deficiency modifier screen is performed. Then,
instead of assaying all the genes located within the positive
deficiency regions, the best candidates are selected computation-
ally. This is done by integrating multiple heterogeneous genome-
scale data sources, both representing published knowledge (e.g.,
functional gene annotations or protein-protein interactions),
genome sequences, and experimental data (e.g., gene expression
data or phenotypes). As such, we were able to assign novel
functions for known genes whose involvement in afo-dependent
neural development was unknown, as well as describe functions for
uncharacterized genes.

A major advantage of genetic screens is that they are unbiased:
they can reveal a function for a previously unknown gene.
Although gene prioritization based on available data would have
been expected to affect this property of screens, our data indicate

@ PLoS Genetics | www.plosgenetics.org

that this is not necessarily the case. Even genes with very little
explicit information, and no known function could be identified
both as high ranking and as bone fide interactors i vivo In our
HiGHFLY supported screen. In addition, our data suggest that the
combination of HIGHFLY prioritizations and transgenic RNAI lines
can result in very rapid functional gene discovery.

The use of an integrative screening strategy combining
computational biology with medium or high-throughput screening
assays is likely to be applicable to a broad range of screening assays
(from wn vitro to in vive assays) beyond Drosophila genetics. Essentially
any assay designed around evaluating a given gene, and for which
whole-genome screening is outside the reach of the typical lab,
could benefit from strategies similar to ours. Even with more
extensive resources, it may be more productive (at equal time and
cost) to evaluate several prioritized screens than a single whole-
genome screen. Obviously, the strategy we propose is not
applicable in the case where extremely little is known about the
molecular basis of a phenotype (because of lack of a training set)
while a genetic screen would still be feasible. It is a clear research
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Figure 7. Comparison of whole-genome prioritizations for signaling pathways with results from RNAi screens obtained from http://
www.flyrnai.org. For each of the four prioritizations the training set is based on Gene Ontology annotation for the respective pathway, namely
G0:0000165 (MAPK) for the ERK pathway (A), GO:0007259 for JAK-STAT (B), GO:00016055 for Wnt (C), and GO:0007224 (smoothened) for hh (D). The
green curve represents the cumulative recovery of positive genes when moving down the top 10% of the ranked gene list, using the full training set.
The orange curve is similar to the green curve, but now excluding the known GO-annotated positives from the RNAi screen from the training set. The
blue control curve is the average recovery curve of the positives, using 100 random training sets of known GO-annotated genes. The grey area
represents a 95% confidence interval above the mean and the dotted curve represents two standard deviations above the mean, so that every point
above the dotted curve represents a significant (p<<0.05) enrichment of true positives. For three out of four, namely ERK, Wnt and JAK-STAT, a
significant enrichment of positives is found at nearly all thresholds in the top 10% of the genome.

doi:10.1371/journal.pgen.1000351.g007

challenge for computational biology to develop methods applica-
ble to such a situation.

A further advantage of our integrated systems genetics approach
is the combination of speed and accuracy of gene function
discovery. In this work we tested a total of 180 deletion lines, 220
mutants and 36 RNAI lines to identify 18 ato interacting genes,
representing a discovery rate of ~5%. It should be noted that the
220 mutants tested include 90 mutants examined only for the
purposes of testing the prioritizations as well as 78 mutants ranking
between 10% and 30% of their deletion regions. Our data clearly
indicate that testing genes ranked in the top 10% only will suffice
to discover the vast majority of sought after genes: 17 of the 18
genes identified (~94%) rank in the top 10% of their tested
regions. Thus, assuming all genes have available RNAi lines or
mutant alleles, testing only 96 genes, after the initial deficiency
screen, would have identified at least 17 afo interacting genes, a
discovery rate of almost 18%. In this regard we note that
ENDEAVOUR-based prioritizations appear to outperform existing
tools. We believe this to be due to three main properties namely
the use of a multi-gene training set, the integration of multiple data
sources, and the production of gene rankings.

@ PLoS Genetics | www.plosgenetics.org
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The genes we find to interact with afo reveal an interaction
network underlying early neural differentiation. Network analysis
reveals two important aspects of the screen. Although neither Ato
nor its known interactors were included in the query, the best
network found includes Ato and almost all of its known interactors.
In addition network analysis yields a number of interesting
msights. First, most of the 89 genes in this network are signaling
molecules and transcription factors belonging to the Notch, Wnt,
EGFR, Dpp and Hh pathways. These pathways are known to
interact with afo and our data suggest that the newly identified ato
interacting genes may be members of these pathways or may
implement the interactions between afo and these pathways.
Second, most of the genes tested for both bristle formation and
retinal development interact with ato in both assays. This suggests
that ato may work with a core group of genes to implement
context-specific neural fate decisions. One exception to this
appears to be genes acting in cell division (mus209, llli, zip) that,
not surprisingly, interact in the bristle assay, but not the R8 assay.
Third, we note that HIGHFLY was able to predict the interaction of
uncharacterized genes with afo, which network analysis alone,
would have not been able to predict.
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In summary, a systems genetics [37] approach not only
identifies novel functions for individual genes with great speed
and accuracy, but, as would be desirable in a systems biology
context, also uncovers the structure and functional attributes of the
network formed by these genes. Yet, the main advantage of
systems genetics over other systems biology approaches is that the
results are physiologically relevant by definition, because they are
discovered directly @ vivo.

The HiGHFLY tool can perform prioritizations on the entire fly
genome. We have done this for ten major signaling pathways, but
many other prioritizations are possible, depending on the interest
of the user. HIGHFLY and its prioritizations are public resources
that we hope will contribute to enhancing the speed and accuracy
of functional gene discovery in viwvo and establishing classical
genetics as a fundamental tool of systems biology.

Materials and Methods

Fly Strains and Genetics

All crosses were performed at 25°C, except for the atoRNA: eye
screen crosses which were performed at 28°C, on standard fly
food. Deficiency kits, Lacg enhancer trap flies and all mutant lines
were obtained from the Bloomington and Szeged stock centre.
The atoRNA: lines were kindly provided by Andrew Jarman, and
the RNAI lines for uncharacterized genes were obtained from the

Vienna Drosophila RNA1 Center (VDRC).

Immunohistochemistry

Third instar larval imaginal discs were dissected in 1x PBS.
Discs were fixed with 4% formaldehyde in 1x PBT for
15 minutes. Then, washed five times (15 min/T) in 1x PBT.
Blocking and antibody incubation were performed as described
[38]. The antibodies used were: sheep anti-ATO (1:250), rabbit
anti-GFP (1:1000), rat anti-Elav (1:100), guinea pig anti-SENS
(1:1000) mouse anti-Bgal (1:1000), rabbit anti-Bgal (1:1000).
Secondary antibodies were always used 1 in 500. Samples were
mounted in Vectashield mounting medium and detected using
confocal microscopy (BioRad 1024, Hercules, California, United
States and Leica DM-RXA, Wetzlar, Germany).

Genetic Screen

The fly strain w; UAS:ngnbato/CyO; sens, dpp-GAl4/TM6 was
used to set up crosses with deficiency lines. The number of the
ectopic bristles was used as a parameter to reflect the strength of
the proneural function of Ato in this context [24]. When a
deficiency region caused a significant change in the number of
ectopic bristles, the corresponding deficiency line was further
crossed to three fly lines UAS::ato; dpp-Gal4, UAS::ngn; dpp-Gal4 and
UAS::sc; dpp-Gal4 and the number of ectopic bristles was counted.
Deficiencies were considered ato specific when they altered the
amount of bristles generated by UAS::ato/cyo; dpp-Gal4/ TM6, and
not by UAS::ngn, dpp-Gal4/TM6 or UAS::sc, dpp-Gal4/TM6. Within
these deficiency regions, high-ranking mutant lines available in the
stock centre were ordered and crossed to w; uas::Ngnbato/ CyO; sens,
dpp-GAI4/TM6. If a mutant still caused a significant change in
bristle number, the corresponding gene interacts with Ato. The
positive genes were tested with flies expressing UAS::ato, UAS::ngnl
and UAS:sc respectively under dpp-Gal4 control to check for
specificity. All ectopic bristles were counted under stereomicro-
scope. For all statistic analysis, the sample number is n =10, and a
significant difference between two average values is defined as
p=0.01. The eye phenotype screen was performed by crossing w;
UAS::atoRNAi/ CyO; h-Gal4, alo’ / TM6C, which reduced the eye size
in 50% of the flies, with the mutant strains identified in the bristle
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screen. Positive genes for retinal modifiers of ato were mutants that
enhanced or suppressed the atoRNAi phenotype. RINAI strains
were crossed to h-Gal4; ato’ / TM6 and h-Gal4 as controls. Only the
one showing synthetic lethality specifically with w; UAS::atoRNAi/
CyO; h-Gald, ato’ / TM6C, but not with two controls was considered
as positive.

Gene Prioritization

The gene prioritization method [3,23] works as follows. First, a
set of training genes is defined to describe the particular process
under study. For each data source, the following data for the
training genes are assembled: (1) a gene’s function derived from
FlyBase GO annotation, textual information extracted from
PubMed abstracts, SwissProt keywords and KEGG pathway
membership; (2) a gene’s expression pattern derived from two
general Drosophila microarray data sets [39,40] and embryonic in situ
expression patterns from the Berkely Drosphila Genome Project
(BDGP); (3) a gene’s protein sequence from Ensembl and its protein
domains from InterPro; (4) described mutant phenotypes from
FlyBase; and (5) described genetic interactions or predicted protein-
protein associations from BioGRID and STRING. The applied
training and scoring strategies for each data source are described in
Table 1. For each gene in a “test set”” the similarity with a submodel
is calculated and the ranks according to individual submodel scores
are integrated using order statistics, yielding a g-value. The g-value
is transformed into a p-value according to fitted distributions,
depending on the number missing values. Finally, the test genes are
ranked according to this p-value.

Leave-One-Out Cross-Validation (LOOCV)

We assembled sets of genes involved in the same signaling
pathway, tested on eight pathways defined by GO; genes with
similar expression patterns using an expression cluster from
Arbeitman et al. [39] and a second cluster of all genes expressed
in Bolwig’s organ from FlyBase; genes with the same protein
domain, namely the bHLH domain; all genes that interact with
the same gene, tested on all interactors with Atonal from
BioGRID; and genes that are co-cited with a specific gene in
PubMed abstracts, namely genes cited with afo, extracted using
iHOP [41]. In LOOCYV, every gene from every validation set is, in
turn left out, and the ranking of the left-out gene within a set of 99
randomly selected genes is recorded. From all these rankings,
Receiver Operating Characteristic (ROC) curves are generated
and the area under this ROC curve is used as a measure of the
performance of each individual data source and of the integrated
prioritization.

Network Extraction

The aim of the network extraction is to obtain a subgraph that
connects the genes of interest (the seed genes). Network
connections were extracted from the STRING protein-protein
assocliations, using a minimum edge confidence (above 0.8). We
define the connecting nodes (the non-seed genes) in the subgraph
as the nodes that are on the shortest path(s) between two or more
seed genes. To identify those connecting nodes, a multiple sources
breadth-first search is performed, which is initialized with the seed
genes. During the search, the minimum distance to the seed genes
is recorded until seed genes are reachable from one another. Upon
completion, the final network is obtained by exploring the shortest
paths, starting from the seed genes, that have a maximum length
of 4 and that connect at least two seed genes. Hence, the extracted
network is made of one or more connected components and may
not include all the seed genes. The obtained networks were
visualized using Cytoscape [42].
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Supporting Information

Figure S1 Contributions of the HIGHFLY data sources to the
overall ranking. One HIGHFLY prioritization was performed on
all 1056 genes that are contained within the 12 positive ato-specific
deficiency regions. The first column shows the rank of the positive
genes for the overall ranking obtained by the fusion of all the
individual sources (columns 2-13). Grey squares represent missing
data for that particular gene and data source. The genes with no
or limited existing knowledge, such as CG1218 and CG1024 can
still be ranked high. CG1218 is ranked high because of similarities
with the training set through BioGRID (CG1218 interacts with
sine oculis), BLAST (CG1218 has sequence similarity with chn, E-
value 18.2) and Microarray_2 (similarities between CGG1218 and
the training set according to microarray gene expression data).
CG1024 has similarities with the training set through BLAST
(CG1024 has sequence similarity with senseless, E-value 0.54),
InterPro (CG1024 contains a Zinc finger motif, C2H2-type, like
senseless), and Swissprot (CG1024 contains the keyword “Zinc-
finger, DNA binding”).

Found at: do1:10.1371/journal.pgen.1000351.s001 (0.51 MB TIF)

Figure S2 Expression of ato-RNA: inhibits retinal differentiation.
Eye discs are oriented with posterior located to the left. A) Scheme
of ato dependant retinal induction using the formation of one
photoreceptor cluster as example, first Ato is expressed in a stripe
of cells, than, due to lateral inhibition ato expressing cells are
restricted to three cells and then a single cell, the R8, which begin
to express Sens. The other 7 photoreceptors are recruited in a
reiterative way. When these neurons mature they express Elav. B)
wild type control eye disc stained for Elav (blue), Sens (green) and
Ato (red). G, D) Expression of ato-RNA: causes dose-dependent loss
of retinal differentiation with one copy (C) leading to the
appearance of gaps in the Elav pattern, and two copies (D)
leading to a major failure of photoreceptor differentiation.

Found at: doi:10.1371/journal.pgen.1000351.5002 (0.93 MB PDF)

Figure 83 Overview of the expression pattern of afo interacting
genes detected using Lac{ enhancer trap lines or antibodies. (A)
Opverview of eye-antenna imaginal disc, with posterior to the right,
ed: eye disc, ad: antenna disc. (A') B-gal staining of Lac{ enhancer
trap flies mimicking the expression pattern of the genes nearby.
Enhancer traps of zip, fi, sbb, shg, toc, and hLlli show expression
patterns in the eye disc. (B) eye disc of &lli enhancer trap flies,
showing co-localization between Ato (B”) Sens (B) and B-gal (B).
(C) Eye disc of fj enhancer trap flies, showing co-localization
between Ato (C") Sens (C') and B-gal (C"). (D) Leg disc of shg
enhancer trap flies, showing co-localization between Ato (D) Sens
(D) and B-gal (D') in the leg chordotonal organ precursor. (E)
Wing disc of dom enhancer trap flies, showing co-localization
between Ato (E”) Sens (E) and B-gal (E') in the wing chordotonal
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Table S1 Results of the prioritization of all 1056 genes from the
12 positive deficiency regions together, indicating the result of the
bristle assay. Negatives and positives are indicated with orange and
green shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s004 (0.38 MB
XLS)

Table 82 Results of the prioritization of chromosome 3R. The
first 30 available mutant stocks are shown for the top 1/3, middle
1/3, and bottom 1/3 of chromosome 3R after prioritization.
Negatives and positives in the bristles assay are indicated with
orange and green shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s005 (0.04 MB
XLS)
Table 83 Results of the prioritization (Dec 2005) of the 12

positive deficiency regions, in 12 sheets, indicating the mutant
alleles tested in each region and the result of the bristle assay.
Negatives and positives are indicated with orange and green
shading respectively.

Found at: doi:10.1371/journal.pgen.1000351.s006 (0.16 MB
XLS)

Table S4 Results of the prioritization (June 2007) of the 12
positive deficiency regions, in 12 sheets, indicating the RNAI lines
tested in each region and the result of the bristle assay. Negatives
and positives are indicated with orange and green shading
respectively.

Found at: doi:10.1371/journal.pgen.1000351.s007 (0.58 MB
XLS)

Text S1 Supplementary Analysis: comparison of HIGHFLY
with existing tools through post-analysis.
Found at: doi:10.1371/journal.pgen.1000351.s008 (0.12 MB PDF)
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