Skip to main content
. 2009 Jan 8;2:8. doi: 10.3389/neuro.11.008.2008

Table 1.

Some of the nodes available in MDP.

Node class name Algorithm and Reference
PCANode Principal Component Analysis (Jolliffe, 1986)
NIPALSNode Nonlinear Iterative Partial Least Squares PCA (NIPALS) (Fritzke, 1995)
CuBICANode Cumulant-based Independent Component Analysis (CuBICA) (Blaschke and Wiskott, 2004)
FastICANode Independent Component Analysis (FastICA) (Hyvärinen, 1999)
JADENode Cumulant-based Independent Component Analysis (JADE) (Cardoso, 1999)
TDSEPNode Temporal blind-source separation algorithm (TDSEP) (Ziehe and Müller, 1998)
LLENode Locally Linear Embedding Analysis (Roweis and Saul, 2000)
HLLENode Hessian Locally Linear Embedding Analysis (Donoho and Grimes, 2003)
FDANode Fisher Discriminant Analysis (Bishop, 1995)
SFANode Slow Feature Analysis (Wiskott and Sejnowski, 2002)
ISFANode Independent Slow Feature Analysis (Blaschke et al., 2007)
RBMNode Restricted Boltzmann Machine (Hinton et al., 2006)
GrowingNeuralGasNode Growing Neural Gas (learn a graph structure of the data) (Fritzke, 1995)
FANode Factor Analysis (Bishop, 2007)
GaussianClassifierNode Supervised gaussian classifier
PolynomialExpansionNode Expand the signal in a polynomial space
TimeFramesNode Expand the signal using a sliding temporal window (temporal embedding)
HitParadeNode Record local minima and maxima in the signal
NoiseNode Additive and multiplicative noise injection