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SUMMARY
Decisions are often guided by generalizing from past experiences. Fundamental questions remain
regarding the cognitive and neural mechanisms by which generalization takes place. Prior data
suggest that generalization may stem from inference-based processes that occur at the time of
generalization. By contrast, it has been hypothesized that generalization may emerge from mnemonic
processes that occur while premise events are being encoded. Here, participants engaged in a two-
phase learning and generalization task, wherein they initially learned a series of overlapping
associations, and were subsequently probed to generalize what they learned to novel stimulus
combinations. Functional magnetic resonance imaging (fMRI) revealed that subsequent
generalization performance was associated with coupled changes in learning-phase activity in the
hippocampus and midbrain (ventral tegmental area/substantia nigra). These findings provide novel
evidence for generalization based on integrative encoding, whereby overlapping past events are
integrated into a linked mnemonic representation. Hippocampal–midbrain interactions support the
dynamic integration of experiences, providing a powerful mechanism for building a rich associative
history that extends beyond individually experienced events.

Memory is essential to behavior, enabling organisms to draw on past experience to guide
choices and actions. Extensive evidence suggests that the hippocampus encodes experiences
(events) into long term memory as separated, discrete representations (Kirwan and Stark,
2007; Leutgeb et al., 2007; McNaughton and Nadel, 1989; Norman and O’Reilly, 2003;
O’Reilly and Rudy, 2001). Such discrete encoding provides a mechanism for remembering
specific details of single events. However, experiences often overlap in their content,
presenting opportunities for generalizing across them. It has been proposed that effective
generalization may depend on integrating discrete experiences into a rich, cohesive
representation (Eichenbaum, 2000; Gluck and Myers, 1993). A fundamental question concerns
whether, and how, such integration takes place.

One approach to examining generalization is to train an organism on separate events that share
common elements (e.g., A–B and B–C) and then test whether the organism demonstrates
knowledge about the relation between the elements that were not directly experienced together
(e.g., A and C) (Dusek and Eichenbaum, 1997; Eichenbaum, 2000; Greene et al., 2006; Heckers

Correspondence should be addressed to: Daphna Shohamy, Department of Psychology, Columbia University, Schermerhorn Hall, NY,
NY 10027, shohamy@psych.columbia.edu, Tel: 212-854-7560.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuron. Author manuscript; available in PMC 2009 October 23.

Published in final edited form as:
Neuron. 2008 October 23; 60(2): 378–389. doi:10.1016/j.neuron.2008.09.023.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



et al., 2004; Preston et al., 2004). Extant data from this type of paradigm indicate that animals
and humans generalize, and that this ability depends on the hippocampus (Dusek and
Eichenbaum, 1997; Eichenbaum, 2000; Greene et al., 2006; Heckers et al., 2004; Preston et
al., 2004). Specification of the hippocampal mechanisms that enable such generalization is
central to understanding how decisions are guided by past experience.

One possible mechanism by which knowledge may be generalized across discrete experiences
is through logical inference at test (e.g. Dusek and Eichenbaum, 1997; Greene et al., 2006).
Indeed, generalization is often thought to depend on transitive or associative inference (Greene
et al., 2006; Heckers et al., 2004; Preston et al., 2004). On this view, the hippocampus
contributes to generalization by supporting the novel and flexible expression of memories on
which inferences rest (Cohen and Eichenbaum, 1993; Eichenbaum, 2000; Preston et al.,
2004). That is, the hippocampus stores and enables flexible retrieval of discrete memories that
afford an inference about the relation between multiple elements, even when this relation is
not directly encoded in memory. Consistent with this view, functional imaging studies in
humans have demonstrated greater hippocampal activation when subjects make memory
judgments about pairs of items (e.g., A–C) whose relationship was mediated through an
element (i.e., B) common to two separate associations (i.e., A–B and B–C) (Greene et al.,
2006; Heckers et al., 2004; Preston et al., 2004).

While prior observations provide evidence for inference-based generalization, here we report
novel evidence for an alternative mechanism—integrative encoding—through which
generalization can emerge. By this view, the hippocampus contributes to the integration of
distinct episodes into a linked network of mnemonic associations. The dynamic construction
of integrated memories—posited to occur as overlapping episodes are experienced—enables
direct retrieval of knowledge about the relation between multiple elements that, while not
directly experienced, are nevertheless encoded in memory (Eichenbaum, 2000). Thus, at test,
generalization is not a reconstructive inference-based process based on flexible retrieval of
multiple memories, but rather is a direct expression of knowledge encoded in memory as a
synthesis of information across multiple experiences.

Motivated by computational theories and neurophysiological data that suggest that the
hippocampus dynamically shifts between encoding and retrieval states (Hasselmo and
McClelland, 1999; Hasselmo et al., 1995), we hypothesized that encountering an event that
has feature overlap with a previously encoded event can trigger retrieval of memory for the
past event, and that this, in turn, can lead to encoding of the two discrete events into an
integrated representation. Such integrative encoding would allow direct storage in memory of
the relation between two elements that were not experienced together. According to this
perspective, subsequent responses to generalization probes can be based on the direct retrieval
of a stored integrative memory, such that generalization is essentially the same as retrieval of
a previously experienced event, rather than a slower, more effortful process of inference.
Notably, this notion of alternating encoding and retrieval as a mechanism for integrating
memories was proposed as early as 1923 by Richard Semon (Schacter, 2001a). However, little
is known about whether and how such mnemonic integration occurs.

Neurochemical modulation is thought to be essential in driving dynamic shifts between
encoding and retrieval in the hippocampus (Hasselmo et al., 1995). While previous work
emphasizes cholinergic modulation from the basal forebrain, here we propose that the midbrain
dopamine system plays a key role in modulating hippocampal mechanisms necessary for cross-
episode integration. This perspective is guided by three observations. First, the hippocampus
is innervated by dopamine projections from the ventral tegmental area (VTA) in the midbrain
(Gasbarri et al., 1994; Swanson, 1982). Second, dopamine release in the hippocampus
modulates hippocampal plasticity (Frey et al., 1990; Morris et al., 2003; Otmakhova and
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Lisman, 1996); indeed, both midbrain activation (Wittmann et al., 2005) and interaction
between hippocampus and midbrain (Adcock et al., 2006) have been shown to facilitate
encoding of individual episodes. Third, midbrain dopamine neurons are most responsive under
circumstances in which predictions are violated (Lisman and Grace, 2005; Schultz et al.,
1997); we argue that prediction violation is precisely what happens when an organism
encounters an episode that contains elements that overlap with a previously encoded episode
(Kumaran and Maguire, 2006). That is, when encountering an overlapping element, this
overlap leads to retrieval of prior episodic details that mismatch the details of the present event.
Collectively, these observations led us to predict that integrative encoding across experiences
is supported by a cooperative interaction between the hippocampus and midbrain dopamine
regions.

Notably, when considered from the perspective of the putative hippocampal–VTA loop
(Lisman and Grace, 2005), this functional prediction about the relationship between midbrain
activation and learning is distinct from that of the established view of midbrain dopamine
neurons in modulating cortico-striatal “habit” learning. This latter view rests on extensive
findings demonstrating that midbrain dopamine neurons respond when reward predictions are
violated (Schultz, 1998). Specifically, a large body of research indicates that reinforcement
learning depends on midbrain dopamine neurons and their striatal (caudate and putamen)
targets (Aron et al., 2004; Daw and Doya, 2006; Delgado et al., 2005; Delgado et al., 2000;
Faure et al., 2005; Frank et al., 2004; Schultz et al., 1997; Shohamy et al., 2006; Shohamy et
al., 2004). This type of learning is thought to be independent of the hippocampal declarative
memory system (Gabrieli, 1998; Knowlton et al., 1996; Myers et al., 2003; Shohamy et al.,
2006; Shohamy et al., 2008; Yin and Knowlton, 2006), and perhaps even antagonistic to it
(Packard and McGaugh, 1996; Poldrack et al., 2001; Poldrack and Packard, 2003).

From the perspective of current theories of reinforcement learning, midbrain dopamine regions
would not be expected to contribute to cross-event generalization and midbrain activation
would not be expected to couple with that in the hippocampus. However, if, as we hypothesize,
midbrain dopamine regions interact with the hippocampus to support generalization, then
midbrain activation is predicted to couple with that in the hippocampus and to correlate with
generalization performance. Such outcomes would add to a growing body of evidence
indicating a broader role for this system in learning and memory by modulating the
hippocampus, in addition to the striatum (Adcock et al., 2006; Lisman and Grace, 2005;
Wittmann et al., 2005).

To summarize, we hypothesized that (a) generalization stems from integrative encoding that
occurs while experiencing events that partially overlap with previously encoded events, (b)
that such integrative encoding depends on both the hippocampus and midbrain dopamine
regions, and (c) that greater hippocampal–midbrain engagement during integrative encoding
enables rapid behavioral generalization in the future.

To test these predictions, 24 participants were scanned with functional magnetic resonance
imaging (fMRI) while engaged in an associative learning and generalization task (Fig. 1)
(Collie et al., 2002;Grice and Davis, 1960;Hall et al., 1993;Myers et al., 2003). The design was
conceptually similar to existing transitive and associative inference paradigms (e.g., Greene et
al., 2006;Heckers et al., 2004;Preston et al., 2004), with several noteworthy differences. First,
in the present study, rather than being blocked (Greene et al., 2006;Heckers et al., 2004;Preston
et al., 2004), here the trained associations were intermixed, much as occurs in everyday life
where overlapping experiences are temporally intermixed. By intermixing the presentation of
associations with overlapping content multiple times we sought to allow more opportunity for
integration during learning. Second, while transitive inference paradigms typically entail
hierarchically organized stimuli (e.g., A>B, B>C, C>D, D>E; generalize to B?D probe), which
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may encourage the articulation of a logical, rational structure of elements at the time of test,
here we used a generalization paradigm that involved arbitrary, overlapping associations
between elements, which is more characteristic of the overlap in elements that are encountered
in daily episodic experiences.

During the initial phase of the task, participants learned a series of face-scene associations that
were structured to include partial overlap across associative pairs, providing an opportunity
for integrative encoding. On each trial, participants learned to associate a face with a scene by
choosing which of two scenes went with the face and receiving feedback (Fig. 1A). While each
face-scene association was learned individually, there was partial overlap across events, such
that pairs of faces were associated with a common scene (e.g., F1–S1; F2–S1). In addition to
learning the F1–S1 and F2–S1 associations, participants were concurrently trained on a second
association for one of the faces (i.e., F1–S2) (Fig. 1A). Thus, the initial learning phase consisted
of three different types of stimulus combinations that contained partial overlap (F1–S1; F2–
S1; F1–S2). To the extent that the overlap between F1–S1 and F2–S1 elicits cross-event
integration during learning, we expected that the additional learning of the F1–S2 association
would lead F2 to also become associated with S2 (Collie et al., 2002;Grice and Davis,
1960;Hall et al., 1993;Myers et al., 2003).

Over the course of learning, participants were trained with 24 face-scene associations that
followed this structure (F1 through F24; S1 through S24). Trials were intermixed, each repeated
eight times, and distributed across two encoding scans—an initial encoding scan provided an
opportunity to learn the presented associations (early learning), followed by a second encoding
scan that provided additional opportunities to strengthen these associations and to integrate
across them (late learning).

Following the two encoding scans, a test phase probed participants’ ability to generalize.
Specifically, generalization trials tested whether participants would choose S2 when presented
F2 even though they had never encountered this pairing at study (Fig. 1B). These generalization
trials were tested together with trials that probed retention of knowledge about the associations
that had been previously encountered (F2–S1; F1–S1; F1–S2; ‘trained’). To maximize power
for imaging analyses, each test-phase trial was repeated six times. Feedback was not provided
during this phase, to ensure that no new learning occurred across test trials.

RESULTS
Behavioral Performance

All participants were able to learn and retain the trained pairings. During encoding, most of
the learning of the trained pairings occurred early in learning, during the initial encoding scan
(with accuracy improving from 57% correct to 80%); late in learning, during the second
encoding scan, accuracy further incrementally improved (from 86% to 93%; see Supplemental
Results). At test, participants remained highly accurate on the trained pairings (93% correct).

Mean performance on the generalization test probes was high (81%), and consistent across the
six repeated test presentations (see Supplemental Results). Interestingly, generalization
markedly varied across individuals (range 38–100%), indicating that, on average, participants
were able to exploit the overlap in encountered associations, but that they differed in their
ability to do so. The key question is: What representations and processes support successful
generalization (Fig. 1C)? Is generalization based on logical inference at test, during which
retrieval of the individually encoded associations is used to infer that F2 goes with S2? Or, does
integrative encoding of overlapping events take place during learning via hippocampal–
midbrain interactions, such that the untrained generalization associations (i.e., F2–S2) are
encoded in memory and then retrieved at test, as occurs for trained associations (e.g., F1–S2)?
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As described below, our fMRI results suggest that successful generalization is driven by cross-
episode integration during learning, and not by memory-based inference at test.

Generalization performance is not related to activation at test
Given the literature on transitive and associative inference (Greene et al., 2006; Heckers et al.,
2004; Preston et al., 2004), we first examined whether test-phase activation differed on
generalization vs. trained trials. Specifically, to the extent that logical inference at test supports
generalization, this predicts (a) greater hippocampal activation at test during correct
generalization relative to correct trained trials (Greene et al., 2006; Heckers et al., 2004; Preston
et al., 2004), and (b) that the magnitude of hippocampal activation on generalization trials
would correlate with generalization performance. Analyses of the test phase data failed to
support either of these predictions, providing no evidence that hippocampal retrieval
mechanisms were differentially engaged on generalization vs. trained probes (see
Supplemental Results). As such, these data are inconsistent with generalization based on logical
inference mechanism.

Activation in hippocampus and midbrain during learning predicts generalization
To assess whether integrative encoding occurs and supports generalization, we examined the
relationship between hippocampal and midbrain activation during learning and participants’
subsequent generalization performance. Because integration across associations depends on
having learned the individual associations, we predicted that integration would occur later,
rather than earlier, in learning, and therefore that the ability to generalize at test would be
associated with increasing activation over the course of learning in the hippocampus and
midbrain. Importantly, this novel prediction stands counter to extensive prior evidence
indicating that when encoding individual, non-overlapping associations, hippocampal
activation markedly declines across learning exposures (Kohler et al., 2005; Zeineh et al.,
2003). Moreover, this prediction may also stand counter to expectations about midbrain
encoding activation that derive from the reinforcement learning literature. Specifically, prior
evidence indicates that striatal activity declines across learning when acquiring individual, non-
overlapping associations in a reinforcement learning context (Delgado et al., 2005). Thus, while
it is not known how midbrain activation changes as a function of declarative memory encoding
over time, to the extent that midbrain activation tracks striatal activation then one might expect
a decline in midbrain activation over the course of learning, which is the opposite of our
prediction.

As each generalization trial relates to a series of learning-phase events, our encoding-phase
analysis did not use the “subsequent memory” approach (e.g., Paller and Wagner, 2002).
Rather, to test the prediction that integrative encoding across learning supports generalization,
we conducted regression analyses to determine whether the increase in magnitude of activation
from early to late learning correlated with subsequent accuracy on the generalization probes.

Consistent with the integrative encoding hypothesis, this regression analysis revealed that the
magnitude of activation increase from early to late learning in bilateral hippocampus and in
the midbrain (VTA/SN complex) correlated with subsequent accuracy on the generalization
trials at test (Ps<0.05, corrected; Fig. 2A–B); this was the case when analyzing the midbrain
data using either a 4- or 8-mm smoothing filter (Fig. 3; complete results from analyses of the
data using a 4-mm smoothing filter appear in the Supplemental Results). That is, superior
subsequent generalization was preceded by a greater increase in hippocampal and midbrain
activation from early to late learning. This relationship between subsequent generalization
performance and increasing hippocampal and midbrain activation across learning was also
apparent when we median split the 24 participants into ‘good’ and ‘poor’ generalization groups
(96% correct vs. 66% correct, respectively) (Fig. 2C and Fig. 4A). Specifically, Group ×
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Learning Phase interactions revealed a difference in the pattern of hippocampal (right
hippocampus, F(1,22)=4.31, P<0.05; left hippocampus, F(1,22)=3.25, P=0.08) and midbrain
(F(1,22)=4.70, P<0.05) activity across learning in the two groups, with the ‘good’
generalization group (Ps<0.001), but not the ‘poor’ generalization group (Ps>0.60),
demonstrating a significant increase in activity from early to late learning (Fig. 2C).

Importantly, these subgroup differences in generalization and in learning-phase hippocampal
and midbrain activity were present even when equating for differences in performance on
trained associations (Fig. 4A and Supplemental Results). Moreover, multiple subsidiary
analyses revealed that the correlation between learning-phase hippocampal and midbrain
activity with subsequent generalization was not due to differences in retention of trained
associations (see Supplemental Results). We also found no evidence for any subjective
differences in the learning experience between those participants that generalized well vs. those
that did not, based on self-report questionnaires administered after the study. Indeed, although
self-reports should be interpreted with caution, it is interesting to note that when asked, only
two participants—both poor generalizers—reported any awareness of the appearance of novel
pairings during the test phase. Finally, and importantly, we note that the correlations between
subsequent generalization performance and the learning-phase increase in hippocampal and
midbrain activation were not unduly driven by those participants who showed maximal
generalization performance (>95% correct generalization), as these correlations remained
significant even when excluding the best generalizers (n=16; left hippocampus, r=0.60; right
hippocampus, r=.68; midbrain, r=0.63; Ps<0.05, corrected).

Response latencies support the integrative encoding hypothesis
An additional key prediction of the integrative encoding account is that, at test, performance
on the generalization and trained probes involve the same mechanism—retrieval of an encoded
association—even though the latter had been repeatedly encountered and retrieved during study
whereas the former had never been experienced. Accordingly, this predicts that (a) response
latencies to generalization test probes would be in the same range as the latencies to trained
probes, and that (b) the degree of similarity between response latencies to generalization and
trained probes would relate to generalization performance.

Consistent with these predictions, regression analyses revealed that the difference in response
latencies between correct trained and correct generalization trials at test was negatively
correlated with generalization performance (r=−0.69, P<0.001). Similarly, when median
splitting the participants, a Group _ Test Trial Type interaction (F(1,22)=31.32 P<0.0001)
revealed that the ‘poor’ generalization group showed significantly more slowing on the
generalization vs. trained trials relative to the ‘good’ generalization group (Fig. 4B). This effect
was significant even when restricting the test phase analysis to the first encounter with the
generalization probes (F(1,22)=4.61, P<0.05). In fact, among the six participants
demonstrating the best generalization performance (the top quartile), there was only a 39 ms
difference in mean response latency on generalization vs. trained probes—clearly insufficient
time to permit mediated retrieval and logical inference—with half of these participants being
faster on generalization trials.

Functional interaction between hippocampus and midbrain
Given the hypothesis that midbrain dopaminergic modulation of the hippocampus is central
for integrative encoding, we examined whether there was a functional interaction between these
regions during learning. To test this hypothesis, we extracted the learning-phase change in
activity from the midbrain region that correlated with generalization (Fig. 2 and Methods),
and regressed this functionally relevant midbrain response against activity elsewhere to
determine whether any hippocampal voxels showed changes in activity that correlated with
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that in midbrain. Consistent with our hypothesis, the learning-phase increase in midbrain
activity was strongly correlated with that in the hippocampus (Fig. 5; Ps<0.001 in left and right
hippocampus), suggesting a cooperative interaction between these two regions during
integrative encoding. Importantly, this cooperative interaction with the midbrain region was
selective to the hippocampus (see Supplemental Results), and it remained significant even
when excluding the two participants demonstrating the strongest and weakest change in VTA/
SN learning-phase activity (Fig. 5).

Hippocampal and midbrain contributions to learning different event types
Finally, we asked whether specific types of overlapping events differentially elicit hippocampal
and midbrain activation, by examining how learning-phase activation to the three different
event types (F1–S1; F1–S2; F2–S1) differed as a function of generalization. Regression analyses
revealed that generalization was more tightly—but not selectively—related to learning-phase
hippocampal and midbrain activation changes to the F2–S1 trials (Fig. 6); this effect was also
apparent when comparing the two generalization subgroups, especially within midbrain (Fig.
6). Importantly, this effect is merely suggestive and should be interpreted with caution, as there
was no significant interaction between trial types in either the hippocampus or the midbrain
(see Supplemental Results). Nonetheless, generalization might be more tightly associated with
changes in learning-phase activity on F2–S1 events because these events are uniquely expected
to evoke retrieval of a chain of two previously encoded events. Specifically, F2–S1 trials may
lead to retrieval of F1–S1 trials (due to the overlap of S1), which then may evoke retrieval of
F1–S2 (due to the overlap of F1). Such retrieval would enable the encoding of these multiple
associations as an integrated representation (Fig. 1C).

DISCUSSION
The present results provide novel evidence for an integrative encoding mechanism in which
hippocampal–midbrain interactions give rise to learning that bridges across multiple separate
events. This mechanism enables rapid generalization that is based on direct retrieval of an
encoded association, rather than on an inference-based process. According to this view, many
instances of “generalization” may in fact be direct expressions of stored, integrated
representations. To the extent that organisms can bridge across multiple integrated
representations, this provides a powerful mechanism for building a rich associative history that
extends beyond individually experienced events.

Our findings advance understanding of hippocampal and midbrain function in several
important ways. First, we demonstrate that the hippocampus may contribute not only to the
encoding of individual experiences as separated, discrete representations, but may also
contribute to the integration of memories of overlapping events. This observation suggests a
possible mechanism for how the hippocampus may create a continuous link across episodes
that are experienced individually and at distinct moments in time.

Second, our data reveal correlated activity between midbrain dopamine regions and the
hippocampus during learning, which points to a functional role of midbrain regions in
modulating hippocampal-dependent cross-event integration. This novel finding may have
important implications for understanding the role of midbrain dopamine regions in memory,
by providing a link between theories of dopamine in expectation and prediction (e.g., Bayer
and Glimcher, 2005; Schultz et al., 1997) and theories of hippocampal contributions to
declarative memory (Eichenbaum and Cohen, 2001; Greene et al., 2006; Kumaran and
Maguire, 2006; O’Reilly and Rudy, 2001; Squire, 1992).

Extensive data indicate a critical role for midbrain dopamine neurons in reward prediction and
learning (Aron et al., 2004; Daw and Doya, 2006; Delgado et al., 2005; Delgado et al., 2000;
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Faure et al., 2005; Frank et al., 2004; Schultz, 1998; Schultz et al., 1997; Shohamy et al.,
2006; Shohamy et al., 2004). Such studies demonstrate that midbrain dopamine neurons signal
a reward-prediction error—increasing firing when an unexpected reward occurs, and
decreasing firing when an expected reward fails to occur (Schultz, 1998). More recently, it has
been suggested that midbrain dopamine neurons may also play a critical role in modulating
hippocampal-dependent episodic memory (Adcock et al., 2006; Lisman and Grace, 2005;
Schott et al., 2005; Wittmann et al., 2005). Midbrain dopamine neurons project not only to the
striatum, but also to the hippocampus (Gasbarri et al., 1994; Swanson, 1982), where dopamine
has been shown to modulate plasticity (Frey et al., 1990; Morris et al., 2003; Otmakhova and
Lisman, 1996).

The precise function of dopamine modulation in the hippocampus remains unknown. However,
it has been proposed that a functional loop between the midbrain (VTA) and the hippocampus
serves to enhance episodic memory for novel events (Lisman and Grace, 2005). This model
builds upon the established role of the hippocampus in novelty detection—a process that is
thought to involve comparing present events with memory representations of events in the past,
and detecting any mismatch between them (Kohler et al., 2005; Strange and Dolan, 2001;
Yamaguchi et al., 2004). When novelty is detected by the hippocampus, a signal is thought to
project to the VTA, leading to dopamine release and memory enhancement in the hippocampus
(Lisman and Grace, 2005).

The present data support this view by demonstrating a cooperative relationship between the
midbrain and the hippocampus, with both regions showing a correlated increase in activation
over the course of learning, even as errors (and activation in the striatum) decrease (see
Supplemental Results for striatal findings). Importantly, the present data extend this view in
several ways, indicating a broader role for this loop in learning and memory.

First, our data suggest that a hippocampal–midbrain network may provide a mechanism not
only for the enhancement of long-term memory for individual episodes, but also for cross-
episode integration. We propose that the underlying mechanism for integrative encoding may
be the detection of mismatch when an organism encounters an episode that has partial overlap
with a previously experienced event. For example, when encountering an event (e.g., F2–S1)
that overlaps with a prior event (e.g., F1–S1), the presentation of the overlapping element
(S1) may elicit retrieval of the prior event’s features (e.g., F1). This reactivation of features
from a prior event that differ from the features of the present event (i.e., F1 vs. F2) may trigger
a mismatch signal within the hippocampus that upregulates midbrain dopaminergic feedback
onto the hippocampus (Lisman and Grace, 2005), the consequence of which is to increase the
probability of encoding the present and prior event features into an integrated representation.
By this view, midbrain regions are argued to respond not only to violations of expectation
about the value of a predicted outcome (a reward prediction error), but also to violations of
expectation about the content of an episode (an episodic prediction error). As such, our data
extend prior theories focusing on a role for midbrain dopamine in reward prediction (O’Doherty
et al., 2003; Schultz, 1998; Schultz et al., 1997) and stimulus-response learning (Faure et al.,
2005; Graybiel, 1995; Shohamy et al., 2006; Yin et al., 2004), and suggest a critical contribution
of midbrain mechanisms to other forms of learning.

Second, our findings suggest that it is not item (stimulus) novelty per se that drives this
hippocampal–midbrain interaction, but associative novelty. That is, the present data
demonstrate that the hippocampus and midbrain do not show enhanced activation to novel
relative to familiar items, but rather to novel stimulus combinations (see Supplemental Results),
complementing prior studies that demonstrate that the hippocampus responds preferentially to
associative, rather than item, novelty (Kohler et al., 2005).
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Midbrain activations have also been reported to respond to novelty that is either associative
(Schott et al., 2004) or item-based (Bunzeck and Duzel, 2006). More recent data suggest that
the striatum is preferentially sensitive to item-based perceptual novelty, and may support a
mechanism for novelty-based choice (Wittmann et al., 2008). Here, we demonstrate that
midbrain activation is correlated with the hippocampus, but not the striatum, and that this
correlation is directly related to subsequent successful generalization.

Our results additionally suggest that the neural and cognitive processes supporting
generalization are at least partially independent of those supporting learning and retention of
the trained associations. Even when controlling for differences in learning and retention of the
trained associations among the ‘good’ and ‘poor’ generalizers, these groups differed markedly
in generalization performance. At the neural level, these groups also differed in their pattern
of hippocampal and midbrain activation across learning, even when factoring out variance
associated with performance on the trained associations (see Supplemental Results). This
dissociation complements prior patient studies that demonstrate that generalization—but not
feedback-based learning—is impaired in individuals with damage to the hippocampus, whereas
feedback-based learning—but not generalization—is impaired in individuals with disrupted
striatal function due to Parkinson’s disease (Myers et al., 2003; Shohamy et al., 2006). Here,
feedback-based learning indeed involved the striatum (bilateral caudate; see Supplemental
Results), but we found no relation between striatal activity and generalization.

Previous fMRI studies of generalization using transitive and associative inference paradigms
revealed that hippocampal-dependent inference processes at test support generalization (e.g.,
Heckers et al., 2004; Preston et al., 2004). Our study differed in several ways. First, by using
intermixed episodes, the present design was more similar to the kind of intermixed overlap in
elements that one would experience in everyday life. Second, the intermixed repetitions of each
encountered association in the present design may have fostered cross-event integration as
these associations were being learned. Indeed, prior studies of transitive inference have found
that inference-based judgments at test only occur if the training follows a block design that
“frontloads” the non-overlapping pairs prior to introducing those with overlap (Titone et al.,
2004). Thus, the present results are not contradictory to the findings of inference-based
generalization reported in previous studies. Rather, they suggest an alternative mechanism for
generalization that may complement inference-based processes. According to this view,
generalization may derive from inference-based processes at test or integrative encoding during
learning; the nature of the learning experience is likely to be an important factor in determining
the relative contributions of each of these mechanisms to generalization.

It is also worth noting that our paradigm further differed from transitive inference designs in
the nature of the overlap between the episodes. Specifically, rather than building on a
hierarchical structure between elements, the present paradigm used associative overlap, or
equivalencies, between partial elements of an episode. It seems plausible that the kind of
hierarchical organization typically used in transitive inference paradigms may lend itself more
to logical inferential processes. By contrast, converging evidence suggests that associative
equivalencies between elements tend to lead to generalization without explicit awareness or
recognition of the relationship between the elements (see also (Daw and Shohamy, In Press;
Greene et al., 2006; Walther, 2002).

The present form of generalization may be thought of as a type of false memory (Schacter,
2001b), in that participants have the subjective sense of having already experienced the pairing
of two elements that in fact had never been encountered together. Indeed, it has been suggested
that false memories may emerge through associative experiences during encoding, similar to
the integrative encoding mechanism proposed here. On this view, ‘false memories’ may in fact
be associatively generated during encoding, despite not being encountered directly; at test, the
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generated association would then be misattributed as an external (experienced) event rather
than an internally generated experience (Underwood, 1965). This interpretation is consistent
with evidence that encoding mechanisms can predict later false memory under some
circumstances (Dennis et al., 2007; Garoff et al., 2005).

In summary, the present data demonstrate that interactions between the hippocampus and
midbrain support a mechanism by which organisms can integrate across discrete, but
overlapping experiences. By forming a thread that connects otherwise separate experiences,
integrative encoding permits organisms to generalize across multiple past experiences to guide
choices in the present.

METHODS
Participants

Data are reported from 24 healthy adults (13 females; ages 18–24 yrs); all were right handed,
native English speakers. Test phase imaging data were lost from one participant due to
corrupted files (learning phase behavioral and imaging data, and test phase behavioral data are
reported for this participant). In addition, data were collected but excluded from three additional
participants due to their failure to show any evidence of learning (never exceeding chance
levels of responding throughout training). All participants received $20/hr for participation,
with the experiment lasting approximately 2 hrs. Informed written consent was obtained from
all participants in accordance with procedures approved by the institutional review board at
Stanford University.

Procedure
The learning and generalization task was a modification of the ‘acquired equivalence’ paradigm
(Collie et al., 2002; Grice and Davis, 1960; Hall et al., 1993; Myers et al., 2003). The critical
stages consisted of a Learning phase, during which participants used feedback to learn face-
scene associations, followed by a Test phase, without any feedback, during which participants
were tested on previously learned associations (‘trained’) and on generalization probes
(‘generalization’) consisting of novel combinations of face-scene pairings (Fig. 1). To examine
the potential role of stimulus novelty in modulating learning and generalization, participants
also underwent a Pre-exposure phase before Learning, during which half of the to-be-learned
stimuli were presented individually. FMRI data were collected during all phases. Here we
report the data from the Learning and Test phases, collapsed across the Pre-exposure
manipulation because it did not differentially influence learning and generalization responses
(see Supplemental Results). After participating in the task, participants were administered a
brief post-test questionnaire to asses their awareness of the equivalencies in the associations
and of the appearance of novel pairings at test.

In the Pre-exposure phase, each trial consisted of a single stimulus (face or scene) centrally
presented for 1.25 s. Participants responded with a left or right keypress to indicate whether
the stimulus was a person or a place. In the Learning phase, each trial consisted of the
presentation of a face with two scenes for 3 s, during which participants indicated by keypress
which of the two scenes was the correct associate for the face (Fig. 1A). Performance-dependent
feedback (“Correct”, “Incorrect”, or “Too Late”) was provided after stimulus presentation and
response, and remained on the screen for 1 s. In the Test phase, the trial structure was identical
to Learning, except that no feedback was provided following the response (Fig. 1B).

For all phases, trials were intermixed with variable duration fixation null events; the total time
allotted for null events was equal to 1/3 of the scan time. The duration and distribution of null
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events was optimized for estimation of rapid event-related fMRI responses as calculated using
Optseq (http://surfer.nmr.mgh.harvard.edu/optseq/).

Materials
Stimuli consisted of 24 pictures of faces, and 24 pictures of scenes. Faces and scenes were
structured in sets, such that two faces (F1, F2) were paired with two scenes (S1, S2), resulting
in four associations for each set: F1–S1, F1–S2, F2–S1, F2–S2. Three of these associations were
trained during the Learning phase (F1–S1, F1–S2, F2–S1). During Test, subjects were tested on
the fourth (untrained) association (F2–S2), as well as on the previously trained associations
(F1–S1, F1–S2, F2–S1) (Fig. 1). The task consisted of 12 such stimulus sets, resulting in 36
different training trials and 48 different test trials. Importantly, a scene that was the correct
choice for a certain face was also presented as the incorrect choice for a different face, such
that simple stimulus-response learning strategies were not possible.

For counterbalancing purposes, the 12 sets were divided into 2 subsets of 6. During Pre-
exposure, individual face and scene stimuli from one of the subsets were presented 15 times
each, in random order. Which subset was pre-exposed was counterbalanced across subjects.
During Learning, each of the 36 face-scene associations was repeated 8 times in total, with the
scenes on each trial counterbalanced for left-right presentation. The 288 learning-phase trials
were divided into 2 training blocks, and intermixed randomly with the constraint that each
training block contained an equivalent number of presentations of each trial type. During Test,
each trained and untrained (generalization) association was tested 6 times to provide increased
power for functional imaging analyses of this phase, with trained and untrained associations
intermixed and scenes counterbalanced for left-right presentation. All stimulus presentation
orders were constrained such that no association appeared consecutively.

fMRI data acquisition
Whole-brain imaging was conducted on a 3.0T Signa MRI system (GE Medical Systems).
Structural images were collected using a T2-weighted flow-compensated spin-echo pulse
sequence (TR=3 s; TE=70 ms; 24 contiguous 5-mm thick slices parallel to the AC-PC plane).
Functional images were collected using a T2*-weighted two-dimensional gradient echo spiral-
in/out pulse sequence (TR=1.5 s; TE=30 ms; 1 interleave; flip angle = 70°; FOV= 20 cm; 64
_ 64 voxels) (Glover and Law, 2001).

The Learning phase was scanned in two 14-min functional runs. The Pre-Exposure (12 min)
and Test (15 min) phases were each scanned in a single functional run. For each functional
scan, 8 discarded volumes were collected prior to the first trial of the task. A bite bar was used
to minimize head motion.

fMRI data analysis
Image preprocessing was performed using SPM2 (Wellcome Department for Cognitive
Neurology, London). Functional images were corrected for differences in slice acquisition
timing and then corrected for head motion. Each participant’s structural images were co-
registered to their functional images and segmented into grey matter, white matter and
cerebrospinal fluid. The grey matter images were then stripped of any remaining skull and
normalized to a grey matter MNI template image. This normalized grey matter image was used
for normalization of the structural and functional images. Images were resampled to 3-mm
cubic voxels and smoothed with a Gaussian kernel (8 mm full-width half-maximum).

Data were analyzed using SPM2, under the assumptions of the general linear model. Trials
were modeled as an event, using a canonical hemodynamic response function and its first-order
temporal derivative. Each phase (Pre-exposure, Learning, and Test) was analyzed separately.
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During Learning, the first scan (‘Early Learning’) and the second scan (‘Late Learning’), as
well as correct and incorrect trials, were modeled separately. The resulting functions were
entered into a general linear model with motion parameters entered as a covariate. Linear
contrasts were used to obtain participant-specific estimates for each effect. These estimates
were then entered into a second-level analysis, treating participant as a random effect, using a
one-sample t-test against a contrast value of zero at each voxel. All contrasts were restricted
to correct trials.

Because the outcomes from the main regression analysis (learning-phase activity regressed
with generalization performance) was of central importance, effects within a priori regions of
interest (ROIs) were small volume corrected using anatomical masks for these regions
(hippocampus and midbrain/VTA). For the hippocampus, anatomical ROIs were drawn from
a standard database (Anatomical Automatic Labeling; AAL). The midbrain ROI was created
based on previous reports of VTA activity in humans during a declarative memory encoding
task (Adcock et al., 2006): the reported coordinates for maximal activity in right and left VTA
were entered as a seed region, and a 10-mm sphere was built around this peak. The resulting
ROIs were summed and used as a single mask during analyses. These ROIs allowed for
relatively conservative small volume correction.

ROI analyses were conducted to investigate effects revealed by voxel-based comparisons.
ROIs included all significant voxels within a 6-mm radius of a maximum, or, where noted, all
significant voxels within a cluster. Deconvolution of the signal within ROIs was performed
using a finite impulse response function implemented with MarsBar
(http://marsbar.sourceforge.net), allowing a comparison of the integrated percent signal
changes (summed across 3.0 – 7.5 s post-trial onset) associated with conditions.

Cross-region interactions
The functional interaction between midbrain and hippocampus was assessed using a seed
region covariate analysis (Poldrack et al., 2001). A seed region in the midbrain was functionally
defined based on the main regression analysis revealing voxels that showed learning-related
changes in activity that correlated significantly with generalization performance. The learning-
phase change in activity in these midbrain voxels (the difference in integrated % signal change
from early to late learning) for each subject was then entered as a regressor against the contrast
of early vs. late learning, revealing any voxels that showed learning-phase changes that
significantly correlated with changes in the functionally defined seed region in the midbrain.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative events and structure of the task. (A) Participants learned a series of individual
face-scene associations based on feedback (36 individual associations in total). On each trial,
the face-scene pair was presented for 3 s, after which performance-dependent feedback was
provided for 1 s. There were three learning event types—the individual associations shared
overlapping features, with two faces always associated with a common scene, and one of those
faces also associated with a second scene. A scene that was the incorrect choice for one face
was the correct choice for another face, so that simple stimulus-response learning strategies
could not support learning. (B) After learning, participants underwent a test phase, where they
received no feedback and where they were asked to respond to untrained face-scene
associations. These generalization trials were presented together with trials that tested
knowledge for previously trained associations. (C) The generalization trials can be correctly
responded to by way of two different mechanisms: during test, retrieval of the previously
trained individual associations may allow participants to draw inferences across them (left);
alternatively, the untrained association may have been formed during learning due to retrieval
and integrative encoding that is triggered by the overlapping features across individual trained
associations.
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Figure 2.
Hippocampal and midbrain activation during learning predicts correct responding on the
generalization trials at test. (A) Map-wise regression analyses revealed that the change in
activation from early to late learning in left hippocampus (−28,−9,−17; 27 voxels), right
hippocampus (31,−5,−20; 22 voxels), and a bilateral midbrain complex (3,−18,−12; 50 voxels)
correlated with % correct generalization performance at test (P<0.001, extent threshold 5
voxels; P<0.05, small volume corrected for the hippocampus and midbrain). (B) BOLD %
signal change data extracted from these hippocampal and midbrain regions (inclusive of all
above-threshold voxels within a 6-mm sphere surrounding the peak voxel) confirmed the strong
correlation between learning-phase activation increases and generalization performance. (C)
When participants were median split based on generalization performance at test, an increase
in hippocampal and midbrain activation from early to late learning was observed in participants
who generalized well (‘good’ group), but not in participants who generalized poorly (‘poor’
group). Error bars +/− S.E.M.
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Figure 3.
Localization of midbrain activations, displayed on a canonical T1-weighted image (axial slice,
left; sagittal slice, right). The midbrain complex consists of the substantia nigra (SN) and the
ventral tegmental area (VTA). (A) SN extends lateral and posterior around the oval red nuclei,
as indicated by the black arrows. VTA is medial to SN, and borders the interpeduncular cistern.
(B) Higher magnification of the generalization-related midbrain region-of-interest described
in the main findings (data smoothed with an 8-mm filter; P<0.001, extent threshold 5 voxels;
P<0.05, small volume corrected for the hippocampus and midbrain). (C) Visualization of
generalization-related midbrain activations revealed when using a smaller (4-mm) smoothing
filter during functional data preprocessing (P<0.001, extent threshold 5 voxels; P<0.05, small
volume corrected for the hippocampus and midbrain). Full reporting of the data smoothed with
a 4-mm filter appear in the Supplemental Results.
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Figure 4.
Behavioral performance at test on trained and generalization trials for the ‘good’ and ‘poor’
generalization participants. (A) An interaction between group and test trial type revealed a
significantly greater difference between the two groups in performance on the generalization
trials relative to the trained trials. Importantly, the ‘good’ group showed no difference in
accuracy between trained and generalization trials, whereas the ‘poor’ group showed superior
performance on trained than on generalization trials. (B) This pattern was also evident in the
speed of responding. The ‘poor’ group, relative to the ‘good’ group, showed a marked
difference in response latencies to trained vs. generalization trials, consistent with the
hypothesis that in the ‘good’ group the associations necessary to rapidly respond to
generalization trials were constructed during learning. Error bars +/− S.E.M.
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Figure 5.
Learning-phase activation changes in bilateral hippocampus demonstrated a significant
correlation with such changes in the midbrain. This analysis regressed the difference in %
signal change from early to late learning in a seed region in the midbrain with voxels in the
medial temporal lobe (P<0.001, extent threshold 5 voxels; small volume corrected, P<0.05).
Extracting the change in integrated % signal change for all activated voxels in left and right
hippocampus (98 and 161 voxels, respectively) identified in this regression confirmed the tight
relationship with the change in integrated % signal change in the midbrain. Importantly, this
relationship between hippocampal and midbrain activation remained significant even when
excluding the two participants demonstrating the strongest and weakest change in midbrain
learning-phase activity (left hippocampus–midbrain r=0.59; P<0.005; right hippocampus–
midbrain, r=0.75, P<0.001).
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Figure 6.
Hippocampal and midbrain activation to different event types during learning. The relationship
between (A) hippocampal and (B) midbrain activation during learning and generalization
performance at test was strongest for the F2–S1 learning trials. Regression analyses (left)
revealed that subsequent generalization correlated with learning-phase activation increases to
F2–S1 trials in both bilateral hippocampus (data shown for right hippocampus) and midbrain
(Ps<.05, corrected); no other correlations survived correction for multiple comparisons.
Similarly, increased activation during learning of F2–S1 events showed the strongest difference
across ‘good’ and ‘poor’ generalization subgroups. The ‘good’ (Ps<0.05), but not the
‘poor’ (Ps>0.40), generalization group demonstrated a significant increase in bilateral
hippocampal and midbrain activation from early to late learning of F2–S1 trials. In the midbrain,
this increase was selective to the F2–S1 trials, whereas in the hippocampus, a qualitatively
similar effect was observed for the F1–S1 and F1–S2 trials (see Supplemental Results). Error
bars +/− S.E.M.
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