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Abstract

Background: Previous studies have demonstrated that knockout or inhibition of Platelet/Endothelial Cell Adhesion
Molecule (PECAM, CD31) in a number of murine strains results in impaired inflammatory responses, but that no such
phenotype is seen in the C57BL/6 (B6) murine background.

Methodology/Principal Findings: We have undertaken a quantitative trait locus (QTL) mapping effort between FVB/n (FVB)
and B6 mice deficient for PECAM to identify the gene or genes responsible for this unique feature of B6 mice. We have
identified a locus on murine chromosome 2 at approximately 35.8 Mb that is strongly associated (LOD score = 9.0) with
inflammatory responses in the absence of PECAM.

Conclusions/Significance: These data potentiate further study of the diapedesis machinery, as well as potential
identification of new components of this machinery. As such, this study is an important step to better understanding the
processes of inflammation.
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Introduction

Inflammation necessitates that leukocytes leave the blood stream

where they circulate and enter into tissue to engage in effector

functions. A well developed series of steps is involved regulating the

exit of leukocytes from the blood stream across the endothelial

barrier, a process referred to as leukocyte transendothelial migration

(TEM) [1,2]. The committed step of this process is referred to as

diapedesis, the step where the leukocyte actually squeezes between

two endothelial cells. It has been shown that the Platelet/

Endothelial Cell Adhesion Molecule (PECAM, CD31) is integral

to diapedesis. When the PECAM knockout mouse was first made,

however, no apparent blockade of leukocyte TEM was observed in

several in vivo models [3]. This early model was developed in a

hybrid of 129/J and C57BL/6 (B6) mice, and was further studied in

mice backcrossed extensively onto the B6 background. While a

delay was observed in the time it took leukocytes to cross the

basement membrane, and a number of other subtle defects have

been described in the literature, the expected blockade of diapedesis

was not seen [3,4,5,6,7,8,9,10,11,12,13].

Subsequent studies observed that transgenic FVB/n (FVB) mice

constitutively expressing moderate levels of a soluble ‘‘decoy’’

PECAM-Fc chimera in their circulation did manifest a blockade in

TEM of monocytes and neutrophils [14]. Studies were undertaken

that established that soluble PECAM-Fc chimeras and antibodies

against PECAM could block normal TEM of monocytes and

neutrophils in live mice for all strains tested except the B6 strain [15].

When the PECAM knockout was backcrossed into the FVB

background, a blockade in TEM was, in fact, observed [15]. These

data suggested an apparently unique ability of the B6 mice to

disregard loss or functional blockade of PECAM with respect to

TEM.

Given the inbred nature of laboratory mouse strains, it stands to

reason that a unique genetic element (or elements) in the B6 strain

is responsible for the observed phenomenon of PECAM-

independent TEM. As identification of such genetic elements

could reveal genes encoding for previously unidentified compo-

nents of the diapedesis machinery, and thus provide insights into

the exact mechanisms of this machinery, we undertook an effort to

map these genetic differences.

The technique of quantitative trait locus (QTL) mapping is a

powerful form of genetic linage mapping that can be used to dissect

such phenotypes where a quantitative difference exists between

genetically inbred mouse strains [16]. This particular technique

relies on comparing the quantitative phenotypic results for a

number of mice resulting from the breeding of two different mouse

strains with distinct quantitative differences in a given phenotype

(e.g. height, weight, serum cholesterol values, etc.). For each mouse

in the offspring, typically of the F2 (second filial, i.e. offspring of the

first filial generation, which are mice generated by crossing the two

parental strains) or B2 (backcross; offspring of mating mice from the

first filial generation to mice from one parental strain) generation, a
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quantitative value for the phenotype of interest is obtained. These

values are compared to the genotype of specific markers throughout

the offspring’s genomes that are known to be different between the

parental strains, and thus indicating the parental strain of origin for

each marker region, and thus also each gene linked to that region,

throughout those genomes. Typically, due to the development of

appropriate high-throughput assays, the variations mapped in such

efforts are either microsatellite repeat markers, where variation is

determined by different lengths of the microsatellite between parent

strains assayed via multiplex PCR, or single-nucleotide polymor-

phisms (SNPs), where the parent strains are known to have different

alleles for the given SNP assayed through microarray technologies.

Computer software is then utilized to perform a regression analysis

at each possible locus compared to the quantitative phenotype

results, often taking into account linkage of nearby loci, and

returning a likelihood of each given locus being associated with the

phenotype of interest.

Utilizing a previously described microsatellite panel known to

distinguish between genetic elements in FVB and B6 mice [17], as

well as a well-characterized SNP database capable of similar

differentiation between the FVB and B6 murine strains [18], we

undertook a QTL mapping strategy to identify the locus or loci of

genetic trait or traits responsible for the apparently unique ability

of leukocytes from B6 mice, as compared primarily to those from

FVB mice, to transmigrate even in the absence of PECAM.

Materials and Methods

Mice
All animal procedures were reviewed and approved by the

Institutional Use and Care of Animals Committee (IACUC) of

Weill Cornell Medical College. C57BL/6 Pecam2/2 and FVB/n

Pecam2/2 mice were developed as previously described with at

least nine backcrosses into each respective strain [3,15]. Wild-type

C57BL/6J (‘‘B6’’), C57BL/10J (‘‘B10’’), DBA/2J (‘‘D2’’), FVB/

nChr (‘‘FVB’’), Balb/cChr (‘‘Balb/c’’) mice were purchased from

either The Jackson Laboratory (Bar Harbor, ME), or Charles

River Laboratories (Wilmington, MA), as indicated by the strain

name suffix. All mice were maintained and bred at the Weill

Cornell Medical College Research Animal Resource Center.

Thioglycollate Peritonitis
Thioglycollate peritonitis (TGP) was performed as described

previously [3,14,15,19] and in accordance with the policies set

forth by the Institutional Animal Care and Use Committee

(IACUC) of Weill Cornell Medical College. Wild-type mice were

injected via tail vein with 100 mL of either PBS or a solution of

anti-PECAM (Armenian hamster anti-mouse, clone 2H8, [20]) or

soluble PECAM-Fc chimera [14,15] in PBS (both blocking

reagents at 1 mg/mL); prior studies utilizing isotype control

antibodies revealed no difference from PBS-only injection [20,21].

One hour later (or at the start of the experiment, in the case of

knockout mice), mice were injected intraperitoneally with 1 mL of

4% Difco thioglycollate broth (Becton-Dickinson, Franklin Lakes,

NJ). After 18 hr, mice were euthanized and a peritoneal lavage

was performed using 5 mL of HBSS containing 10 mM ethylene

diamine tetraacetic acid (EDTA). Lavage material was assayed

manually for total (hemacytometer) and differential cell counts

(cytospins stained with modified Wright-Giemsa stain, Protocol

Hema3, Fisher Diagnostics, Middletown, VA). Murine blood was

also collected to ensure comparable peripheral blood counts

between groups. Data were tabulated and analyzed using

Microsoft Excel (Microsoft Corporation, Redmond, WA) and

the R statistical software package (http://cran.r-project.org/).

Low-density QTL mapping and analysis
Kidneys from mice used in the thioglycollate peritonitis were

removed immediately following peritoneal lavage and stored at

280uC. From these kidneys, genomic DNA was extracted using

the Qiagen DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia,

CA) as described in the manufacturer’s protocol. Genomic DNA

was analyzed for Whitehead Institute microsatellite repeat

polymorphisms using the protocol described by Teupser et al.

[17] to distinguish between FVB and B6 mice. Assays were

performed by the Rockefeller University Genomics Resource

Center, New York, NY, using multiplex PCR with fluorescent dye-

coupled primers and laser scanning capillary gel electrophoresis.

Resulting genotype data were tabulated in Microsoft Excel and

then analyzed using the R/qtl package [22].

Medium-density QTL mapping and analysis
DNA from the same mice was subjected to additional

genotyping using the Illumina Mouse MD (Medium Density)

Linkage Panel (Illumina, Inc., San Diego, CA) [18], performed by

the Rockefeller University Genomics Resource Center. Resulting

data were analyzed manually within the region of interest, and

genome-wide using the R/qtl software package.

Gene database searches
Genes in the area(s) of interest were identified using databases at

the NCBI (http://www.ncbi.nlm.nih.gov/), UCSC Genome Browser

(http://genome.ucsc.edu/), Ensembl (http://www.ensembl.org/),

and Mouse Genome Informatics (MGI, http://www.informatics.

jax.org/). Map positions are given in NCBI sequence positions.

Results

Pecam2/2 mouse breeding
SNP genotyping, using the Illumina medium density array, of

the parental B6 and FVB PECAM-deficient mice revealed the B6

mice to be 98.2% backcrossed and the FVB mice to be 99.7%

backcrossed relative to standard stock mice of the respective strain.

These values are within conventional standards for use of

knockout mice.

Response to inflammatory challenge
F1 mice generated from crosses of B6 and FVB PECAM-

deficient mice showed a phenotype most consistent with the B6

parents, i.e. they tended to display ongoing robust inflammatory

responses to thioglycollate despite lack of PECAM (Figures 1 and

2; Supplemental Table S1). There was an equivalent number of

male and female offspring in the F1 generation with no significant

difference between them in terms of thioglycollate response (data

not shown). There was a difference observed, however, between

the mice generated from B6 mothers and FVB fathers (BxF) as

compared to those from FVB mothers and B6 fathers (FxB),

suggesting an imprinted trait modifying the F1 phenotypes. Both

groups varied significantly from FVB parents and not from B6

parents, suggesting a dominantly inherited trait, but those with B6

mothers showed more robust responses than those mice with FVB

mothers. At this time, we have not performed any studies to

attempt to identify the imprinted gene or genes involved in this

phenomenon.

F2 mice generated from the F1 mice showed a distribution of

inflammatory responses extending between the two parental

strains (Figures 1 and 2). The mean response varied from all

other groups except the F1 FxB mice (Supplemental Table S1).

There was no significant correlation between the response to
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thioglycollate and the gender (Supplemental Figure S1), coat color

(Supplemental Figure S2), or age (Supplemental Figure S3) of

these mice. Analysis of the distribution of the inflammatory

phenotypes in the F2 mice was conducted using statistical

modeling (Supplemental Figure S4). These models are consistent

with a single-gene Mendelian model having a classic 1:3

distribution, and thus these data are consistent with a single gene

autosomal dominant Mendelian trait.

Low-density QTL mapping
To identify the gene responsible for the phenotypes we

observed, we undertook QTL mapping in the F2 mice. An initial

mapping study using approximately 150 markers distributed

throughout the murine genome identified a single significant locus

on the proximal end of chromosome 2 (Figure 3A; peak at d2mit7,

38.2 Mb). Statistical significance for such loci is traditionally

measured by a logarithm of odds, or LOD, score, which is roughly

equivalent to negative logarithm of the p-value for the significance

of association; i.e. a locus with LOD = 4 is 10-times more strongly

associated to the phenotype of interest than is one with LOD = 3.

Statistical significance is typically reached at a value of LOD = 3.0;

this locus had a LOD score of 7.5, suggesting very strong

association between the locus and the phenotype of interest.

Several of the genes near this locus are identified in the

schematic map in Figure 3B. These genes were identified using the

Mouse Genomics Informatics site’s search engine to identify genes

associated with immunologic or hematologic function, including

the Abl1 (c-abl) oncogene, Traf1 (TNF-receptor associated factor

1), Eng (endoglin), the prostaglandin synthases Ptgs1/COX-1,

Ptges1, and Ptges2, and the hemolytic complement gene Hc (C5).

Medium-density QTL mapping
We then undertook a medium-density mapping study using the

Illumina Medium Density Mouse Linkage Analysis system [18].

We chose to map only those mice with known crossover events in

the region of interest, and we successfully obtained medium-

density genotypes from fourteen of these mice, as well as one

mouse from each parental strain. This medium-density mapping

study supported the association of the identified QTL peak with

the phenotype of interest, and furthermore strengthened the LOD

score at the QTL peak (Figure 4A, LOD = 9.0) and narrowed the

region of interest (Figure 4B, peak 35.8 Mb).

Analysis of Hc as a candidate gene
Looking at the literature for published QTLs in the region near

murine Chr 2, 35.8 Mb, a majority of the immunological

phenotypes are associated with the hemolytic complement gene,

Hc, a.k.a. complement component C5 [23,24,25,26,27,28,29,30].

Since this gene is known to be a major variant in inbred mouse

populations [31,32,33,34,35], with some strains carrying a

premature stop codon and thus effectively being Hc-null, and

further recognizing B6 mice as Hc-positive and FVB as Hc-null, we

Figure 1. Thioglycollate peritonitis in three generations of PECAM-deficient mice. Thioglycollate peritonitis (TGP) was performed as
described in Materials and Methods. All bars show mice that received 1 mL of 4% thioglycollate broth intraperitoneally. The mean inflammatory score
and standard error of that mean is shown for each generation of knockout mice generated during the crossing of FVB and B6 PECAM-deficient mice.
Data include 14 FVB mice, 14 B6 mice, 6 F1 BxF mice, 7 F1 FxB mice, and 110 F2 mice. *: groups vary from each other significantly; **: group varies from
several other groups significantly; ***: group varies from all other groups significantly; detailed statistical comparisons are reported in Supplemental
Table S1.
doi:10.1371/journal.pone.0004316.g001
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decided to see if other mouse strains demonstrated the PECAM-

independent inflammatory phenotype in correlation with their Hc

status. In conjunction with previously published data [15], we

found that the thioglycollate peritonitis results were independent of

Hc-status; only B6 mice demonstrate PECAM-independent

thioglycollate peritonitis (Figure 5). It is notable that while the

blockade in Balb/c and DBA/2 mice does not reach statistical

significance, the B10 mouse strain does clearly show a blockade,

and yet is Hc-positive.

Discussion

We have identified a single locus, at 35.8 Mb on murine

chromosome 2, associated with PECAM-independent inflamma-

tion in the thioglycollate peritonitis (TGP) model. This trait is

inherited in an autosomal dominant Mendelian manner, although

other traits, particularly an imprinted trait observed in the F1 mice,

do modify the observed phenotypes. We suggest a name of Pitgp

for this locus, short for PECAM-independent thioglycollate

peritonitis.

While a number of existing QTLs are near this same locus and

associated with the hemolytic complement component C5 Hc

gene, it appears that the classic variation in this gene, a premature

stop codon, does not account for the variation seen, as only B6

mice show PECAM-independent TGP, while other Hc-positive

strains do not.

The other gene candidates at the QTL locus primarily include

COX-1 (Ptgs1), and the PGE2-synthases 1 and 2 (Ptges and Ptges2).

Prostaglandins, especially prostaglandin E2, are known to be

potent mediators of inflammatory responses in vivo, and it would

seem reasonable that the prostaglandin synthetic enzymes may

play a role in regulating TEM. Unfortunately, due to the complex

biology of prostaglandins [36,37,38,39,40,41,42], we have not yet

been able to evaluate these candidates functionally in vivo.

Knockout mice are available for the genes in question [43,44],

but many generations of backcrossing or, to avoid carryover of

Figure 2. Histograms showing distributions of individuals within three generations of PECAM-deficient mice. The histograms each
show the number of mice having inflammation scores within a given range (cell increment 26105 PMN per mL). Overlays allow for visualization of the
degree of overlap between the respective populations.
doi:10.1371/journal.pone.0004316.g002
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linked loci, de novo creation of knockouts in the appropriate strains

will be required before we can evaluate the function of these genes

in the context of this study. Further genetic dissection of this locus

is limited by the power of linkage analysis and the mosaic structure

of the murine genome, leading to a high degree of linkage

disequilibrium in the region of interest [45]. While the

development of congenic mice for these loci and appropriate

strains of candidate gene knockouts are under development, it will

be some time before the definitive gene or genes responsible for

the phenotype associated with Pitgp1 locus is/are identified.

It is likely that the PitgpB6 allele is a gain-of-function mutation

that confers some novel adhesion and/or signaling pathway onto

B6 mice not found in other strains. However, it should be noted

that in no strain of mouse does PECAM blockade or genetic

deletion lead to overt immunosuppression. As such, there must be

competent immune mechanisms in all mouse strains even in the

absence of PECAM. It becomes necessary, therefore, to ask which

circumstances require the use of PECAM in TEM and which are

independent. A number of other inflammatory models have been

examined using PECAM blockade or knockout, some being

PECAM-dependent while others are PECAM-independent. Many

of the situations where TEM is PECAM-independent are

conditions where direct activation of the leukocyte may have

taken place [46]. It is possible, therefore, that factors released by

activated leukocytes obviate the need for PECAM-PECAM

engagement, and the gain-of-function mutation mapped in this

study causes dysregulated release of such factors.

Regardless of the mechanism at work, the identification of this

locus allows for breeding of congenic mice for the Pitgp allele onto

various genetic backgrounds. Using these mice, we hope to explore

the full range of inflammatory stimuli for which this QTL explains

interstrain differences. In combination with the data showing

which events are PECAM-dependent, it becomes possible to begin

building a more complete picture of the mechanisms leading to

TEM in any given setting. Additionally, once we have the murine

tools to follow the effect of both the PECAM and Pitgp loci, we

may be able to identify new loci that play a role in other strains or

other inflammatory settings, and thus possibly identify yet more

signals that play a role in the control of TEM.

Supporting Information

Table S1 P-values from pairwise statistical comparisons of the

data presented in Figure 1. Significant values are indicated in bold.

Found at: doi:10.1371/journal.pone.0004316.s001 (0.02 MB

XLS)

Figure S1 Histograms comparing the distribution of female and

male mice in the F2 generation. The histograms each show the

number of mice of the given gender having inflammation scores

within a given range (cell increment 26105 PMN per mL).

Statistical comparison of the two groups yields a Welch two-

sample t-test p-value of 0.296 and a Mann-Whitney (Wilcoxon) u-

test p-value of 0.283.

Found at: doi:10.1371/journal.pone.0004316.s002 (6.63 MB TIF)

Figure S2 Histograms comparing the distribution of black,

brown, and white mice in the F2 generation. The histograms each

show the number of mice of the given coat color having

inflammation scores within a given range (cell increment 26105

PMN per mL). Statistical comparison of the black and brown

Figure 3. Low-density QTL mapping results. The low-density microsatellite mapping study revealed a single locus (panel A) breaking genome-
wide association cutoffs. Panel B shows a close-up view of that locus, at 38.2 Mb (NCBI map coordinates), indicated by an arrow, as well as a number
of nearby genes identified in databases as relevant to inflammation, immunity, or hematologic function.
doi:10.1371/journal.pone.0004316.g003
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groups yields a Welch two-sample t-test p-value of 0.750 and a

Mann-Whitney (Wilcoxon) u-test p-value of 0.924. Statistical

comparison of the black and white groups yields a Welch two-

sample t-test p-value of 0.515 and a Mann-Whitney (Wilcoxon) u-

test p-value of 0.386. Statistical comparison of the brown and

white groups yields a Welch two-sample t-test p-value of 0.225 and

a Mann-Whitney (Wilcoxon) u-test p-value of 0.204.

Found at: doi:10.1371/journal.pone.0004316.s003 (8.49 MB TIF)

Figure S3 Scatterplot comparing the inflammation scores mice

in the F2 generation to the age of the mouse at the time of the

experiment. Each circle on the plot represents a single mouse. The

dashed line represents a least-squares regression fit; R2 val-

ue = 0.002, p-value 0.398.

Found at: doi:10.1371/journal.pone.0004316.s004 (10.74 MB

TIF)

Figure S4 Statistical modelling of the F2 population. Statistical

models representing the mathematical distribution of the F2 mice

were built in the R statistical package to evaluate for the number of

subpopulation that could be identified. Non-parametric densities

of the various distributions were estimated using three different

functions, density, bkde (at two different kernel values), and hist.

The four resulting probability estimates were modeled with the

non-linear modeling function, nls, using varying numbers of

normally distributed subpopulations. Coefficients were tested

against expectations using chi-square and Fisher’s exact tests

(both tests designed to compare expected and observed count

data), and model errors were the residual summed square values

(an algorithm that computes the difference between the model and

the actual data at hundreds of data points, and returns an unsigned

sum of the differences). A representative non-parametric density

model is shown overlaying the parental, F1, and F2 populations in

panels A and B. Panel C shows the resulting bimodal and

unimodal mathematical models, demonstrating that a bimodal

distribution, i.e. a mathematical model composed of two

overlapping but distinct subpopulations, is more robust than a

unimodal model, i.e. a mathematical model in which the mice all

appear to be part of a single large population. Trimodal models,

not shown, were only subtle variations on the bimodal models,

rather than a distinctly different distribution. Tetramodal models

Figure 4. Medium-density QTL mapping results. Using a proprietary allele-specific primer extension based assay, the Illumina GoldenGate
technology, the QTL peak was narrowed to a point at 35.8 Mb (panel A). Near this well-defined peak are four genes of particular interest (panel B,
colored circles at top of graph, from left to right): Ptges, coding for mPGES-1 (prostaglandin E2 synthase 1, green); Ptges2, coding for PGES-2
(prostaglandin E2 synthase 2, blue); Hc, coding for hemolytic complement component C5 (black); and Ptgs1, coding for the protein commonly known
as COX-1 (red); these four genes are also indicated in the lower row of genes identified in Figure 3B. The LOD score = 3.0 threshhold for significance is
inidcated by a horizontal grey line in both panels.
doi:10.1371/journal.pone.0004316.g004
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failed to optimize. The bimodal models vary only slightly from a

single-gene Mendelian model of 1:3 distribution. Imposing an

exact 1:3 ratio on the models results in errors very similar to the

unconstrained models. In total, these data are consistent with a

single gene autosomal dominant Mendelian trait.

Found at: doi:10.1371/journal.pone.0004316.s005 (3.38 MB TIF)
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