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Hypothalamic growth hormone-releasing hormone (GHRH) con-
trols the release of growth hormone and acts as a growth factor in
various tumors. Potent antagonistic analogues of GHRH have been
synthesized that strongly suppress the growth of diverse cancers
through several mechanisms. However, the influence of GHRH
antagonists on the redox (reduction/oxidation) status of cancers
has not been investigated. Cellular generation of reactive oxygen
species (ROS) is central to redox signaling and is implicated in the
initiation, development, and progression of cancer. In this study,
we evaluated by Western blot the effects in vitro of GHRH and its
antagonist JMR-132 on proliferating cell nuclear antigen, tumor
suppressor protein p53, transcription factor NF-�B p50 and its
phosphorylated form, caspase 3, and cleaved caspase 3 in the
LNCaP human prostate cancer cell line. GHRH stimulated and GHRH
antagonist inhibited the expression of the major antioxidant
enzymes, as well as the expression of COX 2 and cytochrome c
oxidase IV, which are enzymes involved in the generation of ROS.
GHRH augmented and GHRH antagonist suppressed lipid and
protein oxidative stress markers, as well as the intracellular gen-
eration of ROS. In all these tests, GHRH antagonists exerted strong
antioxidant activity. Because the metabolism of ROS and oxidative
stress have been associated with initiation and progression of not
only prostate tumors but also other malignancies, our findings
reinforce previous experimental evidence that GHRH antagonists
could be useful for cancer therapy.

GHRH � oxidative stress � ROS � antioxidative activity

A new therapy for cancer may emerge from the development
of antagonistic analogues of growth hormone-releasing

hormone (GHRH), which started more than a decade ago.
GHRH neuropeptide, secreted by the hypothalamus, regulates
the release of growth hormone from the anterior pituitary gland.
GHRH was first isolated from human pancreatic tumors and was
only subsequently identified in human hypothalamus (1–3).

The fact that GHRH is implicated as a growth factor in
carcinogenesis was established only recently (4), although its
initial identification from tumor tissue should have provided a
hint about this likelihood (1). Thus, the expression of mRNA for
GHRH and the presence of biologically active GHRH were
demonstrated in several established cancer cell lines and human
tumors. The suppression of proliferation of breast, prostate, and
lung cancer cell lines after the knocking down of GHRH gene
expression supports the concept that GHRH functions as a
growth factor at least in these human cancers. Peptide receptors
that mediate the effects of GHRH and its antagonists on tumors
were also identified recently, with the demonstration that can-
cers can express splice variants (SVs) of the pituitary GHRH
receptor as well as the pituitary type itself (5–9).

Several series of antagonistic analogues of GHRH were
synthesized in our laboratory and were shown to inhibit the
growth of a variety of experimental human cancers (1, 3, 7,
10–12) The inhibitory effect of antagonistic analogues of GHRH

is exerted in part by endocrine mechanisms through the sup-
pression of GHRH-evoked GH release from the pituitary, which
in turn results in the reduction of hepatic insulin-like growth
factor 1 (IGF-1) levels in serum. The antitumor effects of GHRH
antagonists can also be exerted directly on tumors and are based
on the blockade of action of autocrine GHRH in tumors, as well
as the inhibition of the secretion of autocrine/paracrine IGF-1 or
IGF-2 from the tumors (3).

The influence of the GHRH analogues in the redox (reduc-
tion/oxidation) status of cancers has not been investigated. The
central role in redox signaling is played by reactive oxygen
species (ROS), which are oxygen radicals and nonradical deriv-
atives of O2, thus highly reactive molecules. When organic
radicals are generated within an organism they can react rapidly
with DNA, proteins, and lipids, causing chemical modification,
collectively known as oxidative stress (13). ROS are produced
continuously by the mitochondria, macrophages, and peroxi-
somes (14).

Reactions between ROS and redox active amino acid residues
in transcription factors and enzymes can modulate the activities
of these proteins. Cells possess effective mechanisms to control
ROS. Among these is the synthesis of detoxifying enzymes, such
as thioredoxins (Trxs), superoxide dismutases (SODs), glutathi-
one peroxidases (GPxs), and quinone oxidoreductase 1 (NQO1),
which convert ROS into less-active species (15, 16).

ROS and cellular oxidative stress are associated with cancer in
a complex fashion (17–20). Cancer cells produce more ROS than
normal cells, and ROS are thought to play a role in tumor
initiation and progression (21, 22) and are also required for
aggressive phenotype (23). Abnormal increases in ROS can be
exploited to selectively kill cancer cells (24). Exogenous ROS-
stressing agents can increase intracellular ROS to a toxic level or
the threshold that triggers cell death (24, 25).

In the present study we showed by Western blot the expression
of the GHRH receptor (GHRH-R) and its SV1 in the LNCaP
prostate cancer cell line. We evaluated the effect of GHRH(1-
29)NH2 and GHRH antagonist JMR-132 on the proliferation
rate of LNCaP cells and on the expression of proliferating cell
nuclear antigen (PCNA). We examined expression of wild-type
tumor suppressor protein p53 (26), transcription factor NF-�B
p50 and its phosphorylated form, as well as caspase 3 and cleaved
caspase 3, which act on apoptosis (27).
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We then evaluated whether GHRH(1-29)NH2 and the GHRH
antagonist influence expression of the antioxidant enzymes
SOD1, which is also a target for the inhibition of angiogenesis
and tumor growth (28); NQO1, a cytosolic protein that re-
duces and detoxifies quinones protecting the cells against redox
cycling and oxidative stress (29); GPx1, which is a main gluta-
thione peroxidase (30); and Trx1, a major cytoplasmic antioxi-
dant enzyme (31). In addition, we examined whether expression
of COX 2 and cytochrome c oxidase IV (COX IV), enzymes that
are involved in the generation of ROS, could be influenced by
GHRH and GHRH antagonist.

A possible upregulation or downregulation of the major
antioxidant enzymes by the antagonistic analogues of GHRH
does not provide definite conclusions about the oxidative status
of the cancer cells. Decreased expression of antioxidant enzymes
can reflect either less oxidative stress (theory of redox homeosta-
sis) (32) in the cells or more oxidative stress, which might result
from the downregulation of their genes by the GHRH antago-
nists. Consequently, to elucidate the oxidative status of the
prostate cancer cell line before and after treatment with the
GHRH antagonist, we evaluated the expression of 3-nitroty-
rosine (33–35) and the protein carbonyl groups, which are
considered markers of protein oxidative modifications (36, 37),
as well as malondialdehyde (MDA), which reflects the status of
lipid peroxidation (37). In addition, we examined the influence
of GHRH and JMR-132 on intracellular generation of ROS.

Results
Expression of GHRH Receptor and Its SV1 in the LNCaP Prostate Cancer
Cell Line. A band of 45 kDa, which reflects the production of
GHRH-R (38), and a band of 39.5 kDa, which is consistent with
the size of the SV1 receptor (39) (regularity index [RI]: 2.37 and
2.90, respectively) were detected in the LNCaP prostate cancer
cell line. MCF7 breast cancer cells, which do not express
GHRH-R or SV1 receptor, were used as negative control (9)
(RI: 0.06 and 0.08, respectively). The results are shown in Fig. S1.

Effect of GHRH(1-29)NH2 and GHRH Antagonist JMR-132 on Prolifera-
tion Rate and Expression of PCNA in LNCaP Cancer Cells In Vitro.
LNCaP prostate cancer cells were exposed to two concentrations
of GHRH(1-29)NH2 and JMR-132. At the dose of 1 ��,
GHRH(1-29)NH2 did not appreciably influence the prolifera-
tion rate of the cells, producing an increase of only 7%. However,
GHRH(1-29)NH2 at a 0.1 �� concentration stimulated the
proliferation rate of LNCaP cells by 13%. The GHRH antago-

nist JMR-132 at doses of 0.1 �� and 1 �� decreased prolifer-
ation of the LNCaP prostate cancer cell line by 32% and 37%,
respectively. The results are shown in Fig. 1A. In addition, the
expression levels of PCNA (molecular mass: 36 kDa) were
evaluated by Western blot. PCNA protein expression increased
in cells exposed to 0.1 �� and 1 �� of GHRH(1-29)NH2 (RI:
0.77 and 0.925) and decreased in cells incubated with 0.1 �� of
GHRH antagonist JMR-132. (RI: 0.495) as compared with
control (RI: 0.656). The results are shown in Fig. 1B.

Effect of GHRH(1-29)NH2 and JMR-132 on Expression of Wild-Type p53
Tumor Suppressor Protein in LNCaP Cancer Cells In Vitro. LNCaP
prostate cancer cells cultured in vitro were exposed to two
concentrations of JMR-132 and GHRH(1-29)NH2, and the
expression level of the p53 tumor suppressor protein (molecular
mass: 53 kDa) was measured by Western blot. The results are
shown in Fig. 2. p53 protein expression was higher in cells
exposed to 0.1 �� and 1 �� GHRH antagonist JMR-132 (RI:
0.583 and 0.658) and lower in cells incubated with 0.1 �� and
1 �� GHRH (1-29)NH2 (RI: 0.376 and 0.264) as compared with
control (RI: 0.436).

Effect of GHRH Antagonist JMR-132 and GHRH(1-29)NH2 on Expression
of NF-�B p50 and Its Phosphorylated Form, Caspase 3, and Cleaved
Caspase 3 Protein in LNCaP Prostate Cancer Cells In Vitro. LNCaP
cells cultured in vitro were exposed to 1 �� GHRH antagonist
JMR-132 and 1 �� GHRH(1-29)NH2. The expression levels of
NF-�B p50, phosphorylated NF-�B p50, caspase 3 (molecular
mass: 35 kDa), and cleaved caspase 3 were detected by Western
blot. The results are shown in Fig. 3A. The expression of
phosphorylated NF-�B, caspase 3 protein, and its cleaved form
was higher in cells exposed to GHRH antagonist JMR-132 (RI:
0.451, 0.120, and 0.391) and lower in cells cultured with GHRH
(1-29)NH2 (RI: 0.623, 0.083, and 0.182) as compared with
control (RI: 0.521, 0.108, and 0.320). The expression of NF-�B

Fig. 1. Effect of GHRH and JMR-132 on the proliferation rate of LNCaP cancer
cells, measured after an incubation of 72 h. (A) Changes in proliferation rate
of LNCaP prostate cancer cells after exposure to GHRH antagonist JMR-132
and GHRH (1-29)NH2. Percentage increase or decrease are expressed vs. LNCaP
cells cultured in the absence of JMR-132 or GHRH (1-29)NH2. *P � 0.05; **P �
0.005. (B) Western blot analysis of expression of PCNA in LNCaP prostate
cancer cells after exposure to GHRH antagonist JMR-132 and GHRH(1-29)NH2;
n � 2

Fig. 2. Western blot analysis of expression of wild-type p53 tumor suppres-
sor protein in LNCaP prostate cancer cells after 72-h exposure to GHRH
antagonist JMR-132 and GHRH(1-29)NH2; n � 2

Fig. 3. Effect of GHRH and JMR-132 on the activation of caspase 3 and NF-�B
p50 measured after an incubation of 72 h. (A) Western blot analysis of
expression of phosphorylated NF-�B p50, caspase 3 protein, and its cleaved
form in LNCaP prostate cancer cells after exposure to GHRH antagonist
JMR-132 and GHRH (1-29)NH2; n � 2. (B) Western blot analysis of expression
of NF-�B p50; n � 2
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was not influenced by GHRH (1-29)NH2 or JMR-132 (RI: 0.766,
0.786, and 0.737). The results are shown in Fig. 3B.

Effect of JMR-132 and GHRH(1-29)NH2 on Expression of Antioxidant
Enzymes GPx1, SOD1, NQO1, and Trx1 in LNCaP Prostate Cancer Cells
In Vitro. LNCaP prostate cancer cells cultured in vitro were
exposed to 1 �� JMR-132 and GHRH(1-29)NH2. The expres-
sion levels of the detoxifying enzymes were measured by Western
blot. GPx1 (molecular mass: 22 kDa) protein expression was
higher in cells exposed to GHRH (1-29)NH2 (RI: 0.126) and
lower in cells incubated with GHRH antagonist JMR-132 (RI:
0.035) as compared with control (RI: 0.107). SOD1 protein
expression (molecular mass: 18 kDa) was only detectable in cells
that were incubated with GHRH (1-29)NH2 (RI: 0.111). NQO1
(molecular mass: 29 kDa) protein expression was higher in cells
exposed to GHRH (1-29)NH2 (RI: 0.196) and much lower in
cells incubated with GHRH antagonist JMR-132 (RI: 0.025) as
compared with control (RI: 0.175). The levels of Trx1 (molecular
mass: 12 kDa) were elevated in cells treated with GHRH
(1-29)NH2 (RI: 0.277) and decreased in cells exposed to JMR-
132 (RI: 0.196) as compared with control (RI: 0.210). The results
are shown in Fig. S2.

Effect of GHRH Antagonist JMR-132 and GHRH(1-29)NH2 on Expression
of COX 2 and COX IV Enzymes in LNCaP Prostate Cancer Cells In Vitro.
After LNCaP prostate cancer cells cultured in vitro were exposed
to 1 �� GHRH antagonist JMR-132 and GHRH(1-29)NH2, the
expression levels of the enzymes COX 2 and COX IV were
measured by Western blot. COX 2 (molecular mass: 74 kDa) and
COX IV (molecular mass: 17 kDa) protein expression was higher
in cells exposed to GHRH (1-29)NH2 (RI: 0.928, 0.237) and
lower in cells incubated with GHRH antagonist JMR-132 (RI:
0.532, 0.077) as compared with control (RI: 0.822, 0.139). The
results are shown in Fig. 4.

Effect of GHRH Antagonist JMR-132 and GHRH(1-29)NH2 on Protein and
Lipid Oxidation and on Intracellular Generation of ROS in LNCaP
Prostate Cancer Cells In Vitro. LNCaP prostate cancer cells cul-
tured in vitro were exposed to 1 �� JMR-132 or 1 �� GHRH(1-
29)NH2. The levels of oxidation of proteins were determined by
the detection of �-nitrotyrosine and the protein carbonyl
groups. Both were elevated in cells exposed to GHRH(1-29)NH2
(RI: 3.282, 7.415) and decreased in cells incubated with GHRH
antagonist JMR-132 (RI: 1.251, 4.275) as compared with control
(RI: 2.903, 5.846). The results are shown in Fig. 5A. The levels
of lipid peroxidation, determined by the detection of MDA, were
increased in cells exposed to GHRH(1-29)NH2 (RI: 4.89) and

decreased in cells incubated with GHRH antagonist JMR-132
(RI: 2.973) as compared with control (RI: 4.433). The results are
shown in Fig. 5B. In addition, the generation of ROS was higher
by 36% in cells incubated with GHRH (1-29)NH2 and lower by
23% in cells exposed to JMR-132 as compared with control. The
results are shown in the Fig. 5C.

Discussion
GHRH and its receptor(s) are expressed in a variety of human
cancers and cancer cell lines, and antagonists of GHRH exert
strong antiproliferative activity (2, 3, 7). However, the influence
of GHRH and its antagonists on the redox status of cancer cell
lines has not been investigated.

In the present study we detected expression of the pituitary
type of GHRH-R and its SV1 in the LNCaP prostate cancer cell
line, and we investigated the effects of GHRH and GHRH
antagonist on its proliferation. The MCF-7 breast cancer cell line
was used as the negative control (Fig. S1) because it does not
respond to GHRH or JMR-132 (4, 9). We showed that 0.1 ��
but not 1 �� of GHRH increased the proliferation rate, whereas
0.1 �� and 1 �� of GHRH antagonist JMR-132 decreased it.
At the dose of 1 ��, GHRH(1-29)NH2 did not appreciably
influence the proliferation rate of LNCaP cells, a phenomenon
which was also reported in other cancer cell lines (4, 6, 9). This
could be because LNCaP cells already produce significant
amounts of endogenous GHRH, and the corresponding signal-
ing pathways might be saturated after exposure to 1 �� GHRH.
In a recent study we reported that after knocking down GHRH
gene expression in LNCaP cells, their proliferation rate in-
creased dramatically after supplementation with exogenous
1 �� GHRH(1-29)NH2 (4).

The wild-type tumor-suppressor protein p53, which is ex-
pressed in LNCaP cells (40, 41), acts as a major defense against
cancer and can elicit apoptotic death, cell cycle arrest, or

Fig. 4. Western blot analysis of expression of COX 2 and COX IV in LNCaP
prostate cancer cells after 72-h incubation with GHRH antagonist JMR-132 and
GHRH(1-29)NH2; n � 2

Fig. 5. Effects of GHRH and JMR-132 on protein and lipid oxidation markers
and on generation of ROS in LNCaP prostate cancer cells. (A) Detection of
expression of oxidation markers (nitrotyrosine and MDA) in LNCaP prostate
cancer cells after incubation for 72 h with GHRH antagonist JMR-132 and
GHRH(1-29)NH2; n � 2. (B) Detection of expression of the carbonyl groups in
LNCaP prostate cancer cells after 72-h treatment with GHRH antagonist
JMR-132 and GHRH(1-29)NH2; n � 2. (C) Changes in generation of ROS after
30-min incubation. Percentage increase or decrease are expressed vs. LNCaP
cells cultured in the absence of JMR-132 or GHRH (1-29)NH2. ***, P � 0.005.
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senescence through differential activation of target genes to
maintain genomic integrity (26, 42). Given that both ROS and
p53 participate in multiple cellular processes, interactions be-
tween them and their signaling pathways should exist (42). The
induction of expression of wild-type p53 is related to antioxidant
activities, which also contribute to tumor suppression (43–45).
We examined whether expression of wild-type p53 is influenced
by treatment with GHRH antagonist and GHRH(1-29)NH2.
The results indicate that GHRH antagonist enhanced the ex-
pression of p53, whereas GHRH(1-29)NH2 suppressed it.

We then examined the expression of PCNA, which is consid-
ered a major proliferation marker. The levels of PCNA expres-
sion were elevated in cells exposed to GHRH(1-29)NH2 and
decreased in cells cultured with GHRH antagonist. These results
provide a confirmation of the experiment in vitro on the prolif-
eration rate of the LNCaP prostate cancer cell line, shown in Fig.
1. Activation of the MAPK signaling pathway, which is stimu-
lated by GHRH (46–49), is implicated in the progression of
tumorigenesis (50). Wild-type p53 suppresses the promoter of
PCNA to mediate DNA synthesis and repair processes (51). In
addition, PCNA can play a critical role in regulating the stability of
p53. The inactivation of PCNA can induce stabilization of p53 (52)

An upregulation of the tumor suppressor gene p53 can trigger
apoptosis (53). To examine whether p53 leads to apoptotic
death, we detected by Western blot the proapoptotic protein
caspase 3. The expression of caspase 3 and cleaved caspase 3 was
elevated in cells incubated with GHRH antagonist and down-
regulated after exposure to GHRH (1-29)NH2. These results are
consistent with previous studies that supported the antiapoptotic
role of GHRH in cancer cells (54, 55) and the induction of
apoptosis by GHRH antagonists in tumors (55). In addition,
inhibition of the MAPK pathway enhances apoptotic death (56,
57). The activation of the NF-�� p50, which promotes carcino-
genesis (58–60), is enhanced by oxidative stress (59, 61, 62) and
is inhibited by the overexpression of wild-type p53 (58, 63). The
prostate cancer cells incubated with GHRH expressed increased
levels of pNF-�� p50, in contrast to cells exposed to JMR-132,
which expressed lower concentrations of this transcription factor.

We then examined the expression of the major antioxidant
enzymes SOD1, GPx1, NQO1, and Trx1. SOD1 belongs to the
SOD family of enzymes, which catalyze the dismutation of
superoxide into H2O2 and oxygen. Malignant cells are highly
dependent on SOD for survival and sensitive to its suppression
(64). In addition, SOD 1 is essential for angiogenesis and tumor
growth (65), and increased levels of SOD1 in human cells have
been shown to augment the levels of ROS and stabilize hypoxia-
inducible factor 1 (66). The expression levels of SOD1 were
elevated in cells treated with GHRH, which indicates that
GHRH and its analogues influence the expression of SOD1. The
expression levels of SOD1 in cells cultured in free media or
JMR-132 were not detectable, owing to low SOD activity in
cancer cells (64). The expression of the cytosolic/mitochondrial
selenium-dependent GPx1 was also decreased by GHRH antag-
onist and increased by GHRH. The overexpression of GPx1 is
related to the protection of cancer cells against apoptosis, and its
expression is regulated by a signaling pathway that is activated in
oxidative stress response (67). Furthermore, the increase in
MnSOD is associated with cancer progression (68).

NQO1 is a cytosolic protein that reduces and detoxifies
quinones and their derivatives, thus protecting cells against redox
cycling and oxidative stress (29). The expression levels of NQO1
were elevated in cells treated with GHRH and decreased in cells
cultured with JMR-132. Overexpression of p53 suppresses the
Nrf2-mediated activation of antioxidant response elements-
containing promoters, including NQO1 gene (69). Trx1, a cell
cytosolic detoxifying protein, was upregulated by GHRH and
downregulated by JMR-132. Trx is implicated in the stimulation

of hypoxia-inducible factor, which in turn stimulates VEGF and
angiogenesis, thus promoting carcinogenesis (31).

COX 2, an enzyme that is induced in pathologic conditions
leading to neuronal tissue death, is an important source of
intracellular ROS. Enhanced COX 2 expression participates in
inflammation and neuronal death in brains with ischemia and
neurodegenerative diseases (70). Activation of the MAPK path-
way induces the expression of the COX 2 enzyme (71), which also
plays a significant role in the induction of cell migration (72).
GHRH antagonist decreased the expression of COX 2, blocking
the MAPK pathway. The expression of COX IV, which is also
involved in the generation of ROS, was also downregulated by
the GHRH antagonist, reflecting the decreased oxidative status
of the cancer cell line.

We examined the protein and lipid oxidative status of the
LNCaP prostate cancer cell line after treatment with GHRH and
GHRH antagonist. The results indicate that GHRH antagonist
JMR-132 possesses a strong antioxidant activity, whereas
GHRH increases protein and lipid oxidation of the cells. The
LNCaP prostate cancer cells exposed to JMR-132 generated
fewer ROS than control cells, in marked contrast to cells exposed
to GHRH, which produced increased amounts of ROS. Previous
studies suggest that the activation of the MAPK pathway plays
a key role in ROS generation (73) and indicate that the activation
of MAPK is related to ROS-induced cellular events (22, 74–83).
GHRH was shown to act through the phosphorylation of MAPK
(46–49). A suppression of this pathway by GHRH antagonists
results in reduction of oxidative stress in LNCaP.

This study reports antioxidant activity of GHRH antagonists.
ROS, which participate in the initiation and progression of
cancer (17, 66), are also strongly implicated in a variety of other
diseases. Oxidative stress resulting from increased production of
ROS plays a major role in aging (15, 84, 85), atherosclerosis,
rheumatoid arthritis, obstructive sleep apnea, and in the patho-
genesis of cardiovascular complications and ischemia (32), as
well as in the multiple forms of insulin resistance (86) and the
pathogenesis of diabetes and its major complications, including
nephropathy, retinopathy, neuropathy, and macro- and micro-
vascular damage (87). Increased oxidative stress seems to be
involved in the development of neurodegenerative diseases like
Alzheimer’s and Parkinson’s disease (88), amyotrophic lateral
sclerosis, and Huntington’s disease (89). Free radicals can also
regulate angiogenesis and radiotherapy response (66) and VEGF
production (87). The antioxidant activity of GHRH antagonists
suggests that these compounds could be used not only as
anticancer drugs but also for the treatment of diseases related to
increased oxidative stress.

Materials and Methods
Cell Culture and Western Blotting. LNCaP prostate cancer cells and MCF-7 breast
cancer cells were obtained from American Type Culture Collection and were
cultured as described previously (4). The antibodies that detect P53, PCNA,
GPx1, SOD1, NQO1, Trx1, COX 2 and COX IV were purchased from Cell
Signaling. The antibodies that detect �-actin, NF-�B50, pNF-�B50, caspase 3,
and its cleaved form were purchased from Santa Cruz Biotechnology. The
antibodies against GHRH-R (batch number: SV95) and SV1 (batch number: JH
2317/5) were raised in our laboratory. The signals for the immunoreactive
proteins were visualized in a Chemi Doc XRS system (Bio-Rad). The Western
blot assay and the quantification analysis of the blots were performed as
described previously (4).

Detection of Protein and Lipid Oxidation. The detection of the carbonyl groups,
nitrotyrosine, and lipid peroxidation was performed with the Oxiselect Pro-
tein Carbonyl Immunoblot, the Oxiselect Nitrotyrosine Immunoblot Kit, and
the Oxiselect Malondialdehyde Immunoblot Kit, respectively (Cell Biolabs)
according the manufacturer’s instructions. Lipid peroxidation was detected
using a primary rabbit anti-MDA antibody (Cell Biolabs) according the man-
ufacturer’s instructions. The �-actin signal was used as control.
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Measurement of Intracellular Generation of ROS. The detection of ROS was
carried out using aminophenyl fluorescein, an indicator for highly reactive
oxygen species (Invitrogen). This fluorescein derivative is nonfluorescent until
it reacts with the hydroxyl radical peroxynitrite anion or hypochlorite anion.
Upon oxidation it exhibits green fluorescence, which can be detected with a
fluorescence plate reader. LNCaP prostate cancer cells were seeded in 200-�l
of RPMI 1640 containing 10 �� aminophenyl fluorescein at a density of 103

cells per well onto a 48-well plate and were incubated for 30 min at 37 °C with
GHRH(1-29)NH2 or JMR-132 at a concentration of 10�6 M. Fluorescence was
measured using a fluorescence plate reader (VICTOR3 Multilabel Plate Reader;
Perkin-Elmer) with an excitation wavelength of 490 nm and an emission
wavelength of 515 nm.

Cell Proliferation Rate Assay and Statistical Analysis. The rate of cell prolifera-
tion was calculated by seeding 10,000 cells in six-well plates and after incubation
for 4 days counting them under light microscope using the trypan blue assay or
a Z series Coulter Counter (Beckman Coulter). The data are expressed as mean �
SEM. Statistical evaluation of the results was performed by the Student’s t test
(two-tailed). P values shown are against the control group.
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