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Abstract
Factor mixture models (FMM’s) are latent variable models with categorical and continuous latent
variables which can be used as a model-based approach to clustering. A previous paper covered
the results of a simulation study showing that in the absence of model violations, it is usually
possible to choose the correct model when fitting a series of models with different numbers of
classes and factors within class. The response format in the first study was limited to normally
distributed outcomes. The current paper has two main goals, firstly, to replicate parts of the first
study with 5-point Likert scale and binary outcomes, and secondly, to address the issue of testing
class invariance of thresholds and loadings. Testing for class invariance of parameters is important
in the context of measurement invariance and when using mixture models to approximate non-
normal distributions. Results show that it is possible to discriminate between latent class models
and factor models even if responses are categorical. Comparing models with and without class-
specific parameters can lead to incorrectly accepting parameter invariance if the compared models
differ substantially with respect to the number of estimated parameters. The simulation study is
complemented with an illustration of a factor mixture analysis of ten binary depression items
obtained from a female subsample of the Virginia Twin Registry.

Introduction
Factor mixture models provide a framework for a model-based approach to clustering.
Variations of these models have been proposed by a variety of authors including Arminger,
Stein, and Wittenberg (1999), Dolan and van der Maas (1998), Heinen (1996), Jedidi,
Jagpal, and DeSarbo (1997), B. O. Muthén and Shedden (1999), Vermunt and Magidson
(2003), and Yung (1997). Observed data within each cluster are assumed to have a
multivariate normal distribution. The joint distribution is therefore a mixture of multivariate
normal component distributions. Assuming that each object or subject belongs to only one
cluster, the relative cluster sizes are the mixing proportions, which are modeled in terms of
the parameters of a multinomial prior. The multivariate normal components are structured
by imposing a factor model on their mean vector and covariance matrix. Different choices of
the specific parameterization of the component distributions include the number of factors
and cluster-specific parameters such as loadings, intercepts, and residual variances. These
choices affect not only model fit but also the number of clusters needed to obtain the closest
fit to the observed joint distribution (Lubke & Neale, 2006). A more restrictive within
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cluster parametrization will often result in choosing a model with more classes than a less
restrictive parametrization. Hence, it is necessary to address the question of whether the
correct model is chosen when fitting a set of different factor mixture models to observed
data from a potentially clustered population. This question is especially relevant in an
exploratory setting where neither the number of the clusters, nor their relative sizes, nor the
pattern of relations between variables within a cluster is known, and different models are
compared to investigate the underlying structure of the data.

In a previous simulation study, we investigated correct model choice for continuous data
that were generated under different types of factor mixture models including latent profile
models, factor models with 1 to 3 factors for a single homogeneous population, and factor
models with 1 or 2 factors for a population consisting of 2 clusters (Lubke & Neale, 2006).
The study showed that when comparing the fit of a set of different models it was possible to
distinguish between latent profile models, which assume local independence within cluster,
and models that allow for structured covariation within cluster. Furthermore, it was usually
possible to use indices of model fit to identify the model with the correct numbers of factors
and clusters. Not surprisingly, the results depended on the separation between clusters in the
population and sample size. The study showed a trade-off between these two characteristics.
For instance, a within cluster sample size of 75 was sufficient to choose the correct model in
more than 95% of comparisons of a set of fitted models when the separation was large but
needed to be increased to 200 for a smaller separation. Since the first study was limited to
continuous data generated under factor mixture models without violating any of the model
assumptions, the results of the first study should be regarded as a best-case scenario.

The aim of the current paper is again to investigate conditions under which a comparison of
different mixture models leads to correct model choice. In this study, observed outcomes are
ordered categorical, and not only different model types are considered, but also different
types of constraints on the within class model parameters. The set-up of the simulation study
is similar to the first. The data generating and the fitted models include a variety of factor
models, latent class models, and factor mixture models with varying parameter constraints.
The interest is in the proportion of correct model choice when fitting a series of different
models. The simulation study is supplemented with an empirical example that illustrates
some of the problems encountered when fitting a series of factor mixture models to collected
test data. The data are scores on ten binary items designed to match the DSM-III-R criteria
for depression. The data were collected in two separate but related studies of all-Caucasian
female-female, male-male and male-female twins from the Virginia Twin Registry (Kendler
& Prescott, 1999). For the illustration we used data from one female of each female-female
or female-male twin pair.

The first part of the simulation study focuses on ordered categorical outcomes, which are
very common in the social sciences. Lubke and Muthèn (2004) showed that when
investigating multiple groups, incorrectly assuming normality in an analysis of Likert data is
problematic and can lead to incorrect conclusions. Ordered categorical data can be modeled
by assuming an unobserved multivariate normal response variable and imposing a threshold
structure on the multivariate normal distribution (Agresti, 1990). Threshold parameters can
be obtained by integrating over the normal variable. Due to the much longer computation
time needed for the analysis of 5-point Likert items we did not fully replicate the first study.
Nevertheless, the design of the current study permits an overall comparison of results. For a
subset of the generated data, the proportion of correct model choice is directly compared for
continuous, 5-point Likert, and binary versions of the outcome variables.

In the second part of the simulation study we take on the question whether model constraints
such as class-invariance of regression intercepts or factor loadings can be tested by
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comparing increasingly restrictive models. These comarisons are important because (i) they
test for measurement invariance of an instrument across latent classes, and (ii) for violations
of the within class factor model.

Measurement invariance (MI) with respect to a grouping variable is said to hold if the
measurement model relating items to underlying latent variables is invariant across groups
(Meredith, 1993, for less technical presentations see Lubke, Dolan, Kelderman, &
Mellenbergh, 2003, or Widaman & Reise, 1997). Dolan (2000) has shown that in a multi-
group setting MI is a hypothesis that can be tested by fitting a series of models in which
these parameters are subsequently constrained to be invariant. Focusing specifically on
categorical outcomes, Millsap and Tein (2003) describe a more extended set of models that
can be used to tests different levels of measurement invariance. It is unclear whether these
approaches lead to correct results if the grouping variable is unobserved.

Violations of model assumptions (e.g., non-normality of the factors, non-linear item factor
regressions, non-normality of the errors) result in deviations from multivariate normality of
outcome variables within class 1. Since mixture distributions can be used to approximate
non-normal distributions, it is possible to specify mixture models that represent
approximations of different types of model violations. Some of the tests of MI outlined by
Dolan (2000) in the multi-group context involve the same tests of class-invariance of model
parameters as some potential tests of model violations. This is obviously problematic
because it might render the interpretation of results ambiguous.

The problem points to the more general question of how to interpret results from comparing
mixture models with different numbers of classes and different types of constraints on
within class model parameters. The next section addresses these questions, and also provides
the rationale for the two parts of the current simulation study. The section is followed by a
description of the general factor mixture model. To illustrate some of the problems, we
present an analysis of ten binary depression items. Next, the methods and results of the
simulation study are reported. In the final discussion an attempt is made to provide some
guidelines for using factor mixture models to assess population heterogeneity.

Exploratory mixture models, indirect applications of mixture models, and
the issue of interpreting results

Mixture distributions are a weighted sum of several component distributions (see later). A
mixture model is a model that simultaneously specifies models for the different component
distributions. Titterington, Smith, and Makov (1985) distinguish between direct and indirect
applications of mixture models. In a direct application, the mixture components correspond
to qualitatively or quantitatively distinct clusters of subjects or objects. In an indirect
application, the mixture components are used to approximate a non-normal distribution. The
degree of approximation depends on the number of components and the component specific
parameters. For instance, McLachlan and Peel (2000) describe an example where models
with class-specific variances required fewer classes than models with class-invariant
variances.

In behavioral research, mixture models are often used to assess potential population
heterogeneity (Greenbaum, Del Boca, Darkes, Wang, & Goldman, 2004, Hildebrandt,
Langenbucher, Carr, & Sanjuan, 2007, Lubke et al., 2007, Neuman et al., 1999). The

1Since categorical outcomes are modeled by assuming an unobserved normally distributed outcome variable, which is categorized
using thresholds, violations of the assumptions of the within class factor model correspond to non-normality of the unobserved
outcome variable.
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number of subgroups within a population is not known a priori, and it is common practice to
compare models with an increasing number of classes. If the number of clusters is unknown,
then it is unlikely that the exact structure within cluster, or the nature of the differences
between clusters is known. In other words, analyses with mixture models are usually
exploratory.

It is important to realize that the distinction between direct and indirect applications of
mixture models is somewhat irrelevant when fitting mixture models in an exploratory
setting. Even if the intention of the researcher is to distinguish between clusters of subjects
in a population, the only information model comparisons may reveal is how well a given
model serves to approximate the distribution of observed variables compared to some other
model. Model comparisons do not reveal whether the specified latent classes actually
correspond to meaningful clusters of subjects. One might even argue that in an exploratory
setting, applications of mixture models are always indirect, and that the resulting cluster
structure requires external validation (see Bauer & Curran, 2004, and comments). The
situation is comparable to exploratory factor analysis (EFA) where the finding that three
factors suffice to meet commonly used criteria (e.g. variance explained, eigenvalues > 1,
etc.) does not necessarily imply that the three factors provide a description of the data that is
meaningful on a conceptual level, or that the data generating process has three factors. It
means that 3 factors ‘explain’ a large part of the common variance of the the observed
variables. In the mixture setting, the mixture components correspond to areas of the
observed distribution with similar response patterns. A better fit of model with 2 normal
components compared to a model with a single component provides evidence that the
response patterns in the population are not homogeneous and normally distributed.

However, the situation is slightly more complex when fitting mixtures than when carrying
out an exploratory factor analysis. In EFA, the measurement model relating items to factors
is extremely lenient. In the mixture setting, more constraints are usually imposed on model
parameters. If population subgroups differ by a large number of parameters of the
measurement model, then comparing models that constrain most of the parameters to be
zero or class-invariant (e.g., local independence models, measurement invariant models)
may lead to accepting a model with too many classes. The joint distribution of the scores
from two groups characterized by many group-specific parameters differs from the
distribution of two groups with locally independent or measurement invariant scores. The
differences may concern location, shape, and/or higher order moments, and fitting local
independence or measurement invariant models may require additional classes to capture
these differences. To avoid choosing models with too many classes, one might want to fit
multivariate normal mixtures without imposing any structure on the mean vectors and
covariance matrices of the component distributions. Although such an approach might be
feasible for very small numbers of items, it is usually impractical because the number of
parameters increases dramatically when adding classes with unconstrained covariance
matrices. In addition, fitting unconstrained models may lead to non-convergence. Hence, in
practice, some compromise regarding the number of constraints needs to be found, which it
turn means that there is always the possibility of accepting a model with too many classes.
This is illustrated by the following example of skewed observed data.

Skewed data can be generated in a variety of ways, including sampling from a distribution
with non-zero skewness, transformation of a symmetric distribution, or sampling from a
mixture of normal components. When fitting factor mixture models to skewed data, it should
be expected that the number of mixture components needed to approximate the skewed
observed data depends on the degree of skewness and the sample size, and not on the
method of data generation. Hence, if data are generated from, e.g., a transformed univariate
normal distribution, then fitting a mixture may lead to a solution with more clusters than the
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single cluster used to generate the data. If data are generated using a mixture, fitting
mixtures may lead to under-, over- or correct estimation of the number of components used
to generate the data depending on the power to detect mean differences between classes.
Figure 1 illustrates this point.

The upper left panel shows a distribution of a skewed factor score in the population. In this
case the distribution was generated using a mixture of three normal component distributions
as shown in the upper right panel (similar illustrations can be found in McLachlan and Peel
(2000), among others). In Figure 1, components are separated by a Mahalanobis distance of
1.5, and class proportions decrease with increasing component means (ie., class 1=.7, class 2
= .25, class 3 =.05). The lower left panel shows a sample of N=1000 drawn from the factor
distribution in the panel above, and the lower right panel depicts a sample distribution of an
observed score that is created by adding a normally distributed error. If the sample size is
much smaller than 1000, then it will depend on sampling fluctuation whether or not a
mixture with more than one class would fit better than a single class model. A small sample
might not contain a sufficient number of subjects in the second and third class to allow for
class detection. However, with increasing sample sizes, mixtures with two or three classes
will provide a better fit.

A very important issue in this context is the interpretation of the latent classes of the best
fitting model. Whether or not it makes sense on a conceptual level to cluster the data shown
in Figure 1 into two or three classes cannot be answered by comparing the fit of a set of
mixture models. Model fitting approaches in general have to face the dilemma that affirming
the consequent is a logical fallacy. Acceptable model fit does not allow one to deduct that
the data generating process is in fact the one implied by the fitted model. The additional
complication in the mixture context is that the set of alternative explanations include that
mixture components can be used for a categorical approximation of continuous processes.
As mentioned above, there are different processes that can generate skewed data, which
include but are not limited to mixtures. Therefore, a good fitting mixture model with, say
three classes can by definition not justify the conclusion that three distinct categories of
subjects exist in the population from which the data are obtained. The distinction between
‘true clusters’ and a categorical approximation of a continuous process can not be made
based on the comparison of mixture models. Whether this distinction is important depends
of course on the context.

Models that allow for different types of class-specific parameters deserve additional
attention regarding their interpretation. In a multi-group setting, models with intercept
differences, or intercept and loading differences are directly related to the different types of
measurement non-invariance (Meredith, 1993, Dolan, 2000, Widaman & Reise, 1997). If
group membership is unobserved, the interpretation is less clear due to the indirect
application of mixture models. For instance, factor loadings that increase as a function of the
underlying factor score can be approximated using a model with several classes and class-
specific loadings. Hence, the interpretation of mixture models with non-invariant parameters
of the measurement models needs to be more cautious and includes more alternatives than in
the multi-group setting. In the multi-group setting non-invariant loadings undermine a clear
interpretation of the factors across groups. In the mixture setting one has to add the
possibility that there is a single cluster with increasing loadings as a function of factor
scores. In both settings, the interpretation of invariant models is much more straightforward.

It can be expected that detection of non-invariant parameters and even more severe
misspecifications will depend on the separation between classes and sample size (Lubke &
Neale, 2006). The present study investigates the conditions under which it is possible to
select an appropriate model when comparing a series of different mixture models in case
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outcome variables have a 5-point Likert or binary response format. In the first part we
address whether gross misspecifications of the within class model will be rejected in favor
of the true model. Specifically, we investigate whether it is possible to distinguish between
local independence models (i.e., classic latent class models), factor models with an
increasing number of factors, and factor mixture models with factors and classes. The first
part partially replicates a previous study that addresses the same question for normally
distributed outcomes. In the second part, we investigate whether more specific
misspecifiocations of the within class model can be detected. Here, we compare factor
mixture models with and without class-invariant parameters and increasing numbers of
classes.

The two parts of the study are interrelated. When comparing the different model types
evaluated in the first part, a compromise needs to be found regarding the constraints on the
within class models. As explained above, fitting unconstrained models is usually
impractical. The second part of the current study is designed to provide an indication of the
power to differentiate between different types of constraints.

Details of the data generation and design of the study are described below. First, a brief
description of the general factor mixture model is provided followed by an empirical
example.

The general model
The details of the general mixture model are described elsewhere (McLachlan & Peel, 2000,
Lubke & Neale, 2006). In brief, the joint distribution of the latent class or clustering variable
C and the observed outcome variable Y can be written as the product of the marginal (or
prior) distribution of the class variable and the conditional distribution of the outcomes
given class

(1)

The class variable follows a multinomial distribution with parameters π1,…,πK where

 for k = 1;…;K classes (McCutcheon, 1987, Bartholomew & Knott, 1999).
Conditional on class the observed outcomes have a multivariate normal distribution, which
is structured according to the factor model. As a result, the marginal distribution of the
outcomes is a sum of multivariate normal component distributions weighted by their class
proportion π

(2)

where

(3)

(4)

Intercepts are ν, factor means are α, factor loadings are Λ, the factor covariance matrix is
Ψ, and the matrix of residual variances is Θ. Note that not all parameters of the within class
factor model can be estimated simultaneously as class-specific parameters for reasons of
identification. Regarding the model for the means µ, the same restrictions apply as in multi-
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group models. In the context of this paper, residual covariances are assumed to be zero (i.e.,
Θk is diagonal), although this is not a necessary restriction.

Constraints on particular parameter matrices lead to specific submodels, for instance, fixing
all loadings to zero results in a basic latent class model with local independence, setting the
number of classes K equal to one results in conventional factor models, and letting K > 1
and loadings and factor variances be larger than zero leads to more complex factor mixture
models.

Ordinal categorical outcome variables are derived by categorization of the normally
distributed outcomes. The latter are now assumed to be unobserved and are denoted as Y*.
The observed categorical outcomes are denoted as Y and are related to the unobserved Y*
through threshold parameters τ. Assume that an observation y on a categorical outcome
variable Y has m = 1,…,M response categories, then

(5)

Setting the lowest and highest threshold to −∞ and +∞, respectively, a categorical outcome
variable with M response categories has M – 1 threshold parameters τ that can be class
specific. The unobserved outcomes Y* are related to the factors through Equations 3 and 4.
Consequently, each outcome Y* is related to an underlying factor by a single factor loading
λ. In conjunction with Equation 5, this implies that the categorical outcomes are ordered.
Note that holding all other parameters class invariant, increasing the number of classes of a
model with class specific thresholds increases the number of estimated parameters by (M −
1) × P + 1 for P observed variables 2. If loadings are also class specific, then the increase in
the number of estimated parameters is MP + 1.

Illustration with empirical data
The data

Data for the illustration come from two separate but related studies of all-Caucasian female-
female (FF) and male-male and male-female (MMMF) twins from the Virginia Twin
Registry (Kendler & Prescott, 1999). The Virginia Twin Registry is a population-based
register formed from a systematic review of all birth certificates in the Commonwealth of
Virginia from 1918 onwards. Twins were eligible for participation in each of the studies if
one or both twins were successfully matched to birth records and were born between 1940
and 1974.

Since genders differ with respect to the prevalence of depression, we limit the analysis to
females. In addition, to avoid violations of independence of observations, we use data from
one of the twins from each pair. This results in a sample of N=1093 females. The age ranged
from 18 to 57. Lifetime prevalence for meeting DSM-IIII-R criteria for major depression
(MD) was 36.7% for females.

The ten items are binary indicating presence (1) or absence (0) of symptoms such as fatigue/
loss of energy, feelings of worthlessness, inability to concentrate, and recurrent thoughts of
death. The endorsement frequencies of the items in our sample ranged between .60 and .95.
A detailed description of the item and the data collection is given in Kendler and Prescott
(1999).

2The addition of 1 corresponds to one additional class proportion
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Analysis
A preliminary exploratory factor analysis provided support for a single underlying
dimension. Factor loading ranged between .68 and .9, and the RMSR was .048. Adding a
second factor did not lead to a clear allocation of any of the items to one of the two
dimension. The first two eigenvalues equalled 6.6 and 0.7, which can be regarded as further
evidence for the unidimensionality of the ten items. Note that these results do not exclude
the possibility that several ordered latent classes explain all covariation between items.
Related to this, note also that the exploratory analysis is based on the potentially wrong
assumption of a single homogeneous population.

The analysis plan consists of fitting latent class models, and three different types of factor
mixture models (FMM’s). All models are fitted with an increasing number of classes. The
FFM’s have a single within class factor. The first type imposes class invariance on all
parameters of the measurement model, that is, only factor means and variance are allowed to
differ across classes. The second type permits thresholds, τ in equation (5), to be class-
specific. The third type has class-specifc loadings in addition to class-specific thresholds.
Note that in this model we fix the factor variances to unity in all classes. Scale differences
between classes are absorbed in the loadings (see for instance B. O. Muthén & Asparouhov,
2002). Models with class-specific loadings and class-invariant thresholds are not fitted since
the thresholds τ in equation (5) and the residual variances θ in equation (4) are not
independently identified (B. O. Muthén & Asparouhov, 2002, Millsap & Tein, 2003). Also,
such a parameterization would not make much sense on a conceptual level.

The results of converged models are presented in Table 1.

Based on the BIC and the sample-size adjusted BIC, the measurement invariant single factor
three class model, F1C3t1 in Table 1, is the best fitting model. The estimates of the factor
variance show large differences across classes, and the variance in the highest scoring class
is almost zero. The models with class-specific thresholds have a similar pattern regarding
the factor variances. The 3-class version of the model with class-specific thresholds has
estimates of class specific factor variances that do not seem to be trustworthy. The fit of this
model is therefore not reported. The large factor variance differences in the measurement
invariant model, and the inappropriate estimates of the factor variances in the model with
class specific thresholds raise the question whether the constraint of class-invariant loading
is appropriate. Based on the BIC, the models with class-specific loadings and thresholds
have a worse fit than the measurement invariant models. The two-class model, F1C2t3, is
the best fitting model among models with class specific loadings. In this model, the loading
estimates in the higher scoring class show much more variability across items than in the
lower scoring class. On a conceptual level this would mean that in the class of the
participants with higher levels of depression, the ten items vary more with respect to how
well they discriminate than in the class of unaffected participants. Since the two class model
with class specific loadings has 41 parameters compared to 26 of the measurement invariant
three class model, It is possible that the rejection of this model is due to lack of power.

The conventional latent class models have worse fit in general than the factor mixture
models with comparable numbers of parameters. This seems to support the conclusion that
the data support latent classes with continuous variation of depression within class. The first
part of the simulation study addresses the general question of correct model choice in case of
ordered categorical data, and focuses especially on the potential to discriminate between
conventional latent class models and models with continuous variation within class. In the
second part of the simulation we focus on the power of distinguishing between models with
different constraints on the within class parameters.
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Methods Simulation Part 1: Comparisons of different model types
Data generation

As in our previous study, data for the first part of the current study are generated under
submodels of the general FMM described in Equations 2–4 without any model violations.
Factor scores and error terms are generated under multivariate normal distributions, and
items are linearly related to the factors with constant factor loadings. This results in
multivariate normal outcomes conditional on class, which are subsequently categorized
using Equation 5.

Due to much longer computation times when fitting models to categorical data (e.g., some
models exceeded 24 hours), only 30 data sets are generated under each model. There are 5
data generating models, namely a two factor single class model (F2C1), a single factor two
class model (F1C2), a two factor two class model (F2C2), a two class and a three class latent
class model. Since LCA models can be concetualized in terms of zero factor models, these
are abbreviated as F0C2 and F0C3. The number of outcome variables (i.e., 10) and the
parameter values are the same as used for the data generation in the first study. Parameter
values are listed in the Appendix. In the present study, data are generated under these five
models for 4 different combinations of sample size and distance between classes. Total
sample sizes of 300, 400 and 1500 are investigated at a multivariate Mahalanobis distance
(MD) between equally sized classes of 1.5, and in the fourth combination, a sample size of
300 is combined with a distance of 2 (note that for the 3 class LCA, distances between
classes 1 and 2 and classes 2 and 3 equals 1.5 whereas the distance between classes 1 and 3
is 3)3. The continuous data (i.e., Y*) are categorized with 4 equally spaced class-invariant
thresholds, resulting in ordered categorical outcomes with 5 response categories. In addition,
F2C2 data with 400 subjects and a distance of 1.5 are also categorized into binary items with
a mean (i.e, p-value) of 0.5. The F2C2 5-point and binary data are used for a more detailed
comparison with the continuous data investigated in the first study.

Fitted models
The standard set of fitted models includes one, two, and three factor models with a single
class (F1C1, F2C1, F3C1), a two factor two class model (F2C2), and two, three, and four
class LCA models (F0C2, F0C3, and F0C4). All fitted multi-class models have class-
specific thresholds. Item mean differences are probably the most common violation of
measurement invariance in practice. Fitting models with class invariant thresholds in a
exploratory setting is therefore not advisable. For data with more than two ordered response
categories, one might consider fitting models with intercept differences, ν in equation (3)
rather than allowing thresholds to be class specific. Conceptually, this corresponds to a rigid
shift where all thresholds of an item are shifted by a class-specific constant. Whether or not
such a model makes sense on a conceptual level depends on the specific data. Furthermore,
in case an item has also a class specific factor loading, this intermediate solution is not
adequate since the metric of the latent response variable Y* is class specific. Generally, in
an exploratory context for which this simulation is deemed relevant, thresholds should at
least initially not be constrained.

In sum, seven models are fitted to the five different data types under 4 different settings of
sample size and class separation. In addition, a direct comparison of correct model choice
for continuous, 5-point and binary data is carried out. This is done only for the F2C2 data. In
the first study, only exploratory factor mixture models were fitted to continuous outcomes.
These are models in which loadings of all items on all factors are estimated except those

3The Mahalanobis distance between two classes that is used in this study equals M = (µ1 – µ2)tΣ−1(µ1 – µ2)
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fixed to achieve model identification. In addition to the models listed above, we also fit an
exploratory F2C2 model to the 5-point and binary F2C2 data such that the set of fitted
models is exactly the same as in the first study.

Model comparisons are based on information criteria (see Appendix) and the adjusted
likelihood ratio test proposed by Lo, Mendell, and Rubin (2001). All models in this part of
the simulation are fitted using the software program Mplus version 4.2 (L. K. Muthén &
Muthén, 2007).

Results Simulation Part 1: Comparisons of different model types
First, results are presented for the 5-point Likert outcomes. This is followed by the
comparison of correct model choice across different response formats.

The results for five different data generating models (F1C2, F2C1, F2C2, F0C2, and F0C3)
are presented in Table 2 through Table 6. The total sample size in these Tables is 400 and
the Mahalanobis distance equals 1.5.

Table 2 shows the results for the F1C2 data generating model. Although the true number of
classes is 2, the AIC indicated the need of a second class in only 23% of the model
comparisons, and all other indices favor single class models. This is much lower that for
continuous data. Under similar conditions, Lubke and Neale (2006) showed that the aLRT
indicated the need of the second class in about 70% of the comparisons. An important
difference between continuous and 5 point Likert outcomes concerns the fact that the
difference in degrees of freedom when comparing models with k and k – 1 classes is much
larger in the categorical than in the ordinal case. An additional class in the ordinal case has
42 additional parameters, where 40 of these parameters are the class specific thresholds for
the ten 5-point scale items (the other two pertain to an additional factor variance and a class
proportion). Researchers comparing different models for categorical data have to be
sensitive to the difference in numbers of estimated parameters, which also affect the
information criteria.

On a positive note, it is unlikely that a latent class model is incorrectly chosen when fitting
data that are generated with an underlying factor within class. As shown in Table 2,
information criteria for the latent class models are much higher on average. Note that the
potential to discriminate between factor models and latent class models is not due to model
parsimony: the F1C2 model with 91 estimated parameters has lower indices than the F0C2
model with 81 estimated parameters. Hence, a distinction between models imposing local
independence and models that allow for structures within class covariation is easily made
even if outcomes are categorical.

Regarding the power to detect the correct number of classes, the pattern of results for the
other four data generating models with N=400 and MD=1.5 are very similar. The power of
the aLRT to detect an additional class when it is present in the data is considerably lower
than demonstrated in our previous study with continuous data. As mentioned above, this is
most likely due to a larger differences in degrees of freedom when comparing k-class to k –
1-class models than when comparing models for continuous data.

Single class data with two factors (F2C1 data) are generally unproblematic to fit, which is
most likely due to the fact that the incorrect two-class model is rejected because it has many
more parameters. Table 3 shows that the correct F2C1 model would be chosen most of the
time. The competing models are single and three factor single class models, however, the
three factor model would probably be rejected in practice because the pattern of loadings is
diffuse and the third factor adds little to the explained variance.
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The F2C2 data demonstrate that detecting two true classes is problematic when outcomes
are categorical. As explained in the introduction, in an exploratory setting thresholds would
be specified as class-specific parameters, leading to many additional parameters when
adding a class. In the model comparison shown in Table5 the F2C1 model is the favorite. As
with the single factor two class data, a researcher would not make the mistake of choosing
one of the the latent class models as a favorite model.

The results for the latent class data with 2 and 3 classes are shown in Table 6 and Table 7).
Even if information criteria are lower for the factor models, these would not be chosen in
practice since loading estimates are close to zero, indicating the absence of an underlying
factor. This is very similar to results with continuous data (Lubke & Neale, 2006). Taken
together, Table 2, Table 5 and Table 6 show that the distinction between latent class models
and models with factors within class is unproblematic no matter whether the true data are
latent class or factor mixture models.

Next, we consider results where the sample size is increased to N=1500. With continuous
data it was shown that a total sample size of N=2000 resulted in a ceiling effect of 100%
correct model choice at a Mahalanobis distance of 1.5. Additional results revealed that the
percentage reached 98% for N=1500. For categorical data, results look much less positive.
The proportions correct model choice are very similar to those with a sample size equalling
400. Decreasing the sample sample size to N=300, which had a clear detrimental effect in
the continuous data, or increasing the distance between classes to MD=2.0 does not have a
pronounced effect on correct model choice. Proportions of correct model choice remain
approximately the same as for the N=400 and MD=1.5 setting.

As already noted, the decrease in power to distinguish between classes when comparing
results for continuous and categorical outcomes can be due to the larger difference in
numbers of parameters when adding a class. However, it can also be due to loss of
information when categorizing outcomes. To disentangle these two effects we now compare
continuous, 5-point scale and binary data. The loss of information should be the highest in
binary data, whereas the difference in numbers of parameters when adding a class is highest
in the 5-point scale data.

As can be seen in Table 7, the increase in loss of information when using binary rather than
5-point scale data does not lead to further deterioration of results. Apparently the smaller
differences in number of estimated parameters in the comparisons of models for binary data
compensate for the more crude categorization. This is even more evident when considering
the aLRT, which performs much better for binary data where the test involves a difference
of 30 degrees of freedom than for the 5-point data with a difference of 60 degrees of
freedom. Although these results may depend to some extent on the specific settings in our
simulation, it seems safe to conclude that when comparing a set of fitted models, one needs
to be attentive to the difference in numbers of estimated parameters. Apparently, the
penalties for the number of parameters of the commonly used information criteria BIC,
sample size adjusted BIC and CAIC, and to a lesser extent AIC, are too great to be useful
when comparing models for 5-point scale data because the different models of interest vary
widely in parsimony.

Methods Simulation Part 2: Testing class invariance of model parameters
Lubke and Neale (2006) showed that in the absence of model violations and given adequate
sample sizes and class separation, it is possible to choose the correct model when outcomes
are multivariate normal. The first part of the current study showed that in the absence of
model violations it is possible to distinguish between local independence models and models
with factors within class. Detection of classes is more problematic due to a large increase in
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the number of parameters when adding a class with class-specific thresholds. The second
part focuses on this question in more detail. Using data with and without class specific
parameters, we investigate whether it is possible to detect non-invariance of model
parameters.

Data generation and fitted models
Data were generated to investigate whether class specific thresholds or factor loadings can
be detected when comparing mixture models. We chose thresholds and loading parameters
to illustrate the power to detect more fine-grained differences between mixture models that
nonetheless have quite different conceptual interpretations.

This part of the simulation is set up to test in how far the difference in numbers of
parameters influences model selection when comparing k to k + 1 class models with and
without constraints on measurement parameters. Testing the class invariance of thresholds
with M-point Likert data and P items involves a model comparison where the k + 1 class
model has (M − 1) × P + 1 more parameters than the k class model. Models where only the
loadings are specified to be class-specifc have a difference of P + 1 parameters. Models with
class specific loadings and thresholds have a difference of MP + 1 parameters.

One might consider fitting models with class specific intercepts, ν in equation (3), which
would also involve a difference of P + 1, just as class specific loadings. Both models could
therefore be used in the simulation to illustrate the impact of the difference in numbers of
parameters on the power to reject models with invariant parameters when data are non-
invariant. In the current simulation we use the model with class specific loadings rather than
class specific intercepts.

It is important to realize that in an empirical setting it depends whether either of these two
models (only intercepts ν or only loadings λ class specific) can be deemed appropriate. This
is due to the fact that not all parameters in the model for categorical outcomes shown in
equations (3) – (5) are independently identified (B. O. Muthén & Asparouhov, 2002). If
loadings and factor variances are class invariant, then a model with class specific intercepts
might be an interesting option. Conceptually, it corresponds to a situation where the width of
the intervals between thresholds (i.e, the increase in underlying trait necessary to score in the
next higher category) are class invariant. However, in case factor variances and/or loadings
are class specific, this model looses its appeal. Similarly, the model with only class specific
loadings might have limited practical value. As discussed in the section covering the
empirical example, it is likely that in real data class specific loadings go together with class
specific residual variances. Since residual variances and thresholds are not independently
identified, models with class specific loadings should usually also allow for class specific
thresholds.

The simulated data generated in this study have no class differences in residual variances, Θ
in equation (4), and thresholds, τ in equation (5). Hence fitting models with class specific
loadings and class-invariant thresholds is unproblematic. It is mainly meant to permit the
investigation whether a smaller increase of parameters when fitting k + 1 class models has
indeed substantially more power than when the k + 1 class models have a larger increase of
parameters.

The first type of generated data has 2 factors and 2 classes (F2C2) and class specific
intercepts, νk in Equation 3. Categorization with equidistant response categories results in
class specific thresholds τk. We generate 30 data sets with a Mahalanobis distance of 1.5,
and a sample size of 400. The 8 fitted models are single class factor models with 1–3 factors,
2 factor 2 class models with and without threshold invariance, and latent class models with
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2–4 classes. We also use the F2C2 data generated for the first part of this study that have
class invariant thresholds, and we fit the same models. This design allows us to investigate
the power to detect class specific thresholds when data have this type of non-invariance, and
to reject class specific thresholds when data have invariant thresholds.

The design to test class invariance of factor loadings is similar. The data generating model is
again a 2 factor 2 class model, and we generate 30 data sets with class invariant loadings and
30 sets with class specific loadings. The Mahalanobis distance ν for the two types of data is
kept at 1.5, and the sample size is 400. To both data types, we fit F2C2 models with class
invariant or with class specific loadings.

Results Simulation Part 2: Testing class invariance of model parameters
Invariance of thresholds—When fitting the set of eight models to data with class
specific thresholds, BIC and CAIC always point to the incorrect threshold invariant model.
AIC and aBIC favor the 3 factor 1 class model (AIC in 73% and aBIC in 33% of the
replications), the remaining replications also favor the incorrect F2C2 threshold invariant
model. The correct threshold specific model did not have superior information criteria in any
of the replications.

For data with class invariant thresholds, comparing the eight fitted models results in correct
model choice approximately 98% of the time. It is interesting to compare this result to Part 1
Table 4 where different models were fitted to 2 factor 2 class data. Since Part 1 mimics an
exploratory mixture analysis, the only fitted F2C2 model in Table 4 had class specific
thresholds. The preferred model in part 1 was the F3C1 model. Including the more
parsimonious model with the correct constraints on the within class thresholds leads to
correct model choice. Even when decreasing the sample size to 300, the rate of correct
choice remains above 80%. However, it is important to realize that the model comparisons
based on information criteria are favoring the much more restrictive equal threshold model
no matter whether the true data are threshold invariant or not. When testing measurement
invariance it would be preferable to have a test with a higher power to reject the
measurement invariant model.

Invariance of loadings—Results for tests of class invariance of factor loadings look
more promising. When comparing the fit of models with class invariant and specific
loadings to data with true class specific loadings, AIC and sample size adjusted BIC always
select the correct model, and the BIC and CAIC in 83% and 77% of the comparisons. Fitting
the same models to data with class invariant loadings shows that the AIC does not
discriminate well between true class specific and true class invariant loadings. The AIC
chooses the correct class invariant model in only 27% of the comparisons. The adjusted BIC
performs better with 67% correct model choice. The BIC and CAIC always choose the the
correct model. Taken together, the BIC provides the best compromise between false
positives and false negatives (e.g., incorrectly accepting the invariant model when data class
specific loadings and incorrectly rejecting the invariant model when the data have class
invariant loadings). Compared to the results with class-specific thresholds, it is clear that
power is less compromised when comparing models that do not involve large differences in
the number of model parameters.

Discussion
The three main conclusions that can be drawn from the results of the current simulations
concern (i) the dependence of model choice on response format, sample size, and class
separation, (ii) the potential to use mixtures to test class invariance of model parameters,
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and, based on (i) and (ii), the necessity of contextualizing the results of any given mixture
analysis.

Our previous simulation showed that in an exploratory analysis of continuous data, the
comparison of different mixture models including latent class, factor and factor mixture
models generally results in correct model choice given sufficient sample size and mean
differences between classes (Lubke & Neale, 2006). Specifically, there was a trade-off
between sample size and mean differences between classes very similar to what can be
observed when testing mean differences between observed groups.

The current study similarly focuses on comparing mixture models in an exploratory context,
but with categorical observed data. The first part of the current study shows that even for
categorical data, it is easy to distinguish between latent class models that assume local
independence within class, and models that assume a factor structure within class, although
the number of classes in the absence of local independence may be underestimated. The first
part of the simulation shows that factors explaining covariation of observed variables within
a cluster are easily detected in data with true continuous variation, and rejected in data that
are locally independent conditional on class. This result replicates the findings of the
previous study with continuous data. The possibility to distinguish between latent class and
factor mixture models is especially important in psychiatric research where it is a much
discussed question whether a disorder should be described in terms of subtypes or
continuous variability in severity (for a summary, see Pickles & Angold, 2003). Since data
in psychiatric research are often Likert type data or binary symptom endorsements,
replication of our previous findings concerning continuous data is encouraging.

The current study shows, however, a clear detrimental effect of response format on the
power to detect additional classes. The effect is likely due to the larger difference in free
parameters in models with additional classes. In an exploratory setting, in which the model
comparisons we investigated would be relevant, thresholds should not be fixed to be class-
invariant. Especially in settings where classes differ with respect to the variance of the
underlying factors, it is usually unrealistic to assume that the increase in the score on the
underlying factor(s) that is needed to score in the next higher response category, is the same
for all classes. As a consequence, adding a class involves the estimation of P × (M − 1) + 1
additional parameters, where P is the number of items and M the number of response
categories. Our simulation shows that this large increase in parameters is punished by the
information criteria and the adjusted LRT regardless of the numbers of classes in the
generated data. The penalties of the information criteria render model comparisons too
conservative in favor of models with less classes especially in case of Likert data with 5
response categories. Binary data performed better when considering the aLRT, but very
similarly to 5-point scale data when considering the information criteria. Apparently, the
loss of information due to a much more crude categorization is to some extent canceled out
by having smaller differences in numbers of estimated parameters between models with an
increasing number of classes. Since calibrating new (versions of existing) indices is a
tremendous task, it seems more realistic for researchers using mixture models to conduct a
small scale simulation to assess the feasibility of detecting an additional class for their
specific settings (e.g, class separation, sample size, numbers of items, numbers of response
categories).

The second part of our study aims at testing class invariance of model parameters. We
consider two forms of non-invariance, namely threshold invariance and factor loading
invariance. Similar to the comparison of models with K and K −1 classes, the comparison of
models with class invariant and class specific thresholds is characterized by a large
difference in the number of estimated parameters. The more parsimonious models are
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favored regardless of whether they are correct or not. Researchers need to be aware that tests
of measurement invariance of thresholds may incorrectly indicate absence of bias. The
results are better when we compare models with a smaller difference of parameters, as was
the case with data with and without invariant loadings. Especially the BIC emerged as a
good index to detect non-invariant loadings. In addition to the fact that the difference in the
number of parameters is smaller than in case of threshold differences with 5-point data, it is
possible that the estimation of loading parameters (and hence detection of class differences
with respect to these parameters) might be less problematic when the clusters in the
population have specific loadings. This point is illustrated in Figure 2.

The contribution to the likelihood of a given subject is weighted by the probability of
belonging to each of the clusters. Subjects whose response pattern does not place them in the
area where clusters overlap belong with certainty to a particular cluster, and their response
pattern contributes only to the estimation of the parameters of that cluster. Subjects in the
area of overlap contribute less to either cluster. Figure 2 shows data with and without
loading differences for the same underlying factor mean difference. For class invariant
loadings (right panel), the two areas that contain the subjects outside the overlap of the
clusters are the two clusters than in the case of data with class specific loadings (left panel).
The topic of discriminating between classes that differ with respect to their factor structure,
and the estimation of slope and regression coefficients in structural equation mixture models
is covered in different study (Tueller & Lubke, submitted).

Contextualizing the results of any given mixture analysis is necessary because sample size,
separation between classes, response format and the difference in numbers of free
parameters between fitted models all influence the choice of best fitting model. Prior to any
analysis it is therefore necessary to establish the power to discriminate between the fitted
models by comparing different data generating processes. Essentially, this is not different
from the necessity to compute the power in any other type of statistical testing procedure. It
should become standard practice to accompany the comparison of different models with
results from a parametric bootstrap showing the power to discriminate between models in a
particular setting.

A second important issue when interpreting latent classes concerns the fact that favoring a
multi-class solution may not be due to the presence of qualitatively or quantitatively distinct
groups of subjects. As noted in the introduction, the distribution depicted in Figure 1 could
have been derived using different data generating mechanisms, including skewed factor
scores as well as a mixture of different clusters of subjects. Figure 2 equally illustrates this
point. Data similar to those plotted in the first panel may also be generated using a single
population in which the factor loadings increase as a function of the factor score.
Consequently, the finding that a model with class specific loadings fits better than a model
with invariant loadings can be interpreted not only in terms of absence of measurement
invariance, but also in terms of a violation of the assumption that items are linearly related to
the underlying factors. Mixtures can approximate systematic continuous variation using
several component distributions that describe the characteristics of different areas of the
joint distribution of the data. Mixture models do not necessarily settle the question of
continuity vs. discontinuity, however, mixture models can provide a more or less detailed
description of the different areas of the joint distribution of the data. This description can
include guidelines as to which type of model is more adequate to describe the structure
within a cluster, e.g., local independence or structured covariation within class. Whether a
given clustering solution is useful on a conceptual level depends on the particular context of
a study.
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There are several limitations to the current study. First of all, all data in the simulation are
artificially generated. This obviously has the advantage that the true cluster structure and
within cluster models are known, but it also has the disadvantage that the data generating
process is extremely simple compared to most real data. Fitted models in an analysis of real
data are always more or less crude approximations of the data generating process. In
addition, in a real data analysis the selection of fitted models, in particular, whether to
include more exploratory or more confirmatory models, depends on how well the theory in a
particular area is developed. The empirical example in this study illustrates the problem of
choosing an adequate model due to potentially insufficient power to allow for class specific
loadings and thresholds. The current simulation confirms this problem, and shows what to
expect under a variety of other conditions. Base on the simulation results, the rejection of the
conventional latent class models with local independence within class in the empirical
example seems trustworthy. Other analyses of factor mixture analyses of real data that might
serve as illustrations start to appear in the literature (Hildebrandt et al., 2007, Lubke et al.,
2007).

The second limitation of the current study concerns an issue that is characteristic of
simulations in general, namely that the design of the current study is limited by computation
time. Computation times are substantial when analysing categorical data due to the
computational burden of integrating over the unobserved continuous response variables Y *.
As a consequence, only 30 replications were used to obtain rates of correct model choice
and average fit measures. In addition, only a limited number of design factors were
investigated. However, the main findings, namely that (1) it is possible to distinguish
between latent class and factor mixture models, and (2) that the difference of the number of
estimated parameters has a severe impact on the power to discriminate between two models,
seem nonetheless convincing. Note that these results are valid for the investigated sample
sizes and class separations. The latter reflect effect sizes that might be considered large in
some areas of research although they are quite common for instance in psychiatric data.
Smaller separations result in a decrease of power to distinguish between classes.

A third limitation of the current study is that we do not investigate the coverage of true
parameters in the different fitted models. There is pilot evidence that coverage of factor
variance parameters can be problematic when fitting models with class specific variances to
data with considerable variance differences. A fourth and related limitation is that correct
class assignment is not assessed in the current study. Rates of incorrect assignment depend
to a large extent on how much the class specific distributions overlap, which is a function of
mean and variance differneces. Parameter estimates and correct class assignment are
addressed in detail in Tueller and Lubke (submitted).
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Appendix
The parameter values used for the data generation are largely the same as in the first study
except for the thresholds used to categorize the data. Thresholds are differ slightly across
data sets since the range of an item is categorized into five equidistant intervals. Thresholds
for data with MD=1.5 and 2.0 are approximately
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MD 1.5 [−1.73 − 0.16 1.41 3.0]

MD=2.0 [−1.64 0 1.67 3.32]

Two class latent class model
Class-invariant parameters:

residual variances [0.7 .5 .5 .5 .5 .5 .5 .5 .5 .5]t

Class-specific parameters:

means class 2 [0.35 − .2 .6 − .75 0.35 − .2 .6 − .75 0.35 − .2]t

Three class latent class model
Class-invariant parameters:

residual variances [0.7 .5 .5 .5 .5 .5 .5 .5 .5 .5]t

Class-specific parameters:

means class 1 ν = [0 0 0 0 0]t

means class 2 [.7 − .8 1.2 − 1.1 .7 − .8 1.2 − 1.1 .7 − .8]t

means class 3 [1.3 − 1.2 1.2 − 1.3 1.3 − 1.2 1.2 − 1.3 1.3 − 1.2]t

Two factor/single class model

factor loadings 

factor covariance matrix 

residual variances [0.7 .5 .5 .5 .5 .5 .5 .5 .5 .5]t

Single factor/two class model
Class-invariant parameters:

factor loadings [1 .8 .8 .8 .8 .8 .8 .8 .8 .8]t

factor variance 1

factor mean in the second class MD=1.5 [1.57]

factor mean in the second class MD=2.0 [2.1]

residual variances [0.7 .5 .5 .5 .5 .5 .5 .5 .5 .5]t

Two factor/two class model
Class-invariant parameters:
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factor loadings 

factor covariance matrix 

factor means in the second class MD=1.5 [1.37 1.37]

factor means in the second class MD=2.0 [1.85 1.85]

residual variances [0.7 .5 .5 .5 .5 .5 .5 .5 .5 .5]t

Information criteria
All information criteria used in the present study are penalized log-likelihood functions with
the general form −2L + f(N)p where L is the loglikelihood of the estimated model with p
free parameters and f(N) is a function that may depend on the total sample size N (Sclove,
1987). The AIC does not depend on sample size, the penalty is f(N)p = 2p (Akaike, 1974,
Akaike, 1987). The BIC, the CAIC, and the sample size adjusted BIC integrate N in
different ways, the respective penalty terms are log(N)p, and (log(N) + 1)p for the BIC and
the CAIC (Bozdogan, 1987, Schwarz, 1978). The sample size adjusted BIC uses (N* = (N +
2)=24) instead of N.
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Figure 1.
Factor and item distributions for a skewed factor
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Figure 2.
Class specific and class invariant factor loadings
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