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Abstract

We demonstrate that human electrophysiological recordings of the local field potential (LFP) from intracranial electrodes,
acquired from a variety of cerebral regions, show a ubiquitous 1/f2 scaling within the power spectrum. We develop a
quantitative model that treats the generation of these fields in an analogous way to that of electronic shot noise, and use
this model to specifically address the cause of this 1/f2 Brownian noise. The model gives way to two analytically tractable
solutions, both displaying Brownian noise: 1) uncorrelated cells that display sharp initial activity, whose extracellular fields
slowly decay in time and 2) rapidly firing, temporally correlated cells that generate UP-DOWN states.
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Introduction

Power laws appear in a large variety of settings throughout

nature and often signify that there is a simple process at the origin

of what appears to be a very complex phenomenon. Examples of

the variety of settings in which power laws appear are the

Gutenberg-Richter law for the size of earthquakes [1,2], the

allometric scaling laws that appear throughout biology [3], and

Paretos’s law of income distributions [4].

Power laws have also been witnessed within the brain in

electroencephalographic (EEG) and magnetoencephalographic

(MEG) recordings while studying a wide variety of brain function

[5,6,7]. The signals recorded outside the skull by these techniques

represent the global activity of a large amount of cortical and

subcortical tissue and give rise to a range of exponents (for an

overview see reference [8]). Much more local measurements of

cerebral activity may be recorded by a single microelectrode.

While the emphasis of these measurements is usually focused on

the spiking activity of single cells within the vicinity of the

recording electrode, local field potentials (LFPs), which comprise

the much slower background of electrical activity, may also be

extracted from the signal. Moreover, previous studies have shown

that the local brain dynamics recorded from microelectrodes

can be masked in the coarse bulk signal recorded from an

intracranial macroelectrode [9]. While it may be assumed that

the temporal behavior of EEGs is similar to that of LFPs, this

assumption remains to be proven. In fact, connecting local

behavior, such as that displayed by single-neuron activity and

LFP measurements, to more global measurements such as EEG

recordings, is one of the great challenges to our understanding of

the brain.

We found that electrophysiological recordings, taken from

pharmacologically intractable epilepsy patients with microelec-

trodes implanted in a variety of cerebral areas, display a

surprisingly universal 1/f2 power law in the frequency spectrum

of LFP activity. To the best of our knowledge, this is the first time

such a universal feature of the LFP has been reported in humans.

A 1/f2 power spectrum is said to display the statistics of

Brownian noise since it has the same scaling exponent as a 1D

random walk. However, it is far from clear what the underlying

mechanism is that gives rise to these statistics. Various other

studies have tried to address the issue of scale free phenomena

within the brain by invoking concepts such as self-organized

criticality [10,11] or by imposing frequency dependences on the

intercellular medium [12]. While the relevance of the former in

explaining these phenomena can be debated [13], recent

experiments make the later seem unlikely [14]. In the current

paper, we take an alternative approach, that is, we focus on

understanding how an extracellular field could give rise to such

scale-free phenomena. To this end, we developed a general

method for modeling the LFP from what we refer to as neuronal

shot noise, which allows one to study the microscopic origin (i.e.,

single neuron activity) of the power law dependence in the power

spectrum. We propose two quite different processes that could

both give rise to the observed 1/f2 dependence. The first involves

the uncorrelated firing of single neurons that display very slow

dendro-synaptic decay in the extracellular field which they

generate. The second possibility involves the correlated firing of

a single neuron that displays either no activity (DOWN state) or

very rapid spiking (UP state). We end with a discussion of the UP-

DOWN states (UDS) suggested by our model and how they

compare to experimentally observed UDS within the cortex.
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Methods

Experimental Methods
We recorded local field potentials from the cerebral cortex of 10

subjects with pharmacologically intractable epilepsy (4 males; 24–46

years old), implanted with chronic electrodes to localize the seizure

focus for possible surgical resection. Electrode locations were based

exclusively on clinical criteria and were verified by MRI or by

computed tomography co-registered to preoperative MRI. Each

electrode probe had nine micro-wires (Platinum/Iridium, 40 mm

diameter) protruding from its tip, eight high-impedance recording

channels (typically 200–400 kV) and one low-impedance reference

with stripped insulation. The differential signal from the micro-wires

was amplified using a 64-channel Neuralynx system, filtered

between 1 and 9000 Hz, and sampled at 28 kHz. We recorded

from a total of 684 micro-wires (106 in the frontal lobe, 546 in the

temporal lobe, 16 in the parietal lobe, 16 in the occipital lobe). For

more technical information, as well as detailed images of the

electrodes, we refer the reader to Bragin et al. [15].

Recordings lasted for 10 minutes while subjects were awake and

at rest with eyes open. If the subjects’ eyes closed, an alpha rhythm

appeared as a nested oscillation around 10 Hz on top of the

spectrum that impairs the goodness-of-fit for our estimation of the

scaling exponent. Since we were primarily concerned with this

scaling exponent, we preferred a setting without a dominant rhythm.

The recording conditions were stationary over those 10 minutes.

Recordings were typically performed at the beginning of the

pre-surgical monitoring, i.e. one day after implantation of the

electrodes, but before withdrawal of anti-epileptic medication, so

patients were still stable on their normal medication. No additional

anesthetics were administered. Moreover, recordings were typi-

cally performed several days before the first seizure was recorded

during monitoring. Written informed consent was obtained from

all human subjects and all studies conformed to the guidelines of

the Medical Institutional Review Board at UCLA [16].

For analysis, the data was down-sampled to 7 kHz using an

anti-aliasing filter. The power spectral density was estimated by

applying Welch’s method to consecutive 5-sec segments and

subsequently averaging over the entire 10 min (Fig. 1). The scaling

parameter a was determined as the slope of a least-square linear fit

of the double-logarithmic power spectrum. To diminish the

influence of amplifier roll-off, the linear fit was restricted to a

frequency range of 1 to 400 Hz.

Theoretical Model
The microscopic generation of the Local Field Potential (LFP)

may be formulated in a similar way to that of shot noise, originally

described by Schottky [17] to account for the noise across an

electrical resistor. This may be seen by writing the extracellular

potential V(t) generated by N neurons, at a given spatial location

within the brain, as follows:

V tð Þ~
XN

i

ð
dt’fi t{t’ð Þmi t’ð Þ, ð1Þ

which is exactly how one quantitatively models shot noise. Here

the function fi(t) accounts for the temporal profile of the

extracellular field generated by neuron i while mi(t) represents

the activity of that neuron and may be explicitly written as

mi tð Þ~
X

ki

d t{tki
ð Þ, ð2Þ

where d(t) is the Dirac delta function. From this definition, we see

that the function mi(t) may be thought of as analogous to the spike

train with firing activity occurring at times tki for neurons i = 1…N.

Note, this model does not require that the neurons generate action

potentials; it only assumes a stereotyped profile fi(t) for the electrical

field generated by each neuron which repeats at times tki (see Fig. 2).

We will assume that the relevant neural activity has reached a

steady-state such that the autocorrelation G(t) = ÆV(t)V(t+t)æ is

independent of t. By the Wiener-Kinchin theorem, the autocorre-

lation function G(t) is related to the power spectrum S(v) by Fourier

transformation. From Eq. 1, we may write the power spectrum as

S vð Þ~S ~VV vð Þ
�� ��2T~

X
i,j

~ff �i vð Þ~ff j vð ÞS~mmi vð Þ~mmj vð ÞT, ð3Þ

where ~VV vð Þ, ~ff vð Þ, and ~mm vð Þ are the Fourier transforms of their

respective temporal functions.

Figure 1. Power law and scaling exponent in local field
potentials recorded from the human cerebral cortex. Top:
Exemplary power spectrum of local field potentials recorded from a
micro-wire in the temporal lobe. Middle: The scaling exponent (here
a= 2.04) was determined by a linear least-square fit of the log-log
power spectrum. Bottom: Scaling exponents (mean6stand. dev.),
averaged across micro-wires for different brain regions. FL: frontal lobe
a= 1.9260.29; TL: temporal lobe a= 2.0260.33; PL: parietal lobe
a= 2.0360.28; OL: occipital lobe a= 2.0560.10.
doi:10.1371/journal.pone.0004338.g001

Local Field Potential
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To solve for the power spectrum as written in Eq. 4 would

require us to know the location of each neuron involved in

generating the LFP, the extracellular field produced by each

neuron, and the decay of that field through the neuronal medium.

While we have carried out such biophysical calculations in the past

for single neurons [18,19,20], we are here only concerned with

understanding the source of the power law behavior of the power

spectrum, not in reconstructing the LFP.

The scale invariant nature of S(v) greatly simplifies our problem

since it will allow us to neglect many of the biophysical constants

that arise from the details mentioned above. To clarify this point,

let us assume that the power spectrum S(v) = C1v
n, where C1 is a

constant. We can solve for the coefficient of the power by plotting

the log of both sides of this equation, log S(v) = n?log(v)+log(C1).

The power dependence is given by the slope n and is unaffected by

the constant offset.

Results

Figure 1 displays the experimental values of the scaling parameters

found in our recordings. The scaling parameters where averaged

across different micro-wires for four regions of the cerebral cortex

along with their standard deviation. The observed values for the

scaling exponent6standard deviation are: Frontal Lobe (FL)

a= 1.9260.29, Temporal Lobe (TL) a= 2.0260.33, Parietal Lobe

(PL) a= 2.0360.28, Occipital Lobe (OL) a= 2.0560.10. Note that

in all four regions the scaling parameter is close to a value of a= 2,

indicating a universal scaling behavior of local electrical brain activity.

Using the simplified model discussed in the methods section

above, we now focus on searching for solutions of Eq. 3 that have

a 1/v2 functional dependence. In general, it is quite difficult to

evaluate Eq. 3; however, there are two limits that allow a simple,

analytical solution. We now discuss these two cases.

Case I: Slow Dendro-Synaptic Decay
The simplest case to consider is that the spiking statistics are

independent between neurons, and that the spiking of each neuron

is an independent Poisson process [21]. In this case

Smi vð Þmj vð ÞT~di,jm
2
i , ð4Þ

where mi is the average firing rate of the neuron i and di,j is the

Kronecker delta function.

We can now ask when the power spectrum satisfies

S vð Þ~
X

i

m2
i

~ff i vð Þ
�� ��2! 1

v2
: ð5Þ

The solution requires ~ff vð Þ!1=v, whose Fourier transform is a

Heaviside step function fi(t)/H(t). This answer is a bit unrealistic

since it implies that the field generated by the cell does not decay with

time. A more realistic solution would be to assume a form such as

fi tð Þ!h tð Þe{at, ð6Þ

which has Fourier transform 1/(a+iv). In the limit of slow decay,

a%1, a neuron with an extracellular field of this form, firing with

Poisson statistics, would give rise to Brownian noise in the LFP.

In this case, the 1/f2 behavior originates from the steep onset of

the extracellular field. The rise time of an action potential may

occur within a fraction of a millisecond, which could account for a

sharp onset, while the decay of the dendro-synaptic extracellular

field may last for as long as a second [22]. The functional form of

the decay does not affect these results, so long as the cell takes

much longer to return to baseline than it took to spike.

Case II: UP-DOWN States
The second case that we consider is the limit of a sharply peaked

extracellular field. In this case, we may treat ~ff vð Þ as a constant f i,

and we will assume that the activity of different neurons is either

uncorrelated (Æmimjæ/dI,j) or synchronous (Æmimjæ/1). The spike

timing of a single neuron, however, may show a temporal

correlational structure. These assumptions lead to a power spectrum

S vð Þ~
X

i,j

f if jSmi vð Þmj vð ÞT!
1

v2
: ð7Þ

Since all the frequency behavior is contained within the statistics

of mi, and we are assuming that all cells are active with the same

statistics, we need to look for a sequence of spikes that have

individual spike timing correlations of the form

Sm tztð Þm tð ÞT!t, ð8Þ

since linear time correlations are consistent with 1/v2 frequency

correlations. This is the same linear in t scaling as that of a 1D

random walk and is at the origin of the term Brownian noise.

Since m(t) is analogous to the spike train of each neuron, we need

to formulate a binary sequence that shares the correlational

structure of a random walk. A simple way to generate a binary

sequence representing white noise is to pick a random number at

each timestep and then apply a threshold such that all values

above the threshold are set to one, and all below to zero. Brownian

noise may be created by integrating a white noise signal. However,

it is not obvious how to apply a similar thresholding procedure to

convert the resulting analog signal into a digital one. For instance,

one may limit the random walk to positive numbers and set a

threshold. A binary sequence is generated by adding a 0 at each

timestep that the walker remains below the threshold. If the

threshold is reached, a 1 is added to the binary sequence, the

walker is reset to the origin, and the process continues.

Unfortunately, the resetting procedure clears the memory of the

random walker, and we again generate a flat, white noise

spectrum.

An alternative procedure that will generate Brownian noise is

given by setting up a telegraph process (see Fig. 3) [23]. In this case

a binary sequence is generated by constructing a two-state system,

(0 and 1) where, at each timestep, the probability of making the

transition 0R1 (1R0) is given by k+Dt (k2Dt). The autocorrelation

function for such a process may be explicitly written as

Sm tztð Þm tð ÞT~
kz

kzzk{

� �2

1z
k{

kz

e{ kzzk{ð Þt
� �

: ð9Þ

Figure 2. Schematic of Eq. 1 representing neuronal shot noise.
A function fi(t), representing the extracellular field associated with the
ith neuron, occurs at times t1,t2,… governed by the statistics of mi(t).
doi:10.1371/journal.pone.0004338.g002

Local Field Potential
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In the limit of equal transition rates, k+ = k2, and low

probability of making a transition, (k++k2)t%1, Eq. 9 reduces to

Sm tztð Þm tð ÞT& 1

2
1{ktð Þ, ð10Þ

which has the desired linear in t statistics of a random walk.

Figure 4 displays a binary sequence generated by a telegraph

process and the 1/f2 dependence of its power spectrum. The

telegraph process gives rise to periods of sustained, rapid activity

followed by intervals of inactivity. This results in collective

oscillations that display a much lower frequency than the rapid

firing witnessed during depolarization. The result is a pattern of

behavior reminiscent of UP-DOWN states common in cortex [24].

Discussion

Studies of the LFP and single neuron spiking activity, combined

with current source-density analysis, suggest that LFPs are primarily

the result of dendritic activity distributed over a large region of the

cortex. LFPs are therefore believed to provide a measure of the local

processing and input to a given region of the brain [25,26].

We developed a very simple model to explain our key

experimental finding, a 1/f2 decay in the local field potential

recorded from individual microelectrodes implanted into human

cortex. In particular, we showed two examples of how biologically

realistic, single neuron activity, parameterized by the temporal shape

of the resulting extracellular fields and the statistics of cellular

activity, can give rise to power law behavior within the LFP.

In Case I , we showed how a population of cells, each displaying a

sharp onset of activity and a much slower decay of the extracellular

field, could give rise to a Brownian power spectrum. The time course

of dendritic activity is often much longer than that of an action

potential. This is in line with the above statement concerning the

origin of the LFP. However, the sharpness of the temporal onset of

activity is what gives rise to the power-law behavior. One mechanism

that might account for this result would be the rapid initiation of an

action potential, followed by slow dendro-synaptic decay.

Of course, this model not only assumes that the spiking statistics

of each neuron is Poisson, but that there are no correlations

among neurons. It is not uncommon to find the firing rate of single

neurons uncorrelated with the averaged behavior of the local

population; however, this is not always the case [27].

Figure 3. Schematic of a telegraph process used to generate a
binary sequence of spike times. At each timestep the binary
variable makes the transition from 0R1 (resp. 1R0) with probability
k+Dt (resp. k2Dt).
doi:10.1371/journal.pone.0004338.g003

Figure 4. Modeling of UP-DOWN states by a telegraph process. Top: Binary sequence generated from a telegraph process. Bottom: Power
spectrum of the binary sequence confirming the 1/f2 behavior. The slope of the dashed line is 22.
doi:10.1371/journal.pone.0004338.g004

Local Field Potential
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In Case II, we explored the opposite extreme from Case I, that

of rapidly firing, single neurons with linear temporal correlations.

This behavior is similar in nature to so-called UP-DOWN states

seen in cortical neurons. During periods of sleep, quiet awake

behavior, or under a variety of anesthetics, spontaneous activity of

neocortical neurons display slow 0.1 to 2 Hz oscillations called

UP-DOWN states (UDS). These states appear to be characteristic

of slow-wave sleep [28,29,30] and are thought to be involved in

the consolidation of long-term memories and in learning. The

UDS of cortical pyramidal neurons are highly synchronized and

may be clearly seen in LFP recordings of the cortex. The UP states

are characterized by a sustained depolarization that leads to rapid,

20–70 Hz spiking activity while the DOWN states show periods of

hyper-polarized inactivity.

It should be pointed out that our recordings were performed in

the awake resting state in the human cortex, whereas UDS and

ultra-slow oscillations have been described only in states of low

vigilance such as slow-wave sleep and anesthesia in animal studies.

It is therefore unlikely that the power law scaling behavior

observed in our recordings would be caused exclusively by the

mechanisms illustrated in Case II. Nevertheless, it is encouraging

that this extreme analytical case of a 1/f2 power law scaling gives

rise to phenomena that are actually observed in mammalian

brains.

The true origin of the 1/f2 behavior probably lies somewhere

in-between the two limiting cases we have considered here.

Unfortunately, an analytic evaluation of Eq. 1 when there is

explicit time dependence in both the extracellular field (fi(t)) and

the firing statistics (mi(t)) is, in general, difficult. However, for a

known set of fi(t) and mi(t), a numerical evaluation of Eq. 1 is

straightforward. This formalism should, therefore, serve as a

starting point in modeling power-law dependencies in the power

spectrum of the LFP and in connecting this property to the

underlying single neuron activity.
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