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Abstract

During 2005 and 2006, marine pharmacology research directed towards the discovery and
development of novel antitumour agents was reported in 171 peer-reviewed articles. The purpose of
this article is to present a structured review of the antitumour and cytotoxic properties of 136 marine
natural products, many of which are novel compounds that belong to diverse structural classes,
including polyketides, terpenes, steroids, and peptides. The organisms yielding these bioactive
marine compounds included invertebrate animals, algae, fungi and bacteria. Antitumour
pharmacological studies were conducted with 42 structurally defined marine natural products in a
number of experimental and clinical models which further defined their mechanisms of action.
Particularly potent in vitro cytotoxicity data generated with murine and human tumour cell lines was
reported for 94 novel marine chemicals with as yet undetermined mechanisms of action. Noteworthy
is the fact that marine anticancer research was sustained by a global collaborative effort, involving
researchers from Australia, Belgium, Benin, Brazil, Canada, China, Egypt, France, Germany, India,
Indonesia, Italy, Japan, Mexico, the Netherlands, New Zealand, Panama, the Philippines, Slovenia,
South Korea, Spain, Sweden, Taiwan, Thailand, United Kingdom, and the United States. Finally,
this 2005-6 overview of the marine pharmacology literature highlights the fact that the discovery of
novel marine antitumour agents continued at the same active pace as during 1998-2004.
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1. Introduction

This article reviews the 2005-6 research literature in the field of marine antitumour
pharmacology using a format similar to the one used in our previous five reports, which covered
1998-2004 (1-5). The pharmacology of marine compounds with antihelmintic, antibacterial,
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anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet,
antiprotozoal, antituberculosis, and antiviral activities; those affecting the cardiovascular and
nervous systems, and other miscellaneous mechanisms of action have been reviewed elsewhere
(6-10).

Consistent with our previous five reviews, only those articles reporting on antitumour
pharmacology or cytotoxicity of marine compounds with well defined chemical structures
(Figures 1 and 2) were included in the present review and are presented in alphabetical order
in Table I or Table Il. The literature reporting novel information on the preclinical and/or
clinical pharmacology of marine chemicals with previously determined mechanisms of action
has been summarized in Table | and is further discussed in the text of this review. On the other
hand, reports on novel marine chemicals which demonstrated significant cytotoxicity but with
as yet undetermined mechanisms of action are shown in Table I1. With few exceptions, studies
on the preclinical antitumour pharmacology of synthetic analogues of marine metabolites as
well as reports on research with marine extracts or as yet structurally uncharacterized marine
chemicals are not included in this review.

2005-6 Antitumour pharmacology of marine natural products with
established mechanisms of action

Table | summarizes novel mechanism of action research from preclinical studies of 42 marine
compounds (selected structures are shown in Figure 1). Reports on clinical trials with some of
these marine compounds are excluded from Table I, but discussed in this section of the article.

New information was published during 2005-6 on the preclinical and clinical pharmacology
of 24 marine compounds which we have previously reviewed (1-5): agosterol A, aplidine,
ascididemin, auristatin, bistramide A, bromovulone Ill, bryostatin-1, cephalostatin-1,
cryptophycins, dictyostatin-1, didemnin B, dideoxypetrosynol A, discodermolide, dolastatins,
ecteinascidin-743, fascaplysin, halichondrin B, hemiasterlin, jasplakinolide, kahalalide F,
lamellarin D, pateamine A, peloruside A and psammaplin A.

One study was published on the preclinical pharmacology of agosterol A, a polyhydroxylated
sterol acetate isolated from the marine sponge Spongia sp. Ren and colleagues (11) determined
the functional role of intracellular loops (ICL) on the 190 kDa human membrane multidrug
resistance protein 1 (MRPL1), a transporter in non-P-glycoprotein-mediated multidrug
resistance in tumour cells. Interestingly, mutations of the ICL5 or ICL7 domains directly
affected ATP and azido agosterol A binding to MRP1, demonstrating the role of both ICL
domains on the drug- binding properties of MRP1, and its concomitant drug transporter
function.

Research on the cyclic depsipeptide aplidine, a second-generation didemnin analogue also
known as aplidin or dehydrodidemnin B, and isolated from the Mediterranean marine tunicate
Aplidium albicans continued at an active pace. Seven preclinical studies, which characterized
the cellular and molecular pharmacology of aplidine, and two clinical articles were published
during 2005-2006. Taddei and colleagues (12) demonstrated that aplidine's cytotoxic activity
in NIH3T3 cells involved the production of mitochondrial reactive oxygen species that induced
oxidation and inactivation of low molecular weight protein-tyrosine phosphatase activity, an
enzyme that appears to play a role in both tumour onset and development. Bravo and colleagues
(13) investigated the actions of aplidine in human thyroid cancer cells. Aplidine blocked in
vitro cell progression into the G1 phase of the cell cycle, with markedly reduced levels of cyclin
D1, cdk4 and p21 protein levels, at plasma concentrations similar to those observed in vivo in
phase I/11 clinical studies. Biscardi and colleagues (14) confirmed aplidine's cytotoxic and
apoptotic activity in three human myeloid leukemia cell lines and in cells derived from patients
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with acute myeloid leukemia. At in vitro concentrations achievable in patients (100 nM)
aplidine induced G1 cell cycle arrest and vascular endothelial growth factor inhibition. Gajate
& Mollinedo (15) discovered that the mechanism of aplidine-induced apoptosis involved a
novel and potent cell-killing mechanism that required Fas activation and clustering of
additional death receptors, membrane-bound FasL and downstream signaling molecules into
“aggregated lipid rafts” through a cytoskeleton-mediated process. The observation that aplidine
was rapidly incorporated into lipid rafts highlighted the significance of these lipid aggregates
in the regulation of apoptosis and cancer chemotherapy. Tognon and colleagues (16) found
that aplidine-induced resistance in a human ovarian cancer cell line over a period of several
months, was related to the expression of the multidrug transporter Pgp, “potentially useful
pharmacological information” that may have clinical relevance. Gonzalez-Santiago and
colleagues (17) examined the molecular mechanism of apoptosis induction by aplidine in
human breast cancer cells. They demonstrated that aplidine disrupted glutathione homeostasis
by increasing the ratio of oxidized to reduced forms, thus leading to increases in reactive oxygen
species and oxidative stress. Furthermore, aplidine caused rapid activation of Racl small
GTPase resulting in Jun N-terminal kinase (JNK) phosphorylation, which was considered
critical for aplidine-induced apoptosis. There was a concomitant decrease of MKP-1
phosphatase, an enzyme overexpressed in human breast cancer and considered a “viable target
for therapeutic intervention” by enabling expression of pro-apoptotic activity of INK. Straight
and colleagues (18) tested the hypothesis that aplidine would reduce the growth of anaplastic
thyroid xenografts in mice. Interestingly, aplidine reduced tumour growth as well as the
expression of 16 out of 20 angiogenic genes investigated, suggesting that aplidine might be an
effective adjunctive therapy for anaplastic thyroid cancer, an aggressive and highly lethal
cancer.

Two Phase | trials evaluated the clinical pharmacology of aplidine during 2005-6. Faivre and
colleagues (19) completed a Phase | and pharmacokinetic study on sixty-seven patients who
received aplidine as a 24-hour intravenous infusion for advanced malignancies. Although
muscle toxicity was noted as dose limiting at doses > 5 mg/m2, aplidine induced minor
responses and tumour stabilizations in eight patients, and clinical benefit in six patients with
endocrine tumours. Maroun and colleagues (20) conducted a Phase | study in thirty-seven
patients with refractory solid tumours in which a 1-hour infusion of aplidine was given for 5
days every 3 weeks. Even though the regimen was well tolerated, only nine patients with
progressive disease at study entry had stable disease, while two patients with non-small cell
lung cancer and one with colorectal cancer evidenced minor responses.

A preclinical study by Guittat and colleagues (21) reported that ascididemin, a pyridoacridine
alkaloid isolated from the marine sponge Amphimedon sp., inhibited telomerase function
(IC5q = 87uM) by preferentially binding to G-quadruplex DNA structures, thus potentially
affecting telomere structure and cancer cell replication.

Five studies in 2005-6 described the preclinical pharmacology of auristatin, a synthetic
antitubulin agent related to the marine natural product dolastatin 10 (see below). Sutherland
and colleagues (22) demonstrated that lysosomal trafficking and cysteine protease metabolism
enabled the target-specific cellular cytotoxicity by valine-citrulline linked anti-CD 30-
auristatin conjugates, which were previously shown by Sanderson and colleagues (23) to have
the “longest reported drug-linker half-life to date” in plasma and cell culture. Taken together
these findings provide the basis for pronounced specificity and antitumour activity of anti-
CD30 monoclonal antibody-monomethylauristatin E conjugates towards CD30* tumour cells.
Using a similar antibody-drug conjugate approach, Ma and colleagues (24) evaluated the
antitumour activity of auristatin-conjugated to a human monoclonal antibody to prostate-
specific membrane antigen (PSMA), a membrane glycoprotein which is highly upregulated in
prostate cancer. The novel conjugate eliminated PSMA-expressing cells with picomolar
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efficiency in vitro as well as showed therapeutic efficacy in a mouse xenograft model of
androgen-independent human prostate cancer. These findings suggested this approach merits
further development as a molecularly targeted therapy of hormone-refractory prostate cancer,
the second leading cause of death in men in the United States. Smith and colleagues (25) as
well as Tse and colleagues (26), reported encouraging in vitro and in vivo results with auristatin-
containing antibody-drug conjugates to target melanoma cells expressing either
melanotransferrin/p97 or glycoprotein NMB, respectively. Their studies indicated these agents
may provide a new type of selective and efficient treatment for late stage malignant melanoma,
for which current therapeutic options are limited.

Two studies extended the preclinical pharmacology of bistramide A, a polyketide derivative
isolated from the marine ascidian Lissoclinum bistratum. In a detailed mechanistic study
Statsuk and colleagues (27) identified actin as the cellular receptor for bistramide A and
reported that this marine compound disrupted the actin cytoskeleton, depolymerized F-actin
invitro and bound directly to monomeric G-actinina 1:1 ratio with a K4 = 7 nM. Furthermore,
the discovery by Rizvi and colleagues (28) that bistramide A spans the entire deep binding
cleft between actin's subdomains 1 and 3, while forming a network of extensive hydrogen-
bonding contacts, has provided the required structural information for the rational development
of novel bistramide analogues for studying the actin cytoskeleton and as potential therapeutic
leads.

Two preclinical studies were described for the cyclopentenone prostanoid bromovulone 111,
which was isolated from the soft coral Clavularia viridis. In 2005 Chiang and colleagues
(29) reported that bromovulone 111 induced apoptosis in hepatocellular carcinoma cells through
a mechanism that involved endoplasmic reticulum stress as well as activation of the
transcription factor CHOP/GADD153 and caspase-12. Then in 2006, this same research group
(30) reported that bromovulone 111 induced apoptosis in human hormone-resistant prostate
cancer cells by a mechanism that required the rapid redistribution and clustering of Fas, as well
as activation of the caspase-9/Bid/caspase-9 signaling cascades.

Several preclinical and clinical studies published during 2005-6 extended the pharmacology
of bryostatin-1, a macrocyclic lactone derived from the marine bryozoan Bugula neritina that
continued to receive considerable attention in view of its demonstrated antineoplastic activity
in vitro and in vivo. Five studies contributed new information on the molecular pharmacology
of bryostatin-1 at both the cellular and molecular level. Powell & Yin (31) discovered that
overexpression of PKCe sensitized human prostate cancer cells to the induction of apoptosis
by bryostatin-1, an observation that may have implications for therapy because overexpression
of PKCe has been reported in human prostate cancer. Mohanty and colleagues (32) investigated
bryostatin-1's influence on protein kinase Cé in human cervical carcinoma HeLa cells and its
cisplatin-resistant variants. The observation that modulation of PKC3 by bryostatin-1 enhanced
sensitivity to cisplatin in both HeLa cells and cisplatin-resistant HeLa cells “could be used to
enhance cellular sensitivity to cisplatin” as well as increase the molecular understanding of
bryostatin-1's effect on PKC§ regulation. Interestingly, Choi and colleagues (33) also noted
that bryostatin-1 down-regulation of PKC§ was associated with enhanced proliferation of a
non-small cell lung cancer cell line. Taken together these observations may help identify
systems in which bryostatin-1 has a rational therapeutic application. Tuthill and colleagues
(34) examined the effect of bryostatin-1 on the regulation and activation of mouse epidermal
keratinocyte RasGRP1, an exchange factor for the Ras small GTPases which also activates
three classic Ras proteins both in vitro and in vivo. These results support the hypothesis that
non-PKC receptors are also involved in the molecular mechanism of action of bryostatin-1,
and further the molecular understanding of the antitumour effects in the skin. Garcia and
colleagues (35) demonstrated for the first time that bryostatin-1 enhanced expression of the
IFN-y receptor 2 in human monocytic cells and primary human monocytes, by a dual
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mechanism involving transcriptional and post-transcriptional events that did not require protein
synthesis. The authors speculated that their observations might help “overcome some of the
immune defects observed in cancer patients”, and thus proposed in vivo preclinical research
of the combination of bryostatin-1 and IFN-y in murine tumour models.

Two clinical trials with bryostatin-1 were reported during 2005-6. EI-Rayes and colleagues
(36) completed a Phase | study with bryostatin-1 and gemcitabine with 36 patients who had
nonhematologic cancer that was refractory to conventional treatment. Based on the preclinical
data and the tolerability of this combination, the authors suggested that a Phase Il trial in breast
and pancreatic cancer represented a rational approach for the development of this regimen.
Ajani and colleagues (37) reported a multi-center Phase Il study of sequential paclitaxel and
bryostatin-1 in 35 patients with untreated, advanced gastric and gastroesophageal
adenocarcinoma. Although the sequential use of paclitaxel plus bryostatin-1 resulted in a 29%
response as compared to paclitaxel alone (17% response), further development of this synergic
combination will require the amelioration or prevention of myalgia. Peterson and colleagues
(38) reported a Phase Il trial of interleukin-2 in combination with four different doses of
bryostatin-1 in 33 patients with renal cell carcinoma, a type of cancer that in the US has an
estimated incidence of 319,000 new cases per year. Although the addition of bryostatin-1 to
IL-2 was well tolerated, and four patients demonstrated evidence of tumour shrinkage, the
overall rate of response was low (3.2%), leading this group of researchers to state that they did
not “recommend further studies investigating this combination”.

Two studies extended the preclinical pharmacology of cephalostatin 1, a bis-steroidal marine
natural product isolated from the Indian Ocean hemichordate Cephalodiscus gilchristi. Miiller
and colleagues (39) discovered that cephalostatin 1 inactivated the antiapoptotic mitochondrial
protein Bcl-2 by hyperphosphorylation which was independent of M-phase arrest and DNA
damage, a finding that could potentially help treatment of drug-resistant cancers. Lopez-Anton
and colleagues (40) reported that cephalostatin 1 activated an endoplasmic reticulum (ER)
stress response which was accompanied by caspase-4 activation and apoptosis induction
without requirement of the classical mitochondrial pathway. The fact that cephalostatin 1
appears to enable the ER stress signaling pathway may be advantageous for the treatment of
chemoresistant tumours with potential defects in the mitochondrial pathway.

Two preclinical and one clinical study were reported during 2005-6 with the cryptophycins,
macrocyclic depsipeptides isolated from the marine cyanobacterium Nostoc sp. Cannady and
colleagues (41) examined the enzyme kinetics of glutathione conjugation of cryptophycin 52
and 53 by cytosolic glutathione S-transferases (GST) and epoxide hydrolases, and discovered
that human, rat, and mouse cytosolic GSTSs are responsible for metabolism of cryptophycin 52
to the GSH conjugate. Their results provide firm support for ongoing Phase 11 metabolism
studies. Liang and colleagues (42) reported extensive preclinical evaluation of the synthetic
and formulation-stable glycinate esters of cryptophycins-309, 249, as well as other analogues
in mouse and human tumours. Based on the expectation that these second generation analogues
will produce 100 to 1000 fold greater activity than the first clinical candidates (e.qg.
cryptophycin 52), and their formulation stability advantage compared to cryptophycin C-52,
the authors noted both “C-309 and C-249 are being considered as second-generation clinical
candidates”. D'Agostino and colleagues (43) described a multicenter Phase 11 study of a
synthetic cryptophycin analogue LY 355703 in 26 patients with platinum-resistant ovarian
cancer, a leading cause of death from gynecological tumours in Western countries. Although
only a modest level of activity was observed, the lack of severe side effects in this poor-
prognosis population suggested that this compound might deserve further investigation.

One study during 2005-6 described the pharmacology of dictyostatin, a 22-membered
macrolactone isolated from the sponge Spongia sp. collected in the Republic of Maldives.
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Madiraju and colleagues (44) observed that dictyostatin's induction of tubulin polymerization,
taxoid site binding, and antiproliferative activity against human ovarian carcinoma cells was
comparable to that of discodermolide, and thus concluded that the macrocyclic structure of
dictyostatin might represent a template for the bioactive conformation of discodermolide.

Didemnin B, a cyclic depsipeptide produced by ascidians of the family Didemnidae was the
focus of one pharmacologic investigation in 2005-6. Beasley and colleagues (45) completed a
study of the excretion and tissue concentrations of [2H] didemnin B in mice after intraperitoneal
administration. Interestingly, they found that the pancreas had the greatest concentration of
radiolabel at both the high and low doses 7 days after administration, which suggested possible
efficacy in animal models for the treatment of pancreatic cancer.

Park and colleagues (46) examined the pharmacology of dideoxypetrosynol A, a
polyacetylene from the marine sponge Petrosia sp., by investigating the molecular mechanism
involved in cell cycle arrest at the G1 to S phase transition in human monocytic leukaemia
cells. A careful study of G1/S transition regulatory proteins revealed an enhanced expression
of the Cdk inhibitor p16/INK4a with a concomitant decrease of retinoblastoma protein
phosphorylation, thus suggesting that both p16 and pRB proteins play an important role in G1
cell cycle arrest induced by this compound in human leukemia cells.

There were four studies of discodermolide, a compound originally isolated from the sponge
Discodermia dissoluta that suppresses microtubule dynamics. Xia and colleagues (47) using
a photoaffinity-labeled analogue to investigate and define the drug binding pocket in tubulin,
observed that while the analogue had no hypernucleation effect in an in vitro microtubule
polymerization assay, it labeled amino acid residues 305-359 in the S9-S10 loop in B-tubulin.
This sequence is very close to the Taxol binding site, thus enabling the construction of a
computationally-derived binding model of both the discodermolide analogue and native
discodermolide binding to B-tubulin. Escuin and colleagues (48) observed that discodermolide,
as well as other microtubule-disrupting agents, down-regulated hypoxia-inducible factor-1a
(HIF-1a) protein levels, but not mMRNA, in a dose-dependent manner. This study directly linked
B-tubulin drug binding with HIF-1a protein inhibition, a discovery of considerable clinical
significance because HIF-1o over expression is present in over 70% of all human tumours and
their metastasis, thus making HIF-1a “a prime target for anticancer therapies”. Klein and
colleagues (49) evaluated discodermolide in several human cancer cell lines and determined
that it induced accelerated senescence with a potency similar to doxorubicin with concomitant
Erk1/2 activation and upregulation of two markers of senescence, namely the p66Shc and
PAI-1 proteins. These findings provide the first demonstration of a microtubule stabilizing
agent that inhibits tumour cell growth by the mechanism of accelerated senescence. Huang and
colleagues (50) investigated the combination of discodermolide and taxol in human ovarian
cancer cells and an in vivo model of ovarian carcinoma, and reported that both agents interacted
synergistically at drug concentrations that resulted in aneuploidy rather than mitotic arrest.
Although the mechanism for the synergistic efficacy of these two agents was not determined,
the data supported concurrent use of low doses of these two compounds for treatment of
epithelial ovarian carcinoma, a leading cause of death from gynecologic malignancies. In an
effort to develop novel therapies for poorly vascularized and hypoxic tumours, a “longstanding
problem in clinical oncology”, Smith and colleagues (51) tested discodermolide analogues as
potent chemical components of combination bacteriolytic therapy. Interestingly, a single
intravenous injection of (+)-2,3 anhydrodiscodermolide plus genetically modified Clostridium
novyi-NT spores into mice bearing colorectal cancer xenografts caused rapid and complete
obliteration of the tumours.

Nine studies were published during 2005-6 on the preclinical and clinical evaluation of the
dolastatins, a family of modified peptides originally isolated from the marine mollusc
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Dolabella auricularia that induce actin assembly in vivo. Watanabe and colleagues (52)
investigated the antitumour activity of TZT-1027 (Soblidotin), a newly synthesized dolastatin
10 derivative, using a panel of human tumours that included Pgp overexpressing sublines. They
concluded that TZT-1027 antitumour activity was superior to that of paclitaxel, docetaxel and
vincristine, and thus anticipated that TZT-1027 would provide benefit in the chemotherapy of
tubulin inhibitor-unresponsive tumours.

Five Phase | trials were conducted with TZT-1027 and a third-generation dolastatin-15
analogue, tasidotin hydrochloride (ILX651). Jonge and colleagues (53) in the Netherlands,
completed a Phase | and pharmacokinetic study with TZT-1027 in 17 patients with advanced
solid tumours. In this trial one patient with a refractory metastatic liposarcoma demonstrated
aresponse, and eight patients experienced stabilization of their tumour, and the study defined
a dose of TZT-1027 that was “well tolerated”, with the main dose-limiting toxicities being
reversible neutropenia and infusion arm pain. A three-institution Phase | study with TZT-1027
in 18 Japanese patients with advanced solid tumours was reported by Tamura and colleagues
(54). The researchers noted that one patient with metastatic esophageal cancer achieved a
partial response, and that TZT-1027 was “active at a tolerable dose” with neutropenia and
infusion reaction (phlebitis) the most frequent toxicities that were observed. Greystoke and
colleagues (55) published data of a Phase | study with TZT-1027 administered in combination
with carboplatin in 14 patients with advanced solid tumours, which resulted in one patient with
pancreatic adenocarcinoma achieving a partial response. Although peripheral reversible
neuropathy was observed in 36% of the patients, the combination of TZT-1027 and carboplatin
appeared to be “relatively well tolerated”. Cunningham and colleagues (56) conducted a Phase
I and pharmacokinetic study with the pentapeptide tasidotin hydrochloride (ILX651), a third-
generation dolastatin-15 analogue, in 32 patients with advanced solid tumours refractory to
standard treatment. While the best antitumour response consisted of stable disease in 10
patients, in contrast to TZT-1027, tasidotin's neurotoxicity and cardiovascular toxicity were
diminished, with neutropenia observed as the principal dose-limiting toxicity. Mita and
colleagues (57) reported a Phase | and pharmacokinetic study with tasidotin hydrochloride in
thirty patients with advanced solid tumours. Although neutropenia was observed as the
principal toxicity, the researchers concluded that the mild myelosuppression and manageable
nonhematologic toxicities observed concomitant to antitumour activity in three patients with
lung, hepatocellular and renal cell carcinoma “warranted further disease-directed evaluations”
with this agent.

Three Phase Il trials of dolastatin-10 and TZT-1027 were described during 2005-6. Perez and
colleagues (58) reported a Phase Il study in 22 patients with advanced breast cancer who were
treated with dolastatin-10 as a single agent. While the observed hematological toxicity was
moderate and one patient had a partial response, the study was terminated due to the lack of
tumour response. The results of this Phase I1 study were judged to be “disappointing”, probably
aresult of dolastatin 10's “true lack of activity”. Kindler and colleagues (59) completed a Phase
Il trial of dolastatin-10 in 16 patients with advanced hepatobiliary cancer and 12 patients with
metastatic pancreatic adenocarcinoma, malignancies that are known to be refractory to most
chemotherapy and for which novel therapeutic agents are needed. Due to a lack of tumour
response, and only a slight increase in patient survival, the authors concluded that unfortunately
further evaluation of “dolastatin-10 in pancreaticobiliary malignancies is not warranted”. Patel
and colleagues (60) reported the results of a Phase 11 study of intravenous TZT-1027 in 28
patients with advanced or metastatic soft-tissue sarcomas with prior exposure to anthracycline-
based chemotherapy, usually doxorubicin. While no confirmed responses were observed in
any of the patients enrolled in this study, TZT-1027 was found to be safe and well tolerated,
with the most common hematologic toxicity being neutropenia.

Eur J Cancer. Author manuscript; available in PMC 2009 November 1.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Mayer and Gustafson

Page 8

Ten preclinical and seven clinical articles contributed to the preclinical and clinical
pharmacology of the tetrahydroisoquinoline alkaloid ecteinascidin-743 (ET-743;
Trabectedin, Yondelis®), an antitumour agent originally isolated from the Caribbean sea squirt
Ecteinascidia turbinata (61).

New insights into the molecular pharmacology of ET-743 was provided by several studies
during this period. Minuzzo and colleagues (62) tested the hypothesis that ET-743 specifically
targeted cell-cycle genes involved in transcription. Their data demonstrated that ET-743 was
not a general inhibitor of inducible genes, but its effects were downstream from transcription
factor binding, and that histone acetylation was largely unaffected. David-Cordonnier and
colleagues (63) carried out the first structure-activity study with ET-743 analogues, and
demonstrated that the DNA-interacting activity of this molecule is dependent on the C21-
hydroxyl group, and that changes in the C ring of ET-743 can affect the DNA binding affinity.
The data also suggested the existence of an additional non-DNA target for ET-743, probably
a protein, “located close to DNA”, that would cause formation of a ternary complex that would
trigger apoptosis and cell cycle arrest. Marco & Gago (64) used unrestrained molecular
dynamics simulations to investigated the interaction of two ET-743 molecules with a self
complementary dodecanucleotide d(GTATGGCCATAC). These simulations revealed that it
was possible for two ET-743 molecules to bind in a tail-tail arrangement to two adjacent TGG
sites placed on opposite DNA strands. This interaction led to structural distortions in the DNA
oligonucleotide that could affect the binding of transcription factors acting as activators or
repressors of gene transcription. Dziegielewska and colleagues (65) determined the effects of
ET-743 on DNA helicase/nuclease activity of RecBCD from Escherichia coli, an enzyme
involved in unwinding the DNA helix, and used as a model to study DNA-damaging agents.
They reported that ET-743 significantly inhibited unwinding, enhanced degradation of DNA,
and completely disrupted the RecBCD's enzyme, thus resulting in inhibition of repair,
replication and transcription processes. Herrero and colleagues (66) tested the hypothesis that
ET-743 induced lethal DNA strand breaks by interacting with the nucleotide exchange excision
repair proteins, which are involved in DNA damage repair caused by several anticancer drugs,
eg. cisplatin. Specifically, the researchers discovered that ET-743-induced DNA cytotoxicity
depended on the interaction of this agent with an arginine residue (Arg314) in the DNA-binding
region in human nuclease FEN-1, and the putative formation of a DNA-ET-743 ternary
complex which caused tumour cell death.

Preclinical cellular pharmacology of ET-743 was described in several studies during 2005-6.
Brandon and colleagues (67) reported on the cytotoxicity of ET-743 in a human hepatic
carcinoma cell line growing in vitro. The results demonstrated that because ET-743 is
metabolized by cytochromes (CYP) P450 3A4, and 2C9, 2C19 and 2E1, and by Phase Il
enzymes, combination therapy with other CYP inhibitors (e.g. cisplatin, paclitaxel and
doxorubicin) may result in hepatotoxicity due to drug-drug interactions. More recently,
Brandon and colleagues (68) examined the human biotransformation and cytochrome P450
reaction phenotype of ET-743 and confirmed that CYP3A4 has a major role in the metabolism
of ET-743 in vitro with lesser involvement of CYP2C9, 2C19, 2D6 and 2E1 isozymes. Clearly
assessment of the biotransformation and CYP reaction phenotype is important for interpreting
pharmacokinetic data from clinical trials and predicting potential ET-743-drug interactions, in
particular hepatic toxicity. In an effort to correlate gene expression profiles with in vitro
sensitivity to ET-743, Martinez and colleagues (69) investigated a panel of 11 chemonaive,
low-passage soft-tissue sarcoma cell lines established from patient biopsies using a cDNA
microarray containing 6,700 cancer-related genes. Although the gene expression profile
revealed that 244 genes were down-regulated and 86 genes up-regulated in 8 of the 11 sarcoma
cell lines in this study, a noteworthy finding was the upregulation of genes related to cell cycle
control, stress, DNA-damage response and apoptosis. Confirmation of these results in patient
tumour specimens will be necessary to help identify subsets of soft-tissue sarcomas that may
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show increased sensitivity to ET-743. To investigate the mechanism of in vitro resistance,
Marchini and colleagues (70) evaluated microarray-based gene expression profiles in ET-743-
sensitive and - resistant ovarian and chondrosarcoma cell lines. Microarray studies on a panel
of 2400 cDNAs revealed that a subset of 70 genes, 21 of which were upregulated and 49
downregulated, consistently showed differential expression in the ET-743-resistant cell lines,
thus shedding new light on molecular pathways involved in chemoresistance to ET-743.

One study detailed the preclinical in vivo pharmacology of ET-743. Meco and colleagues
(71) found that the combination of ET-743 and irinotecan, a water-soluble derivative of
camptothecin that targets topoisomerase I, resulted in only weak cytotoxicity to human
rhabdomyosarcoma in vitro, but this same drug combination produced a “strong and long-
lasting” effect on the growth of rhabdomyosarcoma tumour xenografts in vivo. Although the
mechanism of the in vivo synergism of ET-743 and irinotecan was not investigated, the authors
hypothesized that the discrepancy between in vitro and in vivo effects might result from a
combination of direct cytotoxic and indirect anti-inflammatory effects of ET-743.

One Phase | and pharmacokinetic study as well as 6 Phase 11 trials extended the clinical
pharmacology of ET-743 during 2005-6. Lau and colleagues (72) conducted a Phase | and
pharmacokinetic study with ET-743 given as a 3-hour i.v. infusion every 21 days in 12 children
with refractory solid tumours. ET-743 was generally well tolerated with reversible
hepatotoxicity the most common adverse effect (58% of patients). The observation that one
patient with a recurrent Ewing sarcoma showed a complete response with resolution of
pulmonary metastases has resulted in the development of a Phase 11 trial in children with
refractory Ewing or soft tissue sarcomas. Garcia-Carbonero and colleagues (73) reported a
Phase Il and pharmacokinetic study with ET-743 in 36 previously untreated patients with
advanced soft tissue sarcomas, mainly leiomyosarcoma and liposarcoma. ET-743 evidenced
“manageable” toxicity in this study, with one complete and five partial responses to ET-743
being observed (17.1% response rate). This led the investigators to state that ET-743
“demonstrates for the first time the safety, tolerability, and antitumour activity” in
chemotherapy-naive patients with advanced soft tissue sarcomas when used as a single agent,
and it justified “some prudent optimism” for patients who fail doxorubicin or ifosfamide
therapy. Huygh and colleagues (74) reported a retrospective Phase 11 study of 89 patients with
advanced, pretreated soft tissue and bone sarcoma, who were treated with ET-743 as a 24-hour
continuous infusion. While the toxicities were mainly an asymptomatic elevation of
transaminases and neutropenia, the treatment resulted in one complete remission, 5 partial
remissions, one minimal response and 16 patients with disease stabilization of 6 months or
more, thus strongly suggesting that “further evaluation of the activity of ET-743 in sarcomas
is therefore warranted”. Le Cesne and colleagues (75) communicated a Phase 11 study with 104
patients from 8 European institutions with pretreated advanced soft tissue sarcomas, that were
provided with a 24-hour continuous infusion every 3 weeks. The fact that 8 partial responses
were observed in leiomyosarcomas, a tumour subtype usually considered to be resistant to
doxorubicin and/or ifosfamide regimens, prompted the authors to “demand(s) further
evaluations” of ET-743 as a second-line agent and in combination studies. Sessa and colleagues
(76) assessed the efficacy and toxicity of ET-743 in 59 patients with advanced ovarian cancer
who had experienced treatment failure after platinum or taxane therapy. Using a Phase Il 3-
hour infusion schedule every 3 weeks which allowed for outpatient administration, the study
reported that ET-743 was tolerable with “promising activity” in relapsed ovarian cancer,
showing a 43% response rate in patients with platinum-insensitive disease. Zelek and
colleagues (77) from 3 French institutions determined the activity of ET-743 in a Phase Il study
that investigated the use of this compound as a 24-hour continuous intravenous infusion every
3 weeks in 27 patients with advanced breast cancer who were resistant or had relapsed after
conventional chemotherapy. Although the partial response rate (14%) was judged to be modest,
it was considered to be in the range of “what can be expected for an active drug in this setting”.
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Tewari and colleagues (78) reported a remarkable case of activity of ET-743 when used as a
single agent in one patient with refractory metastatic uterine leiomyosarcoma in whom 4 prior
regimens had failed. The patient had a durable partial response lasting at least 8 months, and
the authors concluded that ET-743's activity in uterine leiomyosarcomas definitely warrants
further investigation.

One report in 2005-6 examined the pharmacology of fascaplysin, an alkaloid obtained from
the Papua New Guinea sponge Fascaplysinopsis reticulata. Subramanian and colleagues
(79) showed therapeutic efficacy in a novel pharmacology paradigm designed to rapidly move
prospective anticancer drugs from discovery phase through pharmacology testing and into
therapeutic trial assessment, as well as complete proteomics analysis to reveal “pathways
involved in the drug's cytotoxicity”.

Two reports extended the preclinical pharmacology of halichondrin B, a large polyether
macrolide found in a variety of marine sponges. Jordan and colleagues (80) observed that
ET389, asynthetic macrocyclic ketone analogue that is currently in Phase | and Phase Il clinical
trials, inhibited microtubule polymerization in an in vitro human breast cancer cell line. It
significantly suppressed microtubule growth rate, length and duration, thus resulting in the
suppression of the metaphase/anaphase transition. A putatively novel mechanism of action
involving E7389's ability to “aggregate tubulin and selectively suppress microtubule growing
events” was proposed by the authors. Dabydeen and colleagues (81), examined the biochemical
mechanism of action of E7389 in direct comparison with halichondrin B. They found that
ET389 was more potent than halichondrin B in all biochemical assays, and by extensive
molecular modeling studies gained new insight into the interaction of both compounds with a
cleft between of3-heterodimers in tubulin. This interaction appeared to involve contacts with
a-subunit residues Phe244, Ala247, Leu248, and Tyr257 and B-subunit residues Gli81, Pro82,
Thr223 and Gly225.

One report extended the pharmacology of the peptidic antimitotic agent hemiasterlin, a
compound isolated from numerous marine sponges. Ravi and colleagues (82) reported progress
in the structure-based identification of the tubulin binding site for HTI-286, a synthetic
analogue of hemiasterlin. They proposed a binding model of HT1-286 to key residues on
tubulin that appears to be supported by significant experimental data, including biophysical
characterization, photolabeling and NMR studies, and by biological activity data.

One report extended the pharmacology of jasplakinolide (jaspamide), a cyclic depsipeptide
originally isolated from Jaspis sponges, that induces actin polymerization. While investigating
the anti-migratory potential of this agent, Hayot and colleagues (83) used an in vitro
pharmacological strategy that included spectrofluorometry to monitor the kinetics of actin
polymerization, and videomicroscopy to investigate cell motility. They observed that
jasplakinolide enhanced the motility of A549 lung cancer cells but not that of MCF7 breast
tumour cells, and this led the authors to conclude that the use of “multi-assays with different
levels of sophistication” is required for the characterization of anti-migratory and potentially
novel antimetastatic agents.

During 2005-2006 two reports described the preclinical and clinical pharmacology of
kahalalide F, a complex depsipeptide isolated from the Hawaiian marine mollusk Elysia
rufescens that is currently under clinical investigation. Janmmat and colleagues (84)
determined that kahalalide F induced cytotoxicity in breast, vulval, non-small-cell lung, and
hepatic carcinoma cell lines via a necrosis-like cell death process. This process was positively
correlated to ErbB3 (HER3) receptor protein levels and downstream in the PI3K-Akt pathway
in vitro, findings that the investigators proposed “may have important clinical relevance”.
Lakhai and colleagues in the Netherlands (85) detailed a Phase | and pharmacokinetic study
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in 32 patients with androgen-refractory prostate cancer that received kalahalide F as a 1-hour
i.v. infusion for five consecutive days every three weeks. While noting that kalahalide F dose-
limiting toxicity was reversible, mainly an increase in transaminases, they observed that one

patient had a partial response with a prostate-specific antigen declining by 50% for greater than
four weeks, while five patients (16%) showed evidence of stable disease.

One report extended the pharmacology of the marine pyrrole alkaloid lamellarin D, a
submicromolar inhibitor of topoisomerase I, that was isolated form the prosobranch mollusk
Lamellaria sp. In an effort to find treatments for chemoresistant cancer, Kluza and colleagues
(86) investigated the targets and pathways involved in apoptosis induced by lamellarin D. A
detailed mechanistic study revealed that lamellarin D had an effect on the structural and
functional integrity of cancer cell mitochondria at micromolar concentrations, which suggested
lamellarin D should be considered a “bifunctional pharmacologic effector” agent.

During 2005-2006 one report described the preclinical pharmacology of pateamine A, a
complex macrolide isolated from the marine sponge Micale sp. In an elegant molecular study,
Bordeleau and colleagues (87) demonstrated that pateamine A is “the first example of a
chemical inducer of dimerization that forces an engagement” between the RNA helicase
eukaryotic initiation factor 4FA subunit (elF4A) and RNA. This interaction prevents elF4A
from participating in the ribosome-recruitment of translation initiation, which is considered
the rate-limiting step of protein synthesis in eukaryotes.

Preclinical research continued during 2005-6 with the macrolide peloruside A, a microtubule-
stabilizing agent which is currently available both synthetically and from aquaculture grown
samples of the New Zealand marine sponge Mycale hentscheli. Hamel and colleagues (88)
confirmed that peluroside A bound to the laulimalide site on tubulin which is distinct from the
taxoid site. Furthermore the researchers found that although peloruside A and laulimalide were
unable to synergize with each other, both compounds could act synergistically on tubulin
assembly with taxoid site-binding marine agents such as discodermolide, dictyostatin, and
eleutherobin. This finding led the authors to conclude that other combinations of these agents
may be worth investigating both preclinically and clinically.

In an effort to identify novel natural product-derived peroxisome proliferator-activated
receptor y (PPRy) activators for breast cancer treatment, Mora and colleagues (89) investigated
the effects of psammaplin A, a known histone deacetylase inhibitor originally isolated from
the marine sponge Pseudoceratina rhax. Psammaplin A activated PPRy in a cell-based reporter
assay and induced apoptosis in human breast cancer cells in vitro. This suggests that PPARy
activators may provide new molecularly targeted lead compounds for the design of novel
classes of antitumour agents.

Table I also includes a number of marine natural products which were not previously reviewed
(2-4): aaptamine, polymeric alkylpyridinium salts, aplyronine A, bastadin 6, clavulone 11, 13-
deoxytedanolide, fucoxanthinol, geodiamolides, geoditin A, halocynthiaxanthin, ircinin-1,
laxaphycins A & B, leptosins C & F, ningalins, onnamide A, philinopside A, salinosporamide
A, stellettin A, strobilinin-felixinin, and variolin B.

As the result of a screening effort to discover agents that target the cyclin-dependent kinase
inhibitor Cip/Kip p21 protein, Aoki and colleagues (90) reported the isolation of a
benzonaphthyridene alkaloid aaptamine from the Indonesian marine sponge Aaptos
suberitoides. The in vitro studies demonstrated that aaptamine induced expression of p21
protein in a p53-independent manner, arresting the cell cycle at the G2/M phase. Paleari and
colleagues (91) showed that polymeric alkylpyridinium salts isolated from the marine sponge
Reniera sarai induced apotosis and cell-cell adhesion in non-small cell lung cancer cells. The
selectivity of these polymeric alkylpyridinium salts, which were recently described as
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irreversible acetylcholinesterase inhibitors, towards cholinergic receptor-expressing tumors
led the investigators to propose them as “alternative inhibitors of lung cancer with low systemic
toxicity”.

Hirata and colleagues (92) extended the molecular characterization of the sea hare metabolite
aplyronine A, which had previously been shown to inhibit polymerization of globular actin
to fibrous actin. Using synchrotron X-ray analysis, the crystal structure of the actin-aplyronine
A complex was investigated. Aplyronine A was observed to bind to a hydrophobic cleft by
intercalating its aliphatic tail into the actin molecule, an interaction shown to be essential to
depolymerize actin and for cytotoxicity against human HeLa tumour cell lines.

Aoki and colleagues (93) described molecular pharmacology studies of bastadin 6, a
macrocyclic and tetrameric bromotyrosine derivative isolated from the marine sponge
Lanthella basta. Bastadin 6 was observed to inhibit angiogenesis and in vivo
neovascularization, probably by an apoptotic mechanism. It therefore shows potential for
further development as an inhibitor of tumour angiogenesis, although the actual molecular
target has not yet been determined.

Huang and colleagues (94) investigated the molecular pharmacology of the marine
prostaglandin analogue clavulone 11, originally derived from the Japanese soft coral
Clavularia viridis and previously shown to have antitumour and antiviral activity. Working
with a human acute promyelocytic leukemia, clavulone 11 induced downregulation of cyclin
D1 expression and G1 arrest of the cell cycle at lower concentrations (1.5 uM), while at higher
concentrations (3 uM) clavulone 11 induced apoptosis with concomitant modulation of caspases
and Bcl-2 family proteins.

Aoki and colleagues (95) reported the isolation of the steroidal alkaloids cortistatins A-D from
the marine sponge Corticium simplex. Interestingly, cortistatin A exhibited highly selective
anti-proliferative activity against human umbilical vein endothelial cells (ICsg = 0.0018-1.1
uM), in comparison with normal human dermal fibroblasts and several human tumor cell lines.
Although the molecular mechanism of action of the cortistatins is currently under investigation,
they clearly appear to be promising new inhibitors of angiogenesis and thus putative antitumour
compounds.

Nishimura and colleagues (96) continued the characterization of the antitumour macrolide 13-
deoxytedanolide, isolated from the marine sponge Mycale adhaerens. A high-affinity binding
site on the Saccharomyces cerevisiae 60S large ribosomal unit was elegantly demonstrated to
be the molecular target of 13-deoxytedanolide which caused potent inhibition of polypeptide
synthesis (ICsq = 0.15 uM). The authors noted this compound was the first macrolide that
bound the eukaryotic ribosome and therefore it represented “an important tool for elucidating
structure and function of eukaryotic ribosomes”.

Konishi and colleagues (97) investigated the carotenoids fucoxanthinol and
halocynthiaxantin isolated from the sea squirt Halocynthia roretzi. Both carotenoids inhibited
the growth of human leukemia, breast and colon cancer cells in vitro in a dose- and time-
dependent manner by a mechanism that required induction of apoptosis and the concomitant
reduction of the apoptosis-suppressing protein Bcl-2.

Rangel and colleagues (98) reported new mechanistic information on the cyclic peptides
geodiamolides A, B, H and I isolated from the marine sponge Geodia corticostylifera from
Brazil. The researchers noted that peptides A & H had potent antiproliferative activity against
two human breast cancer cell lines (IC5p = 18-90 nM) and disorganized F-actin filaments in a
dose-dependent manner. Interestingly, normal cell lines did not show cytoskeleton alterations
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after treatment with the geodiamolides, thus suggesting a putative biomedical potential for
these novel compounds.

As part of aresearch program to evaluate bioactive secondary metabolites of marine organisms,
Liu and colleagues (99) compared the cytotoxicity of the isomalabaricane triterpenes geoditins
A and B isolated from the marine sponge Geodia japonica. Geoditin A, which differs in an
acetyl group at the C3 position with geoditin B, was found to be the most cytotoxic (ICsg =5
ug/mL) to human HL60 promyelocytic leukemia cells, probably due to a dose-dependent
increase of reactive oxygen species, a decrease in mitochondrial potential, and caspase-3
mediated apoptosis.

In a effort to find new agents for the treatment of melanoma, Choi and colleagues (100)
completed a detailed mechanistic study of ircinin-1, isolated from the marine sponge
Sarcotragus sp. Ircinin-1 inhibited the growth of a human melanoma cell line in vitro, by a
dual mechanism that involved arrest of cell cycle progression at the G1 phase and induction
of apoptosis via the Fas/Fas-L pathway.

Gbankoto and colleagues (101) studied the cytotoxic effects of laxaphycins A and B, cyclic
depsipeptides isolated form the marine cyanobacterium Lyngbya majuscula. Working with
three established human lymphoblastic cell lines and a protocol of triple labeling with vital
dyes and multifluorescence image analysis, both peptides were observed to act synergistically
to produce an increase in the polyploid cell population. It was hypothesized that this effect
“could result from alteration of topoisomerase Il activity”.

Yanagihara and colleagues (102) extended the molecular pharmacology of the sulphur-
containing indole derivatives leptosins C and F, isolated from the marine fungus
Leptoshaeria sp. Both compounds inhibited DNA topoisomerase Il (IC5p = 3-10 uM), while
only leptosin C inhibited topoisomerase | (ICsq = 10-30 uM) in vitro and in vivo. Furthermore,
the compounds induced apoptosis in vivo, as measured by caspase-3 activation, while
inactivating the survival Akt/protein kinase B pathway.

Chou and colleagues (103) evaluated the pharmacological properties of synthetic analogues of
the ningalins, aromatic alkaloids originally isolated from the marine ascidian Didemnum sp.
By a mechanism that involved a direct and dose-dependent interaction with the multidrug
resistance drug transporter Pgp, the ningalins markedly enhanced the antitumour cytotoxicity
of vinblastine, doxorubicin, and taxol both in vitro and/or in vivo. This observation supported
the proposition that these agents “may allow a reduction in the dosage of anticancer drugs while
enhancing or achieving a curative effect”.

While screening 20,000 samples for agents that might activate the tumour-suppressing
transforming growth factor-p (TGF-p) signaling cascade, Lee and colleagues (104) discovered
that onnamide A and theopederin B, isolated from the marine sponge Mycale sp., induced
activation of the PAI-1 promoter gene, a well-characterized TGF-B-responsive gene. Since
onnamide A and theopederin B both potently inhibited protein synthesis (IC5¢ = 30 nM and
1.9nM, respectively) and activated p38 kinase and c-Jun N-terminal kinase, as well as inhibited
proliferation of several human cancer cell lines in the nanomolar range, the researchers
concluded that these marine agents might serve as lead candidates for anticancer drug
development.

During a screening effort for potential angiogenesis inhibitors, Tong and colleagues (105)
discovered a novel sulfated saponin philinopside A, isolated from the sea cucumber Pentacta
quandrangulari, that possessed dual antiangiogenic and antitumour effects. Philinopside A
inhibited angiogenesis (IC5g = 0.98-1.4 uM) in human microvascular endothelial cells as well
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as tumour growth both in vitro (ICsp = 1.5-2.4 uM) and in vivo by a synergistic mechanism
that appeared to involve inhibition of 4 receptor tyrosine kinases (ICsg = 2.6-4.9 uM).

Macherla and colleagues (106) contributed structure-activity relationship (SAR) studies of
salinosporamide A (NP1-0052), a novel marine bacterium-derived alkaloid shown to potently
inhibit the proteasome, a multicatalytic proteolytic complex that is involved in the regulation
of cellular protein degradation. With 16 analogues of salinosporamide A generated by either
fermentation or derivatization, SAR studies were completed using a variety of well
characterized cytotoxicity, proteasome inhibition and NF-«B activation assays. These studies
demonstrated a marked reduction in potency resulted from replacement of the chloroethyl
group in salinosporamide A with nonhalogenated substituents.

Liu and colleagues (107) reported novel preclinical pharmacology for the isomalabaricane
triterpene stelletin A, isolated from the marine sponge Geodia japonica. These investigators
observed differential cytotoxicity of stelletin A between human leukemia HL-60 cells (ICsq =
0.4 png/mL) and human prostate cancer LNCaP cells (ICsq = 120 pg/ml) with the concomitant
upregulation of the pro-apoptotic marker proteins, FasL, and caspase-3. Interestingly, in HL-60
cells stelletin A stimulated a dose-dependent increase of the NADPH oxidase components and
generation of reactive oxygen radicals.

Jiang and colleagues (108) reported preclinical mechanism of action studies on the
furanosesterterpene strobilinin-felixinin which was isolated from the sponge Psammocinia
sp. and previously reported to display cytotoxicity towards several cancer cell lines. Cell cycle
analysis revealed that the marine compounds arrested HelL a cells in the S phase, probably as
aresult of DNA synthesis inhibition, with topoisomerase | and polymerase a-primase the “two
main target molecules”.

Simone and colleagues (109) extended the molecular pharmacology of variolin B, a guanidine
alkaloid isolated from the Antarctican marine sponge Kirkpatrickia variolosa. Both variolin B
and its analogue deoxy-variolin B, which has greater stability and solubility, were shown to
activate apoptosis in a p53-independent fashion. They appeared to preferentially inhibit cyclin-
dependent kinases (CDK) 1/cyclin B, CDK2/cyclin A, and CDK2/cyclin E. Thus variolin B
may be effective against tumours with mutation or deletion of the p53 gene.

Oda and colleagues (110) extended the preclinical pharmacology of verrucarin A, isolated
from a culture broth of the marine fungus Myrothecium roridum. Using human promyelocytic
and erythroleukemia cell lines, the investigators determined that verrucarin A's strong
cytotoxicity against these cell lines was concomitant to inhibition of the p38 and C-Jun
mitogen-activated protein kinases in the nanomolar range.

2. 2005-6 Antitumour pharmacology of marine natural products with
undetermined mechanisms of action

Table Il, encompasses 94 novel marine natural products published during 2005-6 that
demonstrated particularly potent activity in cytotoxicity assays (ICsq equal or less than 1.0
ug/mL) and whose structures are shown in Figure 2. The preclinical pharmacology completed
with these marine compounds consisted mainly of in vitro and/or in vivo cytotoxicity testing
with panels of either human or murine tumour cell lines. In a few reports cytotoxicity studies
were more extensive and included the National Cancer Institute 60-tumour cell line screen. It
is clear that additional pharmacological testing will be required to help determine if the potent
cytotoxicity observed with these marine chemicals resulted from a specific pharmacologic
effect rather than a general toxic effect on the tumour cells used in these investigations.
Although contrasting with the extensive preclinical and clinical investigations completed with
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the marine compounds presented in Table I, mechanism of action research was reported for
only a few of the compounds listed in Table 2: swinholide | and hurghadolide A caused
disruption of the actin cytoskeleton at nM concentrations (111); philinopside A inhibited
proliferation, migration and tube formation of human microvascular endothelial cells(112);
exposure of human colorectal cancer cells to tedanolide C resulted in accumulation of cells in
S-phase(113); palmerolide A inhibited V-ATPase (ICsg = 2 nM) (114); stelletin J promoted
binding of DNA with DNA polymerase 3 (115); liphagal inhibited phosphatidylinositol-3-
kinase a (1C5¢ = 100nM) (116); seragamide A facilitated G-actin polymerization (20-200 nM)
(117); lyngbyabellin E (60 nM) and ankaraholide A caused disruption of cellular microfilament
network and inhibition of cytokinesis (118;119) and secalonic acid D inhibited the cell cycle
at the Go/G4 phase in a concentration-dependent manner (120).

Although less potent than the marine natural products included in Table 2, numerous additional
reports were published during 2005-6 describing novel structurally characterized molecules
with cytotoxic activity (ICsg) mostly in the greater than 1 to 5.0 pg/mL range. Although only
cytotoxicity against selected murine or human cancer cells was determined in vitro in the
majority of these reports, mechanistic work was reported in a few of these studies, e.g.
inhibition of Tie2 kinase, an enzyme that supports angiogenesis, by polybrominated diphenyl
ethers (121); inhibition of human telomerase by axinelloside A (122); inhibition of FOX01a,
atranscription factor, by psammaplysenes (123); potent histone deacetylase inhibition and anti-
angiogenic effects by the cyclic peptides azumamides A-E (124) and significant antimetastatic
activity by the marine cembranoids sarcophine and 2-epi-16-deoxysarcophine (125).

3. Conclusion

Antitumour marine pharmacology research in 2005-6 consisted of a combination of preclinical
research focused on the molecular and cellular pharmacology of marine cytotoxic agents, as
well as clinical studies with a limited number of marine compounds, i.e., aplidine, bryostatin
1, cryptophycins, dolastatins, and ecteinascidin-743 (Trabectedin, Yondelis®). Although
during 2005-6 no marine natural product was approved for cancer patient treatment by the U.S.
Food and Drug Administration (FDA), ecteinascidin-743 (Trabectedin, Yondelis®) has
recently been granted Orphan Drug designation from the European Commission, and the FDA
for soft tissue sarcomas and ovarian cancer. Our 2005-6 overview of the antitumour and
cytotoxic pharmacology of marine chemicals demonstrates that more than 54 years after the
discovery by Bergman and colleagues (126) of spongothymidine and spongouridine, global
research aimed at the discovery of novel and clinically useful antitumour agents derived from
marine organisms continues at a remarkably active pace.
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Structures of marine natural products reported in 2005 and 2006 with established mechanisms
of action
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Structures of new marine natural products reported in 2005 and 2006 with undetermined

mechanisms of action
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