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Abstract
The central Extended Amygdala (EAc) is an ensemble of highly interconnected limbic structures of
the anterior brain, and forms a cellular continuum including the Bed Nucleus of the Stria Terminalis
(BNST), the central nucleus of the Amygdala (CeA) and the Nucleus Accumbens shell (AcbSh).
This neural network is a key site for interactions between brain reward and stress systems, and has
been implicated in several aspects of drug abuse. In order to increase our understanding of EAc
function at the molecular level, we undertook a genome-wide screen (Affymetrix) to identify genes
whose expression is enriched in the EAc. We focused on the less-well known BNST-CeA areas of
the EAc, and identified 121 genes that exhibit more than 2-fold higher expression level in the EAc
compared to whole brain. Among these, forty-three genes have never been described to be expressed
in the EAc. We mapped these genes throughout the brain, using non-radioactive in situ hybridization,
and identified eight genes with a unique and distinct rostro-caudal expression pattern along AcbSh,
BNST and CeA. Q-PCR analysis performed in brain and peripheral organ tissues indicated that, with
the exception of one (Spata13), all these genes are predominantly expressed in brain. These genes
encode signaling proteins (Adora2, GPR88, Arpp21 and Rem2), a transcription factor (Limh6) or
proteins of unknown function (Rik130, Spata13 and Wfs1). The identification of genes with enriched
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expression expands our knowledge of EAc at a molecular level, and provides useful information to
towards genetic manipulations within the EAc.

Keywords
adult mouse; Affymetrix microarray; in-situ hybridization; central Extended Amygdala; gene;
marker

Introduction
The central Extended Amygdala (EAc) is a network formed by basal forebrain structures that
include the Bed Nucleus of the Stria Terminalis (BNST) and the central Amygdala (CeA)
(Alheid and Heimer, 1988, Cassell et al., 1999, de Olmos and Heimer, 1999, Swanson,
2003). However, it has been proposed that the shell of the Nucleus Accumbens (AcbSh) would
be part of this network (Koob, 2003). This particular division of the Extended Amygdala
interfaces reward circuitry with stress systems, and is involved in both the acute reinforcing
effects of drugs of abuse and the negative reinforcing effects of drug dependence. As such, the
EAc may represent a common anatomical substrate for drug reward and stress-induced drug
seeking and reinstatement (Koob, 2003, Shaham et al., 2003, Koob and Kreek, 2007). The EAc
receives inputs mainly from limbic cortices, and projects to the ventral tegmental area, the
lateral hypothalamus, the tegmental pedunculopontine nucleus and other various brain stem
nuclei (in (Koob, 2003)). A number of transmitter systems that operate within the EAc have
been described. GABA immunoreactive neurons have been characterized within the 3
components of the EAc (Sun and Cassell, 1993). Also BNST and CeA neurons express a
number of neuropeptides that include CRF, NPY, vasopressin and galanin, and modulate EAc
function (see (Koob, 2003, Kash and Winder, 2006)). However, our knowledge of phenotypic
characteristics of EAc neurons remains limited.

Understanding the function of specific brain areas or circuits requires detailed information on
molecules expressed by neuronals. Cellular composition and neuron function varies greatly
across the brain, and large-scale gene expression studies are growing to explore gene patterning
in the adult mammalian brain on a genome-wide basis. A number of transcriptome studies have
examined large areas of the brain, such as the cortex, hippocampus and striatum (Bonaventure
et al., 2002, de Chaldee et al., 2003, Ghate et al., 2007, Stansberg et al., 2007). Comparison of
central and peripheral nervous systems has led to identify genes whose expression is restricted
to either spinal cord or dorsal root ganglia (LeDoux et al., 2006). Transcriptional imprint of 24
neural brain tissues helped to construct a gene expression-based brain map in the adult mouse
(Zapala et al., 2005). Further the exploration of specialized brain networks has provided
regional-specific gene profiles using fine-dissection procedures. Genes restricted to the CA1,
CA3 and DG hippocampal territories (Lein et al., 2004), or even along the dorso-ventral axis
of the CA1 field has been identified (Leonardo et al., 2006). The analysis of subregions of the
hypothalamus highlighted genes restricted to the ventromedial hypothalamus in the adult
(Segal et al., 2005) or developing mouse brain (Kurrasch et al., 2007). The study of Amygdala
revealed gene subsets whose expression matched anatomical boundaries of amygdaloid nuclei
(Zirlinger, 2003). Recently Olsen and coll. compared gene profiles of the BNST to those of
ventral and dorsal striatum, and identified distinct signaling and plasticity genes in these areas
that all respond to dopamine and are involved in disorders ranging from Parkinson’s disease
to drug addiction (Olsen et al., 2008).

The present study aimed at identifying genes with enriched expression in the EAc, in order to
broaden our knowledge of genes operating within this brain network. In this study we have
focused on the BNST/CeA components of the EAc. Using a micropunch-dissection procedure,
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we prepared a tissue sample from mouse brain CeA and BNST and compared the transcriptome
in this sample to that of the whole brain. We identified 129 probe sets with a 2-fold enrichment
or more in the EAc and mapped the expression pattern of 49 genes by in situ hybridization in
the mouse brain. Eight genes showed an enriched expression pattern in the EAc, that we
analyzed in greater details. These genes potentially influence some aspects of addictive
behaviors, and may be useful for further genetic manipulations within the EAc.

Experimental procedures
Tissue dissection

Tissues were dissected from male 3 to 6 month old C57Bl/6J wild-type mice using a
microdissection procedure as follows. Briefly, mice were killed by cervical dislocation. Brain
was removed, washed in PBS buffer and placed into a matrix cooled on ice (ASI Instruments
Inc, Warren, MI, USA) to obtain slices of 1 mm thickness. Accurate localization of brain
structures was based on the stereotaxic atlas of mouse brain (Paxinos and Franklin, 2001) and
areas corresponding to the Bed Nucleus of the Stria Terminalis (BNST, +0.5 to −0.5), Central
nucleus of Amygdala (CeA, −0.5 to −1.5) were taken by bilateral punches (1.2 mm diameter).
BNST and CeA samples were pooled to obtain the central Extended Amygdala (EAc) sample
(see Figure 1A). Additionally, samples of the whole brain (WB), lateral hypothalamus (LH),
spinal cord, thymus, lung, spleen, heart, liver, intestine, lung, stomach, kidney, testis, and lung
were collected. All samples were stored at −80°C until use. All animal use procedures were in
strict accordance with standard ethical guidelines (European Community Guidelines on the
Care and Use of Laboratory Animals 86/609/EEC) and approved by the local ethical committee
(Comité régional d’éthique en matière d’expérimentation animale de Strasbourg, CREMEAS,
2003-10-08-[1]-58).

RNA preparation and microarray hybridization
Total RNA was extracted from the different tissues using TRIzol reagent (Invitrogen, Cergy
Pontoise, France) and following the manufacturer’s specifications. EAc samples were prepared
with tissues pooled from 3 mice, WB samples were from 2 mice. The RNA quantity was
measured using a spectrophotometer and quality was assessed by agarose gel electrophoresis.
For the microarray experiments, cDNA synthesis, cRNA labeling, hybridization and scanning
procedures were conducted according to standard Affymetrix’protocols
(www.affymetrix.com) (Affymetrix Core Facility, IGBMC, Illkirch, France,
http://www-microarrays.u-strasbg.fr). Three separate hybridizations were performed with
independent pooled samples from both EAc and WB. In total, 6 Mouse Genome 430 2.0
oligonucleotide arrays representing 45101 transcripts or ESTs were used in this experiment.

Microarray data analysis
Microarrays were scanned using Affymetrix GeneChip Scanner 3000. Quantification and
initial analysis of the microarrays were done using Gene Chip operating Software (GCOS v1,
Affymetrix UK Ltd). The comparisons of gene expression profiles between EAc and WB
samples were done using a standard significance analysis (MAS 5.0 software, Affymetrix UK
Ltd). For selecting differentially expressed genes, we first searched for probes considered as
detected. Probe sets were eliminated in the analysis when described as absent more than 4 times
among 6, or when having all signal values bellow 25 (corresponding to the median value of
signals for all samples). This step led to the selection of 25174 probe sets. We then used p-
values from the MAS 5.0 comparative analysis to find probe sets, which led to acceptable False
Discovery Rate (FDR). A statistical significance of 0.0025 corresponded to a FDR value of
2.5%. This threshold selected 2799 probe sets. To limit the number of genes for further analysis,
we then applied more stringent criteria. We re-analyzed each hybridization set separately. We
eliminated probe sets with signals under 100 in the EAc sample. We then selected probe sets
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with a “signal log2 ratio” of EAc/WB equal or superior to 1, corresponding to a difference in
expression level of at least 2 fold. Finally, lists obtained from each hybridization set were
combined and probe sets that were differentially expressed in at least 2 out of the 3
hybridizations were selected. Finally, this led to a group of 129 probe sets that we defined as
enriched in the EAc. A student t-test was then performed on this subgroup to confirm that
average signals from triplicate hybridizations from the EAc differed from those measured in
the whole brain. Hierarchical clustering was performed on probe sets selected as enriched in
the EAc using the Cluster 3.0 and Treeview software (Eisen et al., 1998, de Hoon et al.,
2004). Genes enriched in the EAc were annotated for association with biological processes
using an optimized Gene Ontology (GO) analysis (as described in (Chalmel et al., 2005, Abou-
Sleymane et al., 2006, Befort et al., 2008b) and with biological functions using Ingenuity
Pathway Analysis (IPA) network. For GO analysis, over-represented GO terms with a
probability lower than 0.01 and including at least 4 proteins were selected. In IPA analysis,
biological functions and/or diseases that are most significant to the dataset were identified. The
p-value for a given annotation is calculated by considering the number of “focus genes” that
participate in that function and the total number of genes that are known to be associated with
that process in Ingenuity’s knowledge base (http://www.ingenuity.com). In our analysis, we
show only the functions with the six highest p-values.

In situ hybridization
Plasmids containing candidate genes were obtained from the Deutsches Ressourcenzentrum
für Genomforschung (RZPD, Berlin, Germany). Clone inserts were amplified by PCR (100
μl), using vector-specific primers and 0.25 μl of bacterial glycerol stock as template material.
PCR reactions were purified using Millipore’s (Millipore Corporation, Bedford, USA)
Montage 96 and amplicons used as template for in-vitro transcription of sense and anti-sense
Dig-labeled riboprobes. To this aim 1μg linearized DNA was transcribed using T7, T3 or Sp6
polymerases and the 10x DIG RNA labeling mix (Roche Diagnostics, Meylan, France)
according to the manufacturer’s instructions. Probes were quantified by spectrophotometry
and quality assessed by agarose gel electrophoresis. Adult mice were killed by cervical
dislocation and brains were rapidly extracted and fresh frozen in OCT. The OCT-embedded
brain blocks were stored at −20°C until use. Brain sections 25 μm thick were processed for in
situ hybridization using Genepaint robotic equipment and procedures (www.genepaint.org;
(Carson et al., 2002) as previously described (Ghate et al., 2007). Briefly, 600 ng of probe at
a concentration of 20 ng/μl was hybridized onto the sections at 64°C for 5.5 hours. The dig-
label was detected using anti-Dig-POD antibody (Roche, 1:500 dilutions in Tris-NaCl pH 7.5
solution containing Perkin Elmer blocking reagent and 0.1% Tween). The signal was amplified
and revealed using tyramide amplification process-kit (Perkin Elmer, Waltham, USA) and
BCIP (0.15mg/ml)/NBT (0.4 mg/ml, Roche) color substrates. Images were recorded using a
CCD camera (Leica Instruments, Rueil-Malmaison, France). In each in situ hybridization set,
neuropeptide Y and preproenkephalin were used as positive controls and a blank hybridization
(no probe) as the negative control. For ISH analysis, we used criteria of classification adapted
from the GenePaint annotation procedures (http://www.genepaint.org/) as described in
(Gofflot et al., 2007). Three different levels of expression were defined: 0: no color precipitate
detected; 1: weak expression, a few particles of color precipitate per cell; 2: strong expression,
color precipitate completely filling cells. For those, we distinguished two different types of
expression patterns: ubiquitous distribution throughout the brain or restricted distribution to
specific regions of the brain, including EAc.

Quantitative RT-PCR
Total RNA was extracted from the different tissues using TRIzol reagent (Invitrogen, Cergy
Pontoise, France) with EAc and LH samples, prepared with tissues pooled from 3 mice, whole
brain samples from 2 mice and all the other tissues from individual mouse. Total RNA (2.5
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μg) from each pool (n=2) was treated for 30 min at 37°C by DNase I RNase free (4 U,
Invitrogen, Cergy Pontoise, France) in First strand Superscript buffer (Invitrogen, Cergy
Pontoise, France) and reaction was stopped by incubating the mix 5 min at 75°C. RNA was
then pre-incubated with oligodT primer (8 μM), random Hexamer (16 μM) and dNTPs (500
μM each) in a volume of 30 μl for 5 min at 65°C. Finally, First strand Superscript buffer, DTT
(0,01M) and Superscript II (200U, Invitrogen, Cergy Pontoise, France) were added in final
volume of 46 μl for 50 min at 42°C. Reaction was stopped by 15 min incubation at 70°C. Real-
time PCR was performed in triplicate on a MyIQ BioRad instrument using iQ SYBR Green
supermix, cDNA (0.5 μl) and gene-specific primers (200 nM) in a 25 μl reaction as
recommended by the manufacturer (Bio-Rad, Marnes-la-Coquette, France). Gene-specific
primers were designed using primer3
(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) to obtain a 75–150 bp product
(see supplemental Table S1). Relative quantification for a given gene in any area was
normalized to its level in whole brain (ΔCt) and expressed as fold change (WB level being
equal to 1).

Results
Identification of genes enriched in the central Extended Amygdala

To identify genes whose expression is enriched in the EAc, we searched for genes whose
expression level is higher in EAc compared to WB. We used the Genechip Mouse Genome
430 2.0 oligonucleotide arrays (Affymetrix) and compared hybridization signals of RNA
transcripts in the EAc to those obtained in WB. Our gene selection procedure involved a multi-
step procedure based on the FDR, the gene expression level and the fold change EAc/WB (see
methods). Using this approach, we identified 129 probe sets showing statistical differential
expression with a fold-change of 2 at least, that we categorized as enriched in EAc (Table 1,
Figure 1B). A statistical analysis further performed directly on mean signals of each probe set
(see Methods) showed that 95.3 % of the EAc probe sets were significantly enriched over whole
brain (p value<0.05). Gene annotation from Affymetrix identified distinct probe sets
corresponding to identical genes, with 9 genes represented by two different probe sets. In the
end we identified 121 genes enriched in the EAc. Figure 1B presents a hierarchical cluster
analysis of the enriched EAc transcripts with the corresponding signals in all 6 arrays.

To characterize the enriched transcriptome in the Extended Amygdala, we used a GO database
and annotated the 121 genes selected, as previously described (Chalmel et al., 2005, Befort et
al., 2008b). We found 98 genes associated with proteins, among which 82 were associated with
GO terms. These genes were then grouped into categories of biological processes, in which
their encoded proteins are involved (GOBP) and these categories are illustrated in Figure 1C.
This analysis showed that some GO categories are enriched, particularly in the response to
stress (GO:0006950), behavior (GO:0007610), cell communication (GO:0007154), signal
transduction (GO:0007165) and synaptic transmission (GO:0007268). Interestingly, a large
group included neuropeptide signaling pathway (GO:0007218) and GPCR signaling pathway
(GO:0007186) and some transcripts were also associated with neurogenesis (GO:0007399),
organogenesis (GO: 00099887), central nervous system development (GO:0007417) and nerve
maturation (GO:00042551). To interrogate potential functional interactions among EAc
enriched genes, we also used the Ingenuity Pathways Analysis (Table 2). Our results showed
that, among the top biological functions, potential interactions were revealed by putative
protein networks involved in Cell Morphology, Gene Expression, Cell Signaling and Nervous
System Development and Function. Interestingly, these two bioinformatics analysis were
consistent and revealed that the genes we have identified in our study participate in functions
described in the literature as involving the EAc and suggest new functions for this network.
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Altogether, this microarray screen identifies 23 genes that were already reported by others in
EAc (see Table 1 column ISH label Litt.), some of which are widely studied (for example
tachykinin 1 and 2, prodynorphin or dopamine D1 receptor). Importantly, the data also
highlight a large number of genes whose expression in EAc is reported here for the first time.

Expression pattern by in situ hybridization
We further performed in situ hybridization (ISH) throughout the brain to examine expression
patterns for a sub-selection of genes. We focused on 49 genes whose expression pattern in
BNST and/or CeA was not studied in the mouse previously (Table 1 column ISH label S or
SC). We first performed non isotopic ISH on sagittal sections of mouse brain. Our results show
that a signal was detectable in the EAc for all tested probes confirming our microarray analysis
(see Supplemental Figure S2). Expression patterns could be described as (i) low expression,
(ii) strong and fairly ubiquitous expression or (iii) significant expression restricted to specific
brain regions including the EAc (see Figure 2 and Methods). Altogether, 17 genes (see
supplementary Figure S2A) showed a weak signal under our hybridization conditions and those
were not further investigated. Figure 2A shows sagittal ISH for three of these genes, Limh8,
Dock10 and Rasgrp2 whose expression was close to the detection limit. Twenty-four other
genes showed a hybridization signal widely spread along the brain (see supplementary Figure
S2B). Figure 2B shows an example for three of these genes, namely Mrg1, Rik263, PDLIM2
with staining throughout the brain. Lastly, 8 genes were clearly detected in EAc, with weak or
restricted expression in other brain regions. Figure 2C shows the sagittal expression pattern
for these genes namely Limh6, Adora2, Arpp21, GPR88, Wfs1, Spata13, Rem2 and Rik130.

We next performed ISH on coronal sections for the last 8 genes (Figure 3). We focused our
analysis on sections corresponding to the EAc, at the levels of BNST (Figure 3B) and CeA
(Figure 3C). As the AcbSh was proposed to be part of the Extended Amygdala (Koob, 2003),
we also included analysis of the staining observed at the level of this structure (Figure 3A).
The expressed sequence tag RIKEN E130309F12 probe (Rik130) presented a weak expression
in the AcbSh that diminished gradually rostro-caudally and no signal could be detected in the
CeA. The Rad and gem related GTP binding protein 2 transcript (Rem2) was strongly expressed
in the Nucleus Accumbens including shell and core, and in the interstitial nucleus of the
posterior limb of the anterior commissure (IPACL), which is part of BNST. A patchy
distribution in the CeA was observed and Rem2 was also clearly expressed in the dorsal
striatum. Concordant with our sagittal screen, the adenosine A2 receptor gene (Adora2) showed
a strong and consistent expression in all areas of the EAc network. In the BNST, the lateral
division was particularly labeled (Figure 3B). Adenosine A2 receptor mRNA expression was
also present in several brain areas such as the striatum (Cpu and core of the Nucleus
Accumbens), the cortex, the hippocampus and the piriform cortex. The cyclic AMP-regulated
phosphoprotein 21 gene (Arpp21) presented an interesting expression pattern, with specific
mRNA expression in the AcbSh, without signal in adjacent structures like the core of the
Nucleus Accumbens and the caudate putamen (Figure 3B). At the level of the BNST, a specific
signal was detected in the medial division. No detectable staining was obtained in the CeA
while the Arpp21 gene was highly expressed in the basolateral and basomedial amygdaloid
nucleus. Specific signal was also measured in the medial preoptic nucleus, the cortex and the
hippocampus. GPR88 gene showed strong expression throughout the striatum, including the
AcbSh (Figure 3A). GPR88 mRNA expression was undetectable in the BNST (Figure 3B). A
strong staining was observed in the medial division of the CeA with no signal in the basolateral
Amygdala. The GPR88 mRNA was also clearly present in the piriform cortex. For the LIM
homeobox 6 (Limh6) mRNA, we obtained a strong and homogenous expression throughout
areas of the Extended Amygdala including AcbSh, the lateral division of the BNST and the
CeA. We also noticed expression of this gene on the nucleus of the vertical limb of the diagonal
band (VDB) (Figure 3A). A strong signal was measured for the spermatogenesis associated 13
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(Spata 13) gene in the dorsal part of the lateral division of BNST compared to other BNST
nuclei, as well as in the AcbSh and CeA. Additionally, a low Spata 13 staining was observed
in the CA1 field of the hippocampus. Finally, the wolframin gene (Wfs1) showed strong
expression throughout the Extended Amygdala. This gene was strongly expressed in the AcbSh
and BNST, with a low staining in the caudate putamen. (Figure 3A and 3B). Interestingly,
expression of this gene was strong in the CeA, and extremely low in the BLA clearly defining
the boundaries between these two amygdaloid nuclei (Figure 3C). Wolframin mRNA was also
strongly expressed specifically in the CA1 field of the hippocampus and the piriform cortex.

In conclusion, these 8 genes show a specific and distinct expression pattern within the EAc.
They are expressed throughout the AcbSh and CeA, and show locally restricted expression in
the subdivisions of the BNST structure.

Distribution of EAc-enriched genes in the central nervous system and peripheral tissues by
qPCR

To examine the general expression pattern of these 8 genes throughout the central nervous
system and in peripheral organs, we performed quantitative PCR on cDNA samples from WB,
EAc and LH (a brain region that we have investigated in a separate study, see Befort et al
(Befort et al., 2008a), as well as spinal cord, thymus, lung, spleen, heart, liver, intestine,
stomach, kidney, testis, and muscle (Figure 4). The results confirmed high expression in the
EAc for all the tested genes compared to whole brain. The Spata-13 gene showed the less
restricted pattern of expression, with high expression levels in thymus, kidney and spleen (4.7-,
3.1- and 1.7-fold higher than in the EAc, respectively). In contrast, the GPR88 gene was
detected only in the brain, with its highest level of expression in the EAc. Expression of the
Rik130 transcript was restricted to the nervous system, including the spinal cord. Finally the
Wfs1, Limh6, Rem2, Arpp21 and Adora2 genes showed detectable expression in several
peripheral tissues, and none of the transcripts tested could be detected in muscle.

Discussion
Using Affymetrix microarrays, we have identified 129 probe-sets corresponding to 121 genes
with prominent expression in the EAc. We used a strategy where gene expression in a sample
from the region of interest (CeA and BNST) is compared with expression in a sample from the
whole brain. Others have used a similar approach in the past, and successfully identified
neuronal markers (Cahoy et al., 2008), subregional-specific genes within mouse Amygdala
nuclei (Zirlinger et al., 2001, Zirlinger and Anderson, 2003), or regional gene markers within
the several hippocampal fields (Lein et al., 2004, Leonardo et al., 2006).

Twenty-three genes enriched in EAc have been reported earlier as being expressed in the rodent
EAc (Tables 1). For example, we detected enriched expression of neuropeptide precursor genes
such as preprodynorphin (3.06-fold in EAc over WB), preproenkephalin (2.81-fold in EAc
over WB) or preprotachykinin 2(6.35-fold in EAc over WB) genes, whose expression patterns
were described previously in specific areas of the Extended Amygdala (Harlan et al.,
1987,Iadarola et al., 1989,Song and Harlan, 1994). We also identified genes encoding myosin
D (2.38-fold in EAc over WB), neuronatin (2.28-fold in EAc over WB) and myelin associated
glycoprotein (2.22-fold in EAc over WB). These genes were described as specific markers of
particular Amygdala nuclei in a microarray screen analysis from Zirlinger and coll (Zirlinger,
2003,Zirlinger and Anderson, 2003). Among the top enriched genes, we finally identified the
wolframin gene (3.38-fold in EAc over WB). This transcript was previously described as
specifically expressed in the CA1 region of the hippocampus, and central Amygdala (Takeda
et al., 2001,Leonardo et al., 2006). Altogether, our identification of previously reported
Amygdalar genes validates our gene selection strategy.
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Importantly, literature mining indicated that expression in the EAc was unknown for 49 other
genes. Our further ISH mapping analysis revealed that 8 of these genes show an expression
pattern of particular interest within the EAc. We compared the expression patterns of these 8
genes with the Allen Brain Atlas (Lein et al., 2007) and, with the exception of Arpp21 and
Wfs1, our analysis showed a similar pattern in the three focused areas of interest. The two
expression patterns for Arpp21 transcript presented in the Allen Brain Atlas showed a more
widespread expression than our ISH data. However, our ISH results were consistent with
Arpp21 protein distribution in rat brain (Ouimet et al., 1989). For the Wfs1 transcript, the
pattern in the Allen Brain Atlas appeared ubiquitous, under our criteria (see methods),
compared with the expression profile in the rat brain (Takeda et al., 2001) or shown here.

Altogether, with the exception of Rik130, all these genes encode a protein with either fully
identified or potential function. For each of these genes, the unique and distinct expression
pattern suggests a potential role in regulating the EAc network.

Spata13 showed moderate enrichment in EAc (ISH and qPCR), and was the only gene with
strong expression in peripheral organs (Q-PCR) including thymus, lung or kidney. This gene
(also called Asef2) was identified as a guanine-nucleotide exchange factor for Rac1 and Cdc42
(Hamann et al., 2007, Kawasaki et al., 2007). Rik130 was specifically expressed in the brain
compared to peripheral tissues, but the expression in the EAc was quite low. No information
is available on Rik130 distribution or function. A blast search in the Refprot database indicates
that the Rik130 protein shows 74% homology with phosphatidic acid phosphatase type 2B
(ppap2B), a gene ubiquitously and strongly expressed throughout the brain
(http://brain-map.org/).

Limh6 encodes a protein belonging to the LIM homeodomain proteins, a family of transcription
factors. Expression of this gene was high in brain, particularly in EA and barely detectable in
the periphery. The LIM protein family is involved in many processes of CNS development,
from cell fate specification to the establishment of neuronal connectivity. During
embryogenesis Limh6 was found involved in the migration of cortical GABAergic
interneurons (Cobos et al., 2006, Cuzon et al., 2008). Noticeably, several authors have proposed
a role for Limh6 in the development of the Extended Amygdala in mice (Choi et al., 2005,
Garcia-Lopez et al., 2008) or zebra fish (Mueller et al., 2008). Our Affymetrix analysis also
identified Limh8, another member of the family, as a gene enriched in the EAc (Table 1), and
the expression of Limh8 was also described in the adult mouse Amygdala in another report
(Zirlinger and Anderson, 2003). These findings suggest that LIM genes, expressed in the adult
brain, may contribute to remodeling of the EAc network (Grueter and Winder, 2005, Samson
et al., 2005).

Genes with a noticeable expression pattern within the EAc include four genes involved in cell
signaling, namely Adora2a, the orphan GPR88, Arpp21 and Rem2. Adora2a encodes the
adenosine 2A receptor, a Gs-coupled G protein coupled receptor known to be expressed in the
striatum and olfactory tubercules (Santicioli et al., 1993) and involved in many brain functions
(for review see (Yaar et al., 2005)). Relevant to our finding of Adora2 expression in the EAc,
previous evidence have suggested a role for Adora2 in Amygdala function. The Adora2 agonist
CGS21680 was associated with an apoptosis regression in the Amygdala following myocardial
infarction (Boucher et al., 2006) and a polymorphism in the human Adora2a gene was
associated with panic disorders (Yamada et al., 2001, Hamilton et al., 2004, Lam et al.,
2005). GPR88 is an orphan G-protein coupled receptor previously reported as a striatal
transcript (Mizushima et al., 2000, Ghate et al., 2007). In accordance, our mapping data confirm
prominent expression of this gene in both EAc and the caudate putamen. GPR88 function is
unknown, but the alteration of GPR88 expression was reported under several experimental
conditions. GPR88 mRNA was up-regulated in the rat arcuate ventromedial nucleus during
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lactation (Xiao et al., 2005), in the prefrontal cortex following metamphetamine or valpoate
exposure (Ogden et al., 2004), and down-regulated in the striatum of human patients with
Huntington’s disease (Hodges et al., 2006). Arpp-21 is a cyclic AMP-regulated phosphoprotein
of 21 kDa whose expression was reported in the caudate putamen and substantia nigra (Girault
et al., 1990). Arpp-21 has been associated to several aspects of dopamine signaling (Tsou et
al., 1993, Ivkovic and Ehrlich, 1999), and is down-regulated in substantia nigra of sporadic
parkinsonian patients (Grunblatt et al., 2007). Finally, Rem2 encodes a Ras-like GTPAse
(Finlin et al., 2000) initially described as a modulator of N-type current in primary neuron
cultures (Chen et al., 2005). Recently, this protein was shown to play a key role in the
development of glutamatergic and GABAergic synapses in rat hippocampus primary cultures
(Paradis et al., 2007).

Most remarkable was the expression of Wfs1 gene, which showed best EAc enrichment among
the final eight-gene subset. This gene appeared strongly expressed throughout the AcbSh,
BNST and CeA, and weak -if no- expression was detected in most other brain regions. ISH
indicated scarce expression in the caudate, olfactory tubercle, locus coeruleus, cerebellar cortex
(Takeda et al., 2001). Our mapping study also highlighted the intriguing hippocampal
expression of Wfs1, uniquely restricted to the CA1 field (see Figure 3C) as was previously
described by two groups (Takeda et al., 2001, Leonardo et al., 2006). Expression of Wfs1 was
also detectable in the spinal cord, heart and intestine. Mutations in the Wfs1 gene are
responsible for the Wolfram syndrome, an autonomous recessive disorder which is highly
variable in its clinical manifestations and includes diabetes mellitus, diabetes insipidus,
deafness, optic atrophy and psychiatric abnormalities (Cryns et al., 2003). The Wfs1gene was
originally characterized by positional cloning and encodes a transmembrane protein,
wolframin, (Inoue et al., 1998) whose precise role in cell physiology remains to be determined.
Knockout of the Wfs1 gene in mice leads to a loss of pancreatic beta-cell, suggesting a role in
maintaining some populations of endocrine cells (Ishihara et al., 2004) (Riggs et al., 2005),
however the potential neurological and behavioral phenotypes of Wfs1 null mutants have not
been reported as yet. Interestingly the Wfs1 messenger was up-regulated in rat Amygdala
(Koks et al., 2002) and mouse pre-frontal cortex (Raud et al., 2007) when animals were exposed
to cat odor, suggesting a implication of wolframin in stress responses. Together, both
anatomical and functional data suggest a prominent implication of Wfs1 in emotionally related
behaviors.

In conclusion, we have identified a set of genes with enriched expression in the EAc, and
examined the expression pattern for a number of these genes particularly in the EAc. This study
extends our knowledge of genes expressed within a brain network, which is central in reward
dysregulation and stress disorders. It will be interesting to further characterize neural
populations expressing these genes, and particularly to examine whether these transcripts are
present in GABAergic neurons that are best characterized within the EAc (Sun and Cassell,
1993). Additionally, BAC transgenic approaches has been used to label (Gong et al., 2003) or
to isolate specific cells population in the brain (Nielsen et al., 2006, Cahoy et al., 2008) (Cahoy
et al., 2008) (Lovatt et al., 2007). The generation of transgenic mice expressing eGFP under
the control of EAc specific genes could be useful to label EAc neurons and study their function
and plasticity under pathological stimulations.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Affymetrix analysis for the identification of genes enriched in the EAc
(A) This scheme shows brain areas under study: bilateral punches (1.2 mm diameter) were
taken from mouse brain coronal slices (1 mm thick) to collect the bed nucleus of stria terminalis
(BNST, +0.5 to −0.5) and the central nucleus of the Amygdala (CeA, −0.5 to −1.5) (see
Methods for details). BNST and CeA punches were pooled and corresponded to central
Extended Amygdala (EAc) samples. (B) This hierarchical cluster illustrates raw microarray
data from three independent hybridizations for the 129 selected probe sets, and shows high
expression in EAc (right columns, red) compared to whole brain (WB, left columns, left). The
probe set selection was based on a standard statistical analysis by MAS 5.0 and a threshold of
2-fold change in EAc over WB was used (see Methods for details). Hierarchical cluster analysis
was performed using the Cluster 3.0 and Treeview softwares. (C) Gene ontology analysis of
the EAc enriched genes. Genes were categorized with the Biological Process domain and
significantly enriched GO terms with a probability lower than 0.01 and including at least four
proteins are represented.
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Figure 2. Expression pattern of EAc-enriched genes by in situ hybridization on sagittal brain
sections
Dig-labeled RNA in situ hybridization (ISH) was performed on 25μm sagittal adult mouse
brain sections 49 genes whose specific expression pattern in EAc network has not been reported
earlier. In this figure, examples of low expressed genes (A), strong and ubiquitously expressed
genes (B) and potential novel EAc markers (C) are shown. Neuropeptide Y (Npy) was used as
a low intensity positive control, preproenkephalin (Penk) was used as a high intensity positive
control and a blank hybridization was used as the negative control (D). Representative images
are shown, and the complete ISH analysis on sagittal sections for all 49 genes is shown in
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supplemental Figure S2. Expression patterns were classified as detailed in methods. Gene
symbols are indicated as in Table 1.
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Figure 3. Expression analysis of EAc-enriched genes in AcbSh, BNST and CeA on coronal brain
sections
Dig-labeled RNA in situ hybridization (ISH) was performed for a selection of 8 potential EAc
markers using 25μm coronal sections of mouse brain. A scheme from the mouse brain atlas
with the coordinates (Paxinos and Franklin, 2001) shows location of (A) the shell of the Nucleus
Accumbens (AcbSh), (B) the bed nucleus of stria terminalis (BNST) and (C) the central nucleus
of the Amygdala. Representative ISH images are shown for each candidate gene with an
enlargement (zoom) for specific areas of interest. Abbreviations: AcbSh, accumbens nucleus,
shell; AcbC, accumbens nucleus, core ; VDB, nucleus of the vertical limb of the diagonal band;
CPu, caudate putamen; IPACL, interstitial nucleus of the posterior limb of the anterior
commissure, lateral part; IPACM, interstitial nucleus of the posterior limb of the anterior
commissure, medial part BSTLD, Bed Nucleus of the Stria Terminalis, lateral division, dorsal
part; BSTL, Bed Nucleus of the Stria Terminalis, lateral division; BSTM, Bed Nucleus of the
Stria Terminalis, medial division; BLA, basolateral amygdaloid nucleus, anterior part ; BLV,
basolateral amygdaloid nucleus, ventral part CeA central amygdaloid nucleus; CeL, central
amygdaloid nucleus, lateral division; BMP, basomedial amygdaloid nucleus, posterior part
(Paxinos and Franklin, 2001)
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Figure 4. Expression of EAc-enriched genes in the central nervous system and peripheral tissues
by qPCR
Quantitative PCR reactions were performed in triplicate on 2 independent samples (3 mice
pooled for EAc, 2 mice pooled for WB and individual n=2 mice all other tissues, see Methods
for details) and data are expressed as a fold-change over WB considered as the reference
sample. Each gene is represented by a single box row, with expression levels illustrated using
a grey scale from white (low level) to black (high level). All the genes are mainly expressed
in the central nervous system (CNS), with the exception of Spata-13 expressed in most tested
tissues at levels similar or higher to CNS.
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