
Auditory trace fear conditioning requires perirhinal cortex

D.B. Kholodar-Smith1, P. Boguszewski1, and T.H. Brown1,2

1Departments of Psychology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, tel: 203-432-7008,
fax: 203-432-7009

2Cellular and Molecular Physiology, Yale University, 2 Hillhouse Ave, New Haven, CT 06520, tel:
203-432-7008, fax: 203-432-7009

Abstract
The hippocampus is well-known to be critical for trace fear conditioning, but nothing is known about
the importance of perirhinal cortex (PR), which has reciprocal connections with hippocampus. PR
damage severely impairs delay fear conditioning to ultrasonic vocalizations (USVs) and
discontinuous tones (pips), but has no effect on delay conditioning to continuous tones (Kholodar-
Smith, Allen, and Brown, in press). Here we demonstrate that trace auditory fear conditioning also
critically depends on PR function. The trace interval between the CS offset and the US onset was 16
s. Pre-training neurotoxic lesions were produced through multiple injections of N-methyl-D-aspartate
along the full length of PR, which was directly visualized during the injections. Control animals
received injections with phosphate-buffered saline. Three-dimensional reconstructions of the lesion
volumes demonstrated that the neurotoxic damage was well-localized to PR and included most of
its anterior-posterior extent. Automated video analysis quantified freezing behavior, which served
as the conditional response. PR-damaged rats were profoundly impaired in trace conditioning to
either of three different CSs (a USV, tone pips, and a continuous tone) as well as conditioning to the
training context. Within both the lesion and control groups, the type of cue had no effect on the mean
CR. The overall PR lesion effect size was 2.7 for cue conditioning and 3.9 for context conditioning.
We suggest that the role of PR in trace fear conditioning may be distinct from some of its more
perceptual functions. The results further define the essential circuitry underlying trace fear
conditioning to auditory cues.
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Several lines of evidence suggest that perirhinal cortex (PR) functions to bind separate stimulus
elements together into unitary representations (Lee, Barense, and Graham, 2005; Barense,
Bussey, Lee, Rogers, Davies, Saksida, Murray, and Graham, 2005; Buffalo et al., 2006;
Graham, Scahill, Hornberger, Barense, Lee, Bussey, and Saksida, 2006; Murray, Bussey, and
Saksida, 2007; Kholodar-Smith, Allen, and Brown, in press). First, PR damage severely
impairs performance on object-recognition tasks (Murray and Bussey, 1999; Bussey, Saksida,
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and Murray, 2002; Petrulis and Eichenbaum, 2003; Norman and Eacott, 2004; Lee et al.,
2005; Barense et al., 2005; Buffalo et al., 2006; Graham et al., 2006; Taylor, Moss, Stamatakis,
and Tyler, 2006; Bartko et al., 2007; Barker and Warburton, 2008). PR is argued to support
performance on tasks that require the use of complex conjunctions of the features that compose
an object or a scene (Murray et al., 2007; Kholodar-Smith et al., in press).

Second, PR damage severely impairs context conditioning (Corodimas and LeDoux, 1995;
Bucci, Phillips, and Burwell, 2000; Bucci, Saddoris, and Burwell, 2002; Lindquist, Jarrard,
and Brown, 2004; Kholodar-Smith et al., in press). Context conditioning is commonly
understood to entail “configural” or “conjunctive” learning about key stimulus features (Bucci
et al., 2000, 2002; Rudy and O'Reilly, 2001; Lindquist et al., 2004; Kholodar-Smith et al., in
press). Eichenbaum and colleagues emphasize the role of PR in “stimulus
fusion” (Eichenbaum, Schoenbaum, Young, and Bunsey, 1996; Eichenbaum, 1997).
Interestingly, rats require one to three minutes to form a representation of a context that can
support context conditioning (Fanselow, 1986, 1990; Fanselow, Landeira-Fernandez, DeCola,
and Kim, 1994; Wiltgen et al., 2001; Rudy and Matus-Amat, 2005; Landeira-Fernandez,
DeCola, Kim, and Fanselow, 2006; Wiltgen, Sanders, Anagnostaras, Sage, and Fanselow,
2006).

Third, PR damage severely impairs delay fear conditioning to discontinuous but not continuous
auditory cues (Lindquist et al., 2004; Kholodar-Smith et al., in press). One plausible inference
is that, in order for successful conditioning to occur, the successive segments of these
discontinuous conditional stimuli (CSs) must be unitized through a PR-dependent binding
mechanism (Kholodar-Smith et al., in press; also discussed in Allen, Furtak, and Brown,
2007; Furtak, Allen, and Brown, 2007a). Unitized representations of chunks of sound have
been termed “auditory objects” (see Treisman, 1998; Rauschecker, 1998; Goldstone, 2000;
Tian, Reser, Durham, Kustov, and Rauschecker, 2001; Griffiths and Warren, 2004; Furtak et
al., 2007a; Kholodar-Smith et al., in press). The recognition of both auditory and non-auditory
objects may entail similar or identical PR-dependent mechanisms (see Murray et al., 2007).

The present study uses a trace fear conditioning paradigm to explore a different type of temporal
gap—a “trace interval” between the CS offset and the US onset. Although the CS and US were
not contiguous in space or time, the US was perfectly predictable across the trace interval. The
results reveal what may be a novel aspect of PR function, one that seems not to entail
unitization.

Materials and Methods
Subjects

Subjects were fifty-six male Sprague-Dawley rats (~320 g weight; Charles River Laboratories,
Kingston, NY). Animals were handled for 3 days prior to surgery. Experiments were conducted
in accordance with the Society for Neuroscience policies and the Yale Animal Resources
Center guidelines on the care and use of animals.

Surgery
After anesthetizing the rat, the temporal bone and the zygomatic arch of the skull were
visualized (Furtak et al., 2007a; Kholodar-Smith et al., in press). The trephination was made
along the intersection of the two bones, exposing the temporal cortex (TE) and PR. Each rat
received ~8 bilateral PR injections (0.07 µL per infusion; 0.05 µL/min; equally spaced at ~0.7
mm) with either 0.01 M phosphate-buffered 0.9% saline (PBS) or 340 mM NMDA (50 mg/
mL; Sigma, St. Louis, MO), using a hypodermic (26 gauge) microsyringe at a 45° angle from
vertical. Sometimes only 7 injections were made due to the presence of a blood vessel at the
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intended injection site. Openings on the lateral surface of the skull were covered with a thin
layer of bone wax. Rats were given 5–7 days to recover before initiating the behavioral
procedures discussed next.

Behavioral Procedures
Two modified Coulbourn chambers (29 cm length × 25.5 cm width × 32 cm height) differed
in odorant, lighting, flooring, visual design on the walls, and background noise. Chamber A
served as the training and context-testing chamber. Chamber B served as a “shifted” context
for testing CS-elicited freezing. A “bat detector” (Mini-3, tuned at 23 kHz; UltrasoundAdvise,
London, UK) was positioned inside each sound-attenuating enclosure. Both chambers were
equipped with an infra-red camera, which was attached to a video recorder. Video and audio
signals that were recorded during cue and context testing were stored for offline analysis of
freezing behavior. The latter was done with video-analysis software (see Supplementary Fig.
1 and Supplementary Fig 2) described elsewhere (Bang, Allen, Jones, Boguszewski, and
Brown, 2008; Boguszewski, Bang, and Brown, 2007). For cue and context conditioning,
respectively, the correlation between machine and human scoring (n = 12 rats) is 0.99 and 0.91
(Bang and Brown, unpublished).

Auditory Stimuli
The auditory CSs (Fig. 1) were similar to ones that have previously been shown to elicit
widespread firing in rat PR neurons (Allen et al., 2007;Furtak et al., 2007a). A pre-recorded
10-call 23 kHz ultrasonic vocalization (USV; Fig. 1C) was elicited from a naïve rat by an
unsignaled foot shock through the grid floor (1 s, 1 mA). Vocalizations were digitally recorded
with an RP2.1 (TuckerDavisTechnologies (TDT), Alachua, FL), sampled at 100 kHz (32-bit),
and band-pass filtered (18 – 26 kHz). Continuous and discontinuous tone cues (10 ms rise/fall
time) were produced with a D/A tone generator (RPvds, TDT) used in conjunction with an
RP2.1 (Fig. 1A – B). All three auditory cues were matched in loudness (~ 65dB).

Conditioning
Subjects were randomly assigned to receive presentations one of three auditory cues (Fig. 1)
that were used as conditional stimuli: a continuous tone (“Tone” Group); a pre-recorded USV
(“USV” group); and a discontinuous tone, consisting of 10 tonal segments, whose on/off pattern
matched the temporal structure of the USV (“Pips” group). By convention, USVs with root
frequencies of 18–35 kHz are collectively termed “22 kHz USVs” (Brudzynski, 2005). Among
naïve laboratory rats, USVs and Pips are as “neutral” as continuous tones in terms of the
unconditional elicitation of freezing behavior (Endres and Fendt, 2007;Bang et al., 2008). Prior
to conditioning, subjects were given 2 min to explore the training chamber. During
conditioning, subjects received 10 trace pairings of a 9.7 s auditory CS and a 1.0 s foot shock
US (0.8 mA) in Chamber A. The trace interval was 16 s and the ISI was 25.7 s. A recent study
suggests that hippocampal participation in trace conditioning diminishes with trace intervals
less than 15 s (Misane, Tovote, Meyer, Spiess, Ogren, and Stiedl, 2005). The mean inter-trial
interval (±SE) was 5 min ± 15 s.

Testing
Freezing responses to the cue (in Chamber B) and context (in Chamber A) were tested 24 and
48 hr later in a counterbalanced order. Context-elicited freezing was measured for 6 minutes.
Cue-elicited freezing was measured in massed trials during the 2-min baseline and 6 min of
the cue presentation. Freezing was defined as the cessation of all movement except that required
for respiration (Blanchard and Blanchard, 1969; Fanselow, 1997). The freezing recognition
software converted the cumulative time spent freezing into a percentage score (100% freezing
duration ÷ total duration).
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Statistics
Group data were analyzed using ANOVAs and t-tests. The family-wise α-error rate was
maintained at 0.05. The lesion effect size (d) on freezing was computed as follows (Cohen,
1988):

(1)

where the numerator is the difference between the mean freezing of control and lesioned
animals and the denominator is the standard deviation of a pooled estimates from control and
lesioned animals. In psychological studies, d = 0.8 is conventionally regarded as a “large effect
size” (Cohen, 1988).

Histology
Subjects were deeply anesthetized with an overdose of sodium pentobarbital (100 mg/kg) and
perfused intracardially with 0.01 M PBS and 4% paraformaldehyde. Cryoprotected brains were
sectioned with a freezing microtome (75 µm) into three sets of immediately-adjacent sections
for a Nissl stain, a NeuN stain, and a fiber-specific myelin stain. The conspicuously low level
of myelin staining in PR, relative to the adjacent temporal (TE) and entorhinal cortices (EC;
Burwell, 2001; Brown and Furtak, 2006), quickly reveals its borders. The Nissl and NeuN
stains highlight the distinctive laminar organization of PR around the rhinal fissure. In
combination, these stains leave no uncertainty about the borders between PR and adjacent
structures.

Lesion Reconstructions
Using a Neurolucida (MicroBrightField, Williston, VT) computer-microscope system, the
volume of neurotoxic damage to PR and neighboring regions was estimated using NeuN-
stained sections (based on Paxinos and Watson, 1998; Burwell, 2001). The Cavalieri method
was used to calculate the percentage damage (by volume) to PR, EC, the ventral hippocampus
(vHC), area TE of the temporal cortex (TE1 plus TE2), and the lateral and basolateral subnuclei
of the amygdala (LA/BLA).

Results
Histology

None of the 56 rats was excluded based on histology. Figure 2 compares cell damage in sham-
operated (Fig. 2A–C) and PR-lesioned rats (Fig. 2D–F). In sham-operated rats, the PR
cytoarchitecture was easily discerned in Nissl- (Fig. 2A) and NeuN-stained sections (Fig. 2C)
based on its laminar organization around the curvature of the rhinal sulcus. The myelin stain
(Fig. 2B) duplicated previous findings of conspicuously levels of PR myelination relative to
TE and EC (Burwell, 2001;Brown and Furtak, 2006). This remarkably low level of staining
quickly identifies the boarders between PR and adjacent cortex. The multiple NMDA injections
caused neurotoxic damage that included areas 35 and 36 along most of the rostro-caudal extent
of PR (Fig. 2D – G).

Figure 3 shows the average amount of neurotoxic damage that was sustained in each
hemisphere of PR and in adjacent structures. There were no significant differences between
hemispheres in the amount of damage to PR, EC, vHC and TE, p > 0.05 (see Fig. 3). There
was also no significant difference in the extent of PR damage among the Cue groups: F (2, 24)
= 3.17, p = 0.06. The damage to vHC was minor (3.7% volume). For unknown reasons, there

Kholodar-Smith et al. Page 4

Neurobiol Learn Mem. Author manuscript; available in PMC 2009 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



was significantly more damage to the right LA/BLA (9.4 ± 6.6%) than the left LA/BLA (1.5
± 1.5%), t (26) = 2.14, p = 0.04. Because the US was applied bilaterally, the small unilateral
amygdala damage is unlikely to have had any behavioral effect (Blair, Huynh, Vaz, Van, Patel,
Hiteshi, Lee, and Tarpley, 2005). Finally, there was no significant difference in the effect of
PR damage among the Cue groups, F (2, 24) = 1.97, p = 0.16.

Cue-Elicited Freezing
Prior to the cue presentation (during the baseline period), there was no significant effect of
Surgery, F (1, 55) = 1.33, p = 0.26; no significant effect of type of Cue, F (2, 55) = 0.32, p =
0.73; and no significant Surgery × Cue interaction, F (2, 55) = 1.37, p = 0.27. During the CS
presentation, there was a significant main effect of Surgery, F (1, 50) = 72.23, p < 0.001. Figure
4A shows that freezing during the CS presentation was comparable in the three cue groups.
The CS-elicited freezing levels were significantly lower in PR-lesioned rats (39.0 ± 4.3 %)
than PBS-infused control animals (82.2 ± 2.7 %), t (52) = 8.48, p < 0.001. There was no main
effect of the Cue on freezing levels, F (2, 50) = 0.22, p = 0.80. The mean freezing level among
sham-operated rats was 82.24 ± 2.73% and there were no significant differences among Cue
groups, F (2, 24) = 0.91, p = 0.42. The mean freezing level among PR-lesioned rats was 39.03
± 4.29% and there were no significant differences in freezing levels among the Cue groups, F
(2, 24) = 1.10, p = 0.35. In addition, there was no significant Surgery × Cue interaction, F (2,
50) = 1.87, p = 0.17. The mean (± SE) lesion effect size (from Eq. 1) on trace cue conditioning
was very large (d̅ = 2.7 ± 0.8). The effect sizes for each cue group were as follows: Tone-group
(d = 1.9), USV-group (d = 1.7), and Pips-group (d = 4.6).

Context-Elicited Freezing
The effects of PR damage on context-elicited freezing are summarized in Figure 4B. The
histograms show comparably severe impairment in all three CS groups. The mean lesion effect
size on context conditioning (d̅ = 3.9 ± 0.7) was extremely large. By group, the lesion effect
sizes on context conditioning were as follows: Tone-group (d =4.2), USV-group (d = 4.4), and
Pips-group (d = 3.0). There was a significant main effect of Surgery on context-elicited
freezing, F (1, 50) = 183.87, p < 0.001. Overall, PR-lesioned rats froze significantly less to the
context (18.4 ± 5.6 %) than did the PBS-controls (79.3 ± 5.6 %), t (52) = 6.67, p < 0.001. There
was no significant effect of Cue on context conditioning, F (2, 50) = 2.63, p = 0.08, and no
significant Lesion × Cue interaction, F (2, 50) = 0.28, p = 0.76. Within each Cue group, the
pattern of statistical significance was the same. Specifically, there was significantly less
freezing in PR-lesioned rats than in PBS-controls in the Tone group, t (16) = 8.65, p < 0.0001;
the USV group, t (16) = 9.25, p < 0.0001; and the Pips-group, t (16) = 4.97, p < 0.0001.

Discussion
Brief Summary

The present study explored the role of PR in trace fear conditioning, using three different
auditory cues (Fig. 1A–C). In the experimental group, neurotoxic damage was evident along
most of the length of PR (Fig. 2). Three-dimensional reconstructions revealed that the volume
of neuronal damage was well-localized to PR (Fig. 2, Fig 3). There was relatively little bilateral
damage to either vHC or LA/BLA (Fig. 3). PR lesions profoundly impaired trace fear
conditioning to all three auditory cues (Fig. 4A; d̅ = 2.7) as well as conditioning the training
context (Fig. 4B; d̅ = 3.9). There were no significant differences among the cues in the levels
of elicited freezing in either PR-lesioned rats or sham-operated control animals. The new and
remarkable finding is that PR damage impaired trace fear conditioning to a continuous tone.
The observed deficits in context conditioning and conditioning to discontinuous auditory cues
were anticipated (see Kholodar-Smith et al., in press; Lindquist et al., 2004; Bucci et al.,
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2002, 2002). These and other results are interpreted in terms of dual mnemonic functions of
PR.

Trace Fear Conditioning System
Background and contemporary theory—Historically, the dorsal hippocampus (dHC)
has been most closely associated with trace conditioning. Damage to the dHC can impair both
trace fear and trace eyeblink conditioning (Berger, Rinaldi, Weisz, and Thompson, 1983;
Solomon, Vander Schaaf, Thompson, and Weisz, 1986; Moyer, Deyo, and Disterhoft, 1990;
Weiss et al., 1996; McEchron, Bouwmeester, Tseng, Weiss, and Disterhoft, 1998; McEchron,
Tseng, and Disterhoft, 2000). Recent evidence suggests that the ventral region of the
hippocampus (vHC) may be more directly involved in trace conditioning (Rogers, Hunsaker,
and Kesner, 2006; Yoon and Otto, 2007). Indeed, the dHC is thought to communicate with the
amygdala by means of the vHC (Pitkänen, Pikkarainen, Nurminen, and Ylinen, 2000).

For several days after trace conditioning, HC damage severely impairs memory performance.
However, at longer time intervals, HC function is no longer required for retrieval (Kim and
Fanselow, 1992; Anagnostaras, Maren, and Fanselow, 1999; also see Moyer, Thompson, and
Disterhoft, 1996). One contemporary theory argues that HC-independent memories can emerge
from repeated activations and strengthening of the synapses between HC and neocortex and
within neocortex (Teyler and DiScenna, 1986; Zola-Morgan and Squire, 1986; Rolls, 1996;
Rolls and Kesner, 2006; Paz, Bauer, and Paré, 2007; Teyler and Rudy, 2007; Rudy, 2008).

Cortical fear conditioning pathways—During and after trace fear conditioning, critical
interactions are believed to occur between HC, EC, PR, and the prefrontal cortex (PFC; Dash,
Hebert, and Runyan, 2004; Paz et al., 2007). The latter has been proposed to be a long-term
memory storage site for both trace fear and trace eyeblink conditioning (Powell, Skaggs,
Churchwell, and McLaughlin, 2001; Dash et al., 2004; Runyan, Moore, and Dash, 2004; Blum,
Hebert, and Dash, 2006; Quinn, Ma, Tinsley, Koch, and Fanselow, 2008). PR sends direct
projections to HC as well as indirect projections via EC (Pitkänen et al., 2000; Burwell,
2001; Lavenex, Suzuki, and Amaral, 2004; Furtak, Wei, Agster, and Burwell, 2007b). The
CA1 region of HC in turn projects back to PR through the subiculum and EC (Pitkanen et al.,
2000).

Both EC and the subiculum project to LA/BLA (Pitkanen et al., 2000; Kerr, Agster, Furtak,
and Burwell, 2007), which are “cortex-like” parts of the amygdala (McDonald, 1982; Swanson
and Petrovich, 1998). Reciprocal monosynaptic projections connect PR and LA/BLA. The
latter projects to the central nucleus of the amygdala (Pitkanen et al., 2000; Furtak et al.,
2007b), which in turn controls conditional freezing behavior (Fanselow, 1998; LeDoux,
2000; Choi and Brown, 2003). The only monosynaptic projections from rat HC to the amygdala
occur via the subfield CA1 of vHC (Canteras and Swanson, 1992; Pitkanen et al., 2000; Yoon
and Otto, 2007). Interestingly, the output from LA/BLA can also control the propagation of
activity from PR to EC and HC (Kajiwara, Takashima, Mimura, Witter, and Iijima, 2003),
raising the possibility of recursive interactions among these structures.

Functions of PR in trace conditioning—The simplest account of the role of PR in trace
fear conditioning is that this “transitional” cortex (Lavenex and Amaral, 2000) serves as a
crucial part of the input to and/or output from HC, which houses the essential memory trace
(see Wallenstein, Eichenbaum, and Hasselmo, 1998; Shapiro, 2001; Lee and Kesner, 2003;
Rudy and O’Reilly, 2001; Rodriguez and Levy, 2001; Rolls and Kesner, 2006; Eichenbaum,
Yonelinas, and Ranganath, 2007). However, recent evidence suggests that the role of PR in
trace fear conditioning may transcend this purely-passive or non-adaptive conceptualization.
A recent neurophysiological study of trace fear conditioning found widespread changes in PR
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neurons (Allen and Brown, 2008). Some of these firing changes were specific to the trace
interval and persisted into the testing sessions 4 and 24 hrs later.

We propose that the critical function of PR in Pavlovian trace conditioning is to enable a
representation of the cue in the absence of exteroceptive input. This same PR function is thought
to support performance on a delayed non-match to sample (DNMS) tasks. PR damage impairs
performance on DNMS tasks in both monkeys (Gaffan and Murray, 1992; Meunier,
Bachevalier, Mishkin, and Murray, 1993; Murray and Bussey, 1999) and rats (Otto and
Eichenbaum, 1992). Neurophysiological recordings from rat PR have revealed neurons that
maintain stimulus-specific activity during the delay period of an odor-guided version of the
DNMS task (Young, Otto, Fox, and Eichenbaum, 1997).

In neurophysiological terms, transient sensory memory could be supported by recirculating
neuronal activity (Durstewitz, Seamans, and Sejnowski, 2000; Fellous and Sejnowski, 2003)
and and/or by endogenous “persistent firing”, which can last for minutes after the termination
of the original excitation (Egorov, Unsicker, and von Bohlen und Halbach, 2006). This
remarkable single-cell phenomenon is common in LA/BLA (Egorov et al., 2006) and certain
layers of PR (Boguszewski, Leung, Zhao, and Brown, 2007; Brown, Zhao, and Leung, 2007)
and EC (Egorov, Hamam, Fransén, Hasselmo, and Alonso, 2002; Fransén, Tahvildari, Egorov,
Hasselmo, and Alonso, 2006; also see Hasselmo and Stern, 2006), but does not occur HC.

Conclusions
PR damage profoundly impaired both trace fear conditioning and context conditioning. We
suggest that the function of PR in trace cue conditioning is different from its role in delay cue
and context conditioning. The latter two are consistent with the general hypothesis (see
Kholodar-Smith et al., in press), reviewed earlier, that PR supports unitization through
“configural” or “conjunctive” learning or “stimulus fusion”. The role of PR in trace
conditioning may reflect a different kind of adaptive function, one that is more intimately
associated with HC. Seemingly different higher-level functions may turn out to depend on
similar cellular mechanisms, such as endogenous persistent firing.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Training paradigm and spectrograms of the three conditional stimuli (CSs) used as cues
(A) A continuous 23 kHz tone. (B) A discontinuous 23 kHz tone (“pips”) whose frequency
and on/off temporal pattern matches the ~23 kHz ultrasonic vocalization (USV). (C) A segment
of a ~23 kHz USV recorded from a conspecific. All cues were matched in principle frequency,
duration, and average loudness. (D) Training paradigm. Training included 10 trials of 9.7 s CS
presentation, followed by a 16 s trace interval, and terminated with a 1 s US footshock
presentation.
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Figure 2. Examples of histology from a sham-operated subject (A–C) and a PR-lesioned subject (D
– F)
Coronal slices were reacted using a Nissl stain (A, D), which labels neuronal and glial cell
bodies; a gold-chloride stain (B, E), which labels myelin; a NeuN (C, F), which is specific for
neurons. The illustrated sections were taken at approximately −5.2 A/P relative to bregma.
Multiple injections of PBS resulted in unremarkable damage primarily represented by the
needle tracks, while multiple injections of NMDA caused a well-localized neuronal damage.
(G) Unilateral images showing the anterior-posterior extent of a representative PR lesion. Brain
sections belong to the same subject shown in (D–F).
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Figure 3. Average amount of bilateral damage to PR and adjacent structures caused by neurotoxic
lesions
The amount of damage is given as a percentage of the total volume. PR sustained extensive
bilateral damage, whereas damage to adjacent brain regions was limited. In the LA/BLA region
there was significantly more damage to the right side than on the left side. Abbreviations: PR,
perirhinal cortex; LA/BLA, lateral and basolateral nuclei of amygdala; EC, entorhinal cortex;
vHC, ventral hippocampus; TE, temporal cortex. Bars represent the standard error (SE) of the
mean.
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Figure 4. Effects of the bilateral NMDA lesions on freezing to the cue and training context
(A) Mean freezing levels to the cue in PR-lesioned subjects (black bars) and sham-operated
control animals (white bars). All three cues elicited robust freezing in the sham-operated control
animals. By contrast, freezing was significantly reduced to all auditory cues in PR-lesioned
subjects. (B) Mean freezing levels to the training context were comparable among the three
groups of sham-operated subjects. By contrast, freezing was significantly reduced in the three
groups of PR-lesioned subjects. Asterisks denote significant differences between the sham-
operated and PR-lesioned subjects. Bars represent the standard error (SE) of the mean.
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