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Ecological regime shifts are large, abrupt, long-lasting changes in
ecosystems that often have considerable impacts on human econ-
omies and societies. Avoiding unintentional regime shifts is widely
regarded as desirable, but prediction of ecological regime shifts is
notoriously difficult. Recent research indicates that changes in
ecological time series (e.g., increased variability and autocorrela-
tion) could potentially serve as early warning indicators of im-
pending shifts. A critical question, however, is whether such
indicators provide sufficient warning to adapt management to
avert regime shifts. We examine this question using a fisheries
model, with regime shifts driven by angling (amenable to rapid
reduction) or shoreline development (only gradual restoration is
possible). The model represents key features of a broad class of
ecological regime shifts. We find that if drivers can only be
manipulated gradually management action is needed substantially
before a regime shift to avert it; if drivers can be rapidly altered
aversive action may be delayed until a shift is underway. Large
increases in the indicators only occur once a regime shift is
initiated, often too late for management to avert a shift. To
improve usefulness in averting regime shifts, we suggest that
research focus on defining critical indicator levels rather than
detecting change in the indicators. Ideally, critical indicator levels
should be related to switches in ecosystem attractors; we present
a new spectral density ratio indicator to this end. Averting eco-
logical regime shifts is also dependent on developing policy pro-
cesses that enable society to respond more rapidly to information
about impending regime shifts.

early warning indicator � ecological threshold � spectral density ratio

Ecological regime shifts are large, sudden changes in ecosys-
tems that last for substantial periods of time (1, 2). Regime

shifts are a source of growing concern as rising human impacts
on the environment are increasing the likelihood of ecological
regime shifts at local to global scales (3–5). Accumulating
evidence suggests that regime shifts can occur in diverse eco-
systems: They have been documented in oceans (6–8), freshwa-
ters (2, 9, 10), forests (11), woodlands (12), drylands (13),
rangelands (14–16), and agroecosystems (17–19). Ecological
regime shifts are widely regarded as undesirable as they often
have considerable impacts on human well-being. For example,
the collapse of Canada’s Newfoundland cod fishery in the early
1990s directly affected the livelihoods of some 35,000 fishers and
fish-plant workers, led to a decline of over $200 million dollars
per annum in revenue from cod landings (20) and had significant
indirect impacts on the local economy and society (21). Ecolog-
ical regime shifts are also undesirable because they may be very
costly or impossible to reverse (1, 2, 22). Regime shifts entail
changes in the internal dynamics and feedbacks of an ecosystem
that often prevent it from returning to a previous regime, even when
the driver that precipitated the shift is reduced or removed (1, 2).
For instance, despite a moratorium on the Canadian cod fishery for
�15 years, the fishery has shown little sign of recovery (20).

Avoiding unintentional regime shifts is widely regarded as
desirable (3, 4). However, ecological regime shifts are notori-
ously difficult to predict. Most regime shifts come as surprises,
and the conditions and mechanisms leading to them only become

clear once the shift has occurred (1, 2). Regime shifts typically
result from a combination of gradual changes in an underlying
driving variable (or set of variables), combined with an external
shock, such as a storm or fire (23, 24). Gradual changes in
underlying drivers usually have little or no apparent impact up
to a certain point, and then unexpectedly lead to a regime shift
when that threshold is crossed. Once an ecosystem is close to a
threshold, a shift is often precipitated by a shock that under
previous conditions had no dramatic consequences (1, 2). Slow
underlying drivers that push ecosystems toward thresholds often
go unnoticed and are frequently associated with increased
economic benefits. In the absence of known thresholds and
impacts, it is very difficult to constrain such drivers. Rising
demands on the world’s ecosystems are therefore expected to
increasingly push ecosystems toward ecological thresholds (3–5).
To avoid large-scale disruptions to human societies, there is
accordingly an urgent need to improve our ability to anticipate
and avert ecological regime shifts.

The need to better anticipate regime shifts has sparked much
recent research (25–33). Most of this work has been based on
mathematical models of ecosystems with multiple stable states
(34, 35). The focus has been on generic changes in system
behavior that might enable one to predict regime shifts across a
diverse range of ecosystems, rather than experimental or model-
based methods that focus on better understanding the mecha-
nisms of particular regime shifts in specific ecosystems. It turns
out that although little change may be evident in the average
condition of an ecosystem as a regime shift is approached, there
may be detectable changes in other properties of monitoring
data. Specifically, time series data may show increased variability
(25), changes in skewness (27), higher correlation through time
(29, 33), and slower rates of recovery from disturbances (32) in
advance of regime shifts. Such changes in the ways ecosystems
behave hold substantial promise as early warning indicators of
regime shifts, although there are as yet few empirical tests (25,
27, 29, 32, 33). However, given their potential use as early
warning indicators, a critical question is: Would such changes in
ecosystem behavior provide sufficient advance warning to adapt
management to avoid a regime shift? Or are the lags and
momentum of change in the ecosystem so great that by the time
these changes are detected the system is already committed to a
shift? Answers to these questions clearly impact whether at-
tempts to employ such early warning indicators are worthwhile,
and whether use of these indicators may be a viable strategy for
avoiding undesirable regime shifts.
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To examine these questions, we use a fisheries food web model
to explore (i) how close an ecosystem can get to an ecological
threshold and still avert a regime shift by implementing changes
in management, and (ii) which regime shift indicators might give
warning before this ‘‘point of no return.’’ Regime shifts in the
model can be triggered by 2 mechanisms: (i) angling, which is
amenable to relatively fast manipulation through management
action, or (ii) shoreline development, which can only be manip-
ulated gradually. This enables us to investigate the potential
avoidance of regime shifts for fast versus slow management
variables. We use a modeling approach to explore the use of
regime shift indicators under the most favorable possible con-
ditions, where the signal from the indicators is not obscured by
environmental variability and management changes can be
implemented without delay. If the indicators provide insufficient
warning under these conditions they hold little promise as tools
for avoiding regime shifts in practice. However, if they perform
adequately further investigations into the generality of the
indicators, their detection in the field, and suitable policy
instruments for management response are warranted.

Model
The fisheries food web model is derived from refs. 26 and 36 and
involves a trophic triangle where adult piscivorous fish (A) prey
on planktivorous fish (F), which in turn prey on juvenile pisci-
vores (J) (Fig. 1). The model includes movement between refugia
and foraging arenas by planktivores and juvenile piscivores (37).
Two possible regimes exist: a piscivore-dominated regime and a
planktivore-dominated regime. Nonlinear shifts between the
regimes are precipitated by harvesting of adult piscivores (qE) or
through shoreline development. Shoreline development impacts
refuge habitat (fallen trees in shallow water), and hence affects
the rate at which juvenile piscivores move from the foraging to
the refuge arenas (h). This in turn impacts the predation of
juvenile piscivores and affects recruitment. See the Methods
section for further details.

We used 2 management scenarios in our simulations: (i)
Immediate reduction in harvest to a level of qE � 0.1 (policy
MS1), and (ii) gradual restoration of shoreline habitat, such that
h � �0.01/year (policy MS2). In reality, political tradeoffs and

bureaucratic delays mean that management responses will usu-
ally be substantially weaker and tardier than MS1 and MS2. In
accordance with our aims, we chose optimistic management
scenarios to explore the use of regime shift indicators under
highly favorable conditions.

Results
We defined a regime shift as the period over which the annual
increase in the planktivore (F) population exceeded 10%. In the
model, regime shifts have a typical duration of �15 years,
reflecting plausible limits on the growth rate of F.

How Close to a Regime Shift Can the Ecosystem Get and Still Avert a
Shift? Dramatic differences are evident in the proximity to a
regime shift that can be reached where management action
focuses on angling (MS1) as opposed to shoreline development
(MS2). For the angling-induced regime change, a regime shift
can be well underway (10 years into the shift) and a permanent
change still averted by reducing harvest as per scenario MS1. In
contrast, for a regime shift driven by shoreline development,
habitat restoration according to scenario MS2 has to be initiated
at least 45 years before the onset of the shift to avert it (Fig. 2).
Under these management options, avoiding a regime shift driven
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Fig. 1. The fisheries food web model used to explore the use of regime shift
indicators in averting ecological regime shifts. Regime shifts are driven by
angling or shoreline development. Angling directly affects the populations of
adult piscivores through harvesting (qE). Shoreline development affects the
amount and quality of refuge habitat, and thus the rate at which juvenile
piscivores hide from predators (h).
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Fig. 2. The attainable proximity to a regime shift is much greater for driving
variables that can be rapidly manipulated (angling) than for variables that can
only be manipulated gradually (shoreline development). Year 0 is defined as
the year in which the switch from the lower (F � 0.34) to the upper (F � 76.92)
planktivore attractor occurs. (A) In the absence of policy action, a harvest-
driven shift occurs in years 81 to 95. The switch in attractors occurs at qE � 1.78.
(B) The window for averting a regime shift by implementing harvest-reduction
policy MS1 lasts to year 91, well within the regime shift. (C) However, insti-
tuting MS1 just a year later cannot avert a regime shift. (D) In the absence of
policy action, a shoreline development-driven shift occurs between years 80
and 95, and the switch in attractors occurs at h � 3.7. (E) To avert a regime shift,
shoreline restoration policy MS2 has to be implemented substantially before
the shift, by year 35. (F) Taking action slightly later (year 37) cannot avert a
regime shift, although it is substantially delayed.
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by shoreline development therefore requires much earlier de-
tection and action than avoiding a shift driven by angling.
Sensitivity analyses show that the attainable proximity to a
regime shift is reduced if the management response is weaker or
if the system is subject to greater levels of stochastic variation,
but is unaffected by the rate of change in the variable driving the
regime shift (Fig. S1).

We also explored manipulation of angling to avert a shoreline
development-driven shift, and shoreline restoration to address
an angling-induced shift. For the shoreline-driven shift, harvest-
reduction policy MS1 (with h fixed at its level at the time of policy
implementation) enabled a much greater proximity to the
regime shift (8 years into the shift) than policy MS2 (45 years
before the shift). A proximity equivalent to MS1 alone was
attained if MS1 and MS2 were implemented simultaneously.
Analogous results were found for the angling-driven shift and a
regime shift driven by concurrent changes in qE and h (Table S1).
The attainable proximity to a regime shift is therefore deter-
mined by the nature of the management variables: Where
pressure on the ecosystem can be immediately reduced (angling),
a shift can be averted by taking action even once a regime shift
is underway, whereas, if pressure can only be gradually reduced
(restoration of shoreline habitat), action needs to be taken
substantially in advance of a shift. The remainder of our analyses
focus on the scenarios in Fig. 2, because these capture the
essential differences between fast and slow management vari-
ables in the model.

Two further features are evident in Fig. 2. First, there is a very
clear and abrupt end to the window in which management action
to avert a regime shift is possible. For instance, for the angling-
induced regime shift, management action MS1 in year 91 leads
to a rapid recovery of the piscivore population. However, the
same management action just a year later is unable to prevent the
regime shift, and the piscivore population never recovers despite
a prolonged reduction in harvest.

Second, in transient settings such as those characterized in Fig.
2, the actual regime shift occurs substantially later than the
switch to the alternate attractor. Consequently, there is a con-
siderable lag between the point at which the long-term sustain-
able level of qE or h necessary to maintain a particular regime
is surpassed, and the point at which a regime shift occurs. For
instance, in the case of shoreline development the critical level
at which the lower planktivore attractor disappears is h � 3.7.
However, it is not until 80 years later when h has been reduced
to h � 2.1 that a regime shift occurs. This may lead to the
mistaken inference that the long-term sustainable level of h is
close to the level at which the regime shift is initiated. More
encouragingly, such lags provide room for ‘‘overshoot error’’: It
is possible to substantially exceed long-term critical levels and
still avert a regime shift. For instance, although the critical
long-term harvest level is qE � 1.78, there is a window of 90
years, during which qE can be further increased to as much as
2.23, when it is still possible to avert a regime shift by imple-
menting response MS1.

Which Indicators Provide Warning before the ‘‘Point of No Return?’’
Large annual increases in variance, skewness, kurtosis and the
AR1 coefficient of within-year planktivore population only
occur once a regime shift is underway (Fig. 3). In the case of the
angling-driven shift and response MS1, such increases could
provide warning 3–10 years before the end of the policy window
in year 91, depending on the sensitivity with which ‘‘large annual
increase’’ is defined. However, for a regime shift driven by
shoreline development with management restricted to MS2,
large annual increases in the indicators do not occur until several
decades after the end of the policy window in year 35. ‘‘Spikes’’
associated with regime shifts occur in the variance and AR1
indicators under a wide range of model conditions. In contrast,

skewness and kurtosis show spikes under some conditions, but
not others (such as high levels of environmental noise).

Before the onset of a regime shift, directional changes in
angling or shoreline development produce more gradual in-
creases in variance and the AR1 coefficient (Fig. 3). Such
increases could potentially provide greater advance warning of
a regime shift. However, as apparent in Fig. 3, there are two
difficulties associated with using gradual increases as early
warning indicators. First, it may be difficult to detect these
changes above the inherent variability in the ecosystem unless
data were available for a substantial length of time. For instance,
no increase in variance or AR1 is detectable in the 30-year period
(a considerable time series in most real-world contexts) preced-
ing the end of the policy window for the shoreline-driven shift.
Second, detecting a slow increase in variance or the AR1
coefficient provides no information about how close to a regime
shift the ecosystem may be. Gradual increases in variance and
AR1 simply indicate that there is ongoing, directional change in
some driver, and occur even when the driving variables are below
the critical long-term levels that would lead to a switch in the
attractor. Detecting a gradual increase in variance or AR1
therefore does not indicate whether or when management action
is needed to avert a regime shift.

To sustain desirable regimes, indicators of regime shifts should
ideally provide warning when the long-term critical qE or h levels
are being approached or have been exceeded—i.e., when a
switch in the attractor occurs. No marked changes in variance,
AR1, skewness, or kurtosis accompany a switch in the attractor
(Fig. 3). To investigate signals of a changing attractor, we
calculated spectral densities based on the within-year plankti-
vore data. We found clear signs of ‘‘reddening’’ after the switch

Fig. 3. Large annual increases in the regime shift indicators only occur once
a regime shift is underway, which is often too late for management action to
avert a shift. Gradual increases in variance (A and D) and AR1 (C and F) may
occur before a regime shift, but specific thresholds need to be defined to
indicate whether or when policy action to avert a shift is required. Indicators
are based on the within-year planktivore data and correspond to the changes
depicted in Fig. 2 A and D (vertical lines show the end of the policy windows).
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from the lower to the upper attractor (Fig. 4). Based on the
spectra in Fig. 4, we calculated a spectral density ratio to
compare the contribution of low to high frequency processes to
the total within-year variance in the planktivore population. In
our model, the point at which low frequency processes start to
dominate (10-year running mean spectral density ratio exceeds
1) provided warning of the disappearance of the lower attractor,
for both the angling and shoreline development-driven shifts
(Fig. 5). The 10-year running mean threshold also performed
well when the system was subject to larger amounts of stochastic
variation, or when the rates of change in the driving variables
were increased (Fig. S2).

Discussion
Our model focuses on regime shifts precipitated by changes in
slow underlying drivers, rather than shifts precipitated by large
external shocks (23, 24). Mathematically, regime shifts driven by
slow underlying variables involve bifurcations: A small, smooth
change in parameter values causes sudden qualitative changes in
the long-term behavior of a dynamical system because of the
appearance or disappearance of attractors. Ecological models
have demonstrated that mathematical bifurcations provide a
plausible explanation for regime shifts in a diverse range of
ecosystems (34, 35, 38). As human impacts on Earth expand,
gradual changes in variables leading to bifurcations are likely to
be a major cause of ecological regime shifts (3–5). As in our
model, some of these drivers will be amenable to fast manipu-
lation through management action, whereas it will only be
possible to manipulate others much more gradually. Although
not applicable to all ecological shifts, our model therefore

represents key features of a broad class of potential regime shifts.
For regime shifts driven by slow underlying variables, our
findings relate specifically to: (i) the possibility of averting
ecological regime shifts, and (ii) the use of regime shift indicators
to this end.

Averting Regime Shifts. Our findings emphasize the need for
monitoring and proactive intervention in averting ecological
regime shifts (3, 4, 39), especially in cases where underlying
drivers cannot be rapidly manipulated. Where it is possible to
rapidly and drastically reduce impacts driving a shift (as in the
case of angling), our results indicate that regime shifts could
potentially be averted even once they are underway. However,
bureaucratic inertia, policy compromise (40), and the risk of
unforeseen environmental shocks (23, 24), make delaying action
until a regime shift is underway a dangerous strategy even where
it is theoretically feasible. If the variable driving a regime shift
can only be manipulated gradually (as in the case of shoreline
development), our results indicate that taking action substan-
tially before the onset of a regime shift is crucial if a shift is to be
averted. Proactive intervention is also desirable from the stand-
point of cost, because the closer the system has moved to a
regime shift, the stronger (and generally more costly and socially
disruptive) the action needed to prevent a regime shift (4, 39).

Our results highlight that in systems subject to regime shifts
there is often a discrete window for policy action, after which it
becomes impossible to avert a shift. The existence of such
windows, where the same action in 2 adjacent years could differ
radically in its effectiveness, is seldom considered in environ-
mental decision-making processes. Policy windows may help
explain why some fisheries have shown rapid recovery when
fishing controls were instituted, whereas other fisheries, such as
the Newfoundland cod, have shown little recovery despite
prolonged reductions in harvest (41, 42). Our findings also
underscore the risks being taken by current inaction surrounding
climate change. Atmospheric carbon dioxide (CO2) levels are a
variable that cannot be rapidly and drastically reduced. As
highlighted by other authors, timely action to avert potential
CO2-induced regime shifts is therefore likely to be critical (4, 39).

Our results underscore the need for developing alternative
decision-making processes for systems subject to ecological
regime shifts (43, 44). In transient settings, such as those that
characterize our simulations and most real-world ecosystems
(34, 45), long-term sustainable levels of human impact can easily
be exceeded. Switches in system attractors will usually occur
substantially before any noticeable effects on ecosystems be-
come evident. By the time adverse environmental effects be-
come apparent it is often too late to avert a regime shift.
Trial-and-error approaches that wait for evidence of negative

Fig. 4. For the angling-induced regime shift in Fig. 2A, clear signs of spectral ‘‘reddening’’ are evident after the switch from the lower to the upper planktivore
attractor. The spectral density describes how variation in the within-year planktivore population data may be accounted for by cyclic components of different
frequencies as determined by Fourier analysis. Each line gives the AR1-based spectral density for 1 year. Analogous spectra exist for the shoreline-driven regime
shift.

Fig. 5. The point at which the spectral density switches from domination by
high to domination by low frequency processes (10-year running mean spec-
tral density ratio exceeds 1 provided warning of a shift in the attractor in our
model. We defined the spectral density ratio as the ratio of the spectral density
at a frequency of 0.05 (low) to the density at a frequency of 0.5 (high) as given
in Fig. 4.
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environmental impacts before taking action are therefore ill-
advised. However, as evidenced by the issue of climate change
justifying restraint of human impacts without evidence of neg-
ative environmental effects represents a considerable challenge
(4, 39). In such contexts, leading indicators could be a useful tool
for policymakers.

In practice, regime shifts often involve multiple driving vari-
ables (2, 46). Where some of these variables can be manipulated
quickly and others only more gradually, it may be possible to
‘‘buy time’’ to ameliorate a slow variable by implementing
changes in a variable that can be rapidly manipulated. For
instance, if the policy window for preventing a shoreline-induced
regime shift through habitat restoration has closed, it may still be
possible to avert a shift by reducing angling pressure. This
effectively provides additional time to rehabilitate shoreline
habitat. Identifying fast management variables that can act as
‘‘emergency levers’’ to extend our opportunity for addressing
slow management variables may be critical to avoiding regime
shifts. In the case of climate change, such actions could poten-
tially include activities such as large-scale reforestation programs
that can help provide the time needed to restructure energy
systems (4, 39).

Use of Regime Shift Indicators. Regime shift indicators need to be
further developed and refined if they are to detect impending
shifts with sufficient warning to avert regime shifts. Rapid
increases in variance, skewness and kurtosis, and the AR1
coefficient only occur at the onset of a regime shift. In most
cases, such increases occur too late for management action to
avert a shift. Although gradual increases in variance and AR1
occur substantially before a shift, these trends are problematic as
early warning indicators. First, because the changes are small,
detection is only likely in variables monitored over substantial
periods of time, where the rate of change in the driving variables
is high, or if baseline data from a much earlier period in time
were available. Second, even if an increase in variance or AR1
is detected, it provides no indication of how close to a regime
shift the ecosystem is, or even whether the long-term sustainable
levels of the underlying drivers have been exceeded or not.

To provide useful early warnings, it is necessary to determine
specific values of the regime shift indicators that should trigger
management action, rather than simply detecting trends. Ideally,
critical warning levels should be related to the point at which
switches in the attractor occur, because this is the impact level
of concern for longer-term sustainability. We have attempted to
define such an indicator by means of a spectral density ratio. For
our model, it appears that a shift from dominance by high
frequency processes (spectral ratio �1) to dominance by low
frequency processes (spectral ratio �1) provides a robust indi-
cator of a switch in the attractor. These ratios need to be tested
across a broader set of models and field data to assess the degree
to which they are ecosystem-specific. Critical indicator levels
could also be defined in terms of variance or AR1, but our
analyses suggest that such critical levels will tend to vary with
environmental conditions.

An advantage of defining critical levels in absolute terms is
that the possibility of impending regime shifts can then be
assessed from intensive time series data collected over a rela-
tively short period. With the rapid growth in high frequency
environmental monitoring equipment, intensive time series are
becoming available for a wide range of ecosystems (47, 48).
Nevertheless, determining critical indicator levels may be challeng-
ing and will need to draw heavily on model simulations, experi-
mental manipulations and long-term observation of particular
ecosystems. Given research constraints, the degree to which critical
levels turn out to be ecosystem-specific will largely determine their
potential use for helping avert regime shifts. However, it may be
possible to select or define indicators that have critical levels that are

relatively transferable between ecosystem types or subtypes. This is
an important area for future research.

In conclusion, our results indicate that regime shift indicators
cannot at present be relied upon as a general means for detecting
and avoiding ecological regime shifts. It is as yet unclear whether
use of regime shift indicators for this purpose is achievable, but
to the extent that it may be, our work suggests that it would rely
on: (i) defining critical levels of the regime shift indicators, (ii)
linking these critical levels to long-term sustainable impact
levels, and (iii) finding or developing indicators that have critical
levels that are relatively transferable across different ecosystem
types. In addition, our results highlight the need for research on
policy processes that are better suited to managing complex
systems subject to regime shifts. Such processes would reduce
inertia and enable society to respond more rapidly to informa-
tion about impending regime shifts, better account for the
existence of policy windows when planning management inter-
ventions, and rely on leading indicators, rather than adverse
environmental impacts, as triggers for management action.
While this research develops, management for unwanted regime
shifts will depend on existing approaches that hedge, avoid risk,
maintain ecological resilience, or build social resilience to cope
with unexpected change (2, 43, 44).

Methods
Model specification. Changes in the populations of adult piscivores (A), plank-
tivores (F) and juvenile piscivores (J) are modeled on 2 times scales (26, 36). The
dynamics over the shorter ‘‘monitoring interval’’ (taken as 1/50th of a year) are
given by:

dA
dt

� � qEA

dF
dt

� DF�FR � F� � cFAFA � �
dW
dt

dJ
dt

� � cJAJA �
cJFvFJ

h � v � cJFF

with parameters catchability (q), effort (E), exchange rate of F between the
foraging arena and a refuge (DF), refuge reservoir of F (FR), consumption rate
of F by A (cFA), additive noise (�), control of J by A (cJA), consumption rate of
J by F (cJF), rate at which J enter the foraging arena (v), and rate at which J seek
refuge (h). The harvest rate is the product qE and dW/dt is a Wiener stochastic
process. It can be shown analytically that up to the level of small noise
expansion and linearization of the above system, the choice of where to
incorporate stochasticity in the model, or including stochasticity in multiple
places, does not affect the generality of our results in the sense that the
behavior of the variance-covariance matrix of the linear approximation still
signals an impending bifurcation (SI Appendix, General Analysis of Early
Warning Signals of Impending Bifurcations).

Dynamics over the longer ‘‘maturation interval’’ (nominally 1 year; may be
longer for species with slower maturation) are given by:

At�1 � At�1;1 � s�At;n � Jt;n�

Ft�1 � Ft�1;1 � Ft;n

Jt�1 � Jt�1;1 � fAt�1

where t in At;n denotes the maturation interval and n denotes the monitoring
interval. s is survivorship between maturation intervals and f is the fecundity
rate of A. Parameter values are given in Table S2, and are based on the
literature and whole lake experiments (26, 49, 50). Phase diagrams for equi-
librium conditions under different combinations of qE, h and initial A are
given in Fig. S3.

Simulations. Our simulations focus on transient conditions. Simulations were
initiated near steady-state values corresponding to qE � 1.5 and h � 8 and run for
a burn-in period of 500 years to ensure convergence. The transient results re-
ported in this article were simulated over an additional 500 year period by slowly
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increasing qE (at a rate of � 0.005/year) or decreasing h (at a rate of �0.02/year
until h � 0). These parameter values were chosen for illustrative purposes; other
values gave analogous results. Simulations were performed in R (51).

Regime Shift Indicators. All indicators were calculated from the 50 simulated
‘‘monitoring’’ data points for F within each year. We calculated variance,
skewness, and kurtosis, using the R Moments package (51), and mean-
detrended OLS autoregressive lag 1 (AR1) coefficients and the spectral density
ratio, using R functions. We did not use return time to equilibrium because our
simulations involve ongoing changes in qE and h. The spectral density ratio
was derived from spectral densities based on an AR1 fit to first-difference
detrended F data (52, 53). We calculated the spectral density ratio as the ratio
of the spectral density at a frequency of 0.05 (low) to the density at a frequency

of 0.5 (high). For more details, see SI Appendix, Calculation of the Spectral
Density Ratio.
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