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SUMMARY
In epidemiologic studies of exposure-disease association, often only a surrogate measure of exposure
is available for the majority of the sample. A validation sub-study may be conducted to estimate the
relation between the surrogate measure and true exposure levels. In this article, we discuss three
methods of estimation for such a main study / validation study design: (i) maximum likelihood (ML),
(ii) multiple imputation (MI) and (iii) regression calibration (RC). For logistic regression, we show
how each method depends on a different numerical approximation to the likelihood, and we adapt
standard software to compute both multiple imputation and maximum likelihood estimates. We use
simulation to compare the performance of the estimators for both realistic and extreme settings, and
for both internal and external validation designs. Our results indicate that with large measurement
error or large enough sample sizes, ML performs as well or better than MI and RC. However, for
smaller measurement error and small sample sizes, either ML or RC may have the advantage.
Interestingly, in most cases the relative advantage of RC versus ML was determined by the relative
variance rather than bias of the estimators. Software code for all three methods in SAS is provided.
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1. Introduction
Epidemiologic studies of exposure-disease association often use a noisy or surrogate measure
of exposure on a majority of the sample. For instance, in diet studies food frequency
questionnaires (FFQ) or food diaries are used to estimate usual intake of foods consumed.
Despite being subject to recall biases and measurement error, these self-report dietary
assessment methods are used extensively in nutrition studies because they are inexpensive and
easy to administer. If ignored, this measurement error can bias the estimated association
between exposure and disease [1,2]. In nutritional epidemiology, the associated bias tends to
attenuate the estimated risk toward the null so that for example the “true” diet-cancer relative
risk may be substantially under-estimated [3,4]. Hence it is important in the analysis of such
data to adjust for the error in the measurement of the exposure variables. Often a validation
sub-study is conducted to estimate the relation between the noisy surrogate measure and the
true exposure levels. Such main study/validation study designs have given rise to a large
literature on methods to adjust for measurement error [5,6,7,8,9,10,11,12,13,14], but relatively
few epidemiologic studies use these methods in practice [15].
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When the outcome of interest is a binary indicator of disease status, logistic regression is often
used to model the association between exposure and disease. In this setting, we discuss three
approaches to adjusting for measurement error in a main study/validation study design: (i)
regression calibration (RC), (ii) multiple imputation (MI) and (iii) maximum likelihood (ML).
Regression calibration is the most popular approach in practice as it is simple to apply and
usually performs well. Maximum likelihood estimators will in principle have smaller bias and
mean squared error (MSE) than regression calibration, yet maximum likelihood is not often
applied in epidemiologic studies, perhaps because the method requires special software that is
not part of the standard statistical packages. Multiple imputation, which is generally applicable
to missing data problems, has not been studied extensively in the measurement error setting.
In this article, we compare these three methods analytically and by simulation under a variety
of scenarios. Our goal is to characterize situations where the estimates will be numerically
close to one another, or where one method may have smaller MSE than the others. We also
show how maximum likelihood estimates can be found using standard software, in particular
using the NLMIXED procedure in SAS. For some designs, we show how multiple imputation
can be conveniently carried out using PROC MI in SAS.

There are few publications using maximum likelihood estimates for measurement error
adjustment. Spiegelman et al. [8] compare the maximum likelihood estimator to regression
calibration via simulation for a logistic regression model. They use a numerical algorithm to
maximize the likelihood and cite a publicly available Fortran program that can be used for
computations. Thoreson & Laake [13] also compare maximum likelihood, probit, and
regression calibration for logistic regression in a simulation study. They use numerical methods
and a 32-point Gaussian quadrature rule to maximize the likelihood equation. Cole et al. [14]
compare regression calibration to multiple imputation via simulations in survival analysis using
a Cox proportional hazards model. Other methods that deserve mention but that will not be the
focus of this article are SIMEX [9] and Bayesian methods [10,11,12]. To our knowledge,
maximum likelihood and multiple imputation have not been compared for measurement error
adjustment.

2. Methods
Main study / validation study designs

We consider a logistic regression model for a binary disease outcome Y , which depends on a
vector of exposure variables X and covariates Z. The disease model is

(1)

The primary objective is to estimate the parameter vector βx, which quantifies the risk of disease
Y at a given exposure level X. In the main study we always observe outcome Y , but sometimes
observe the surrogate measure W instead of exposure X. The surrogate W is related to exposure
X by a multivariate normal linear regression model which is often called the measurement
error model,

(2)

where measurement error ϵw is independent of all other variables except W, and the parameters
α are matrices of regression coefficients.
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Because we will sometimes use surrogate W to predict unobserved exposure X, a secondary
study objective is to estimate the conditional distribution of X given W. We assume the exposure
vector X is multivariate normal with covariance matrix ∑x, and, for convenience, mean 0. Then,
using standard normal theory [16], the conditional distribution of X given W is also multivariate
normal so that X can be written

(3)

with ϵx again independent of all other variables except X and γ again a matrix parameter. The
parameters γ and ∑x|w can be written in terms of the parameters α,  and ∑x, and conversely.
Information on these measurement error parameters is obtained from a validation study, a
usually smaller study in which we measure both exposure X and surrogate W, and may or may
not also observe outcome Y .

In the measurement error literature, a distinction is often drawn between internal and
external validation study designs. In each, the object is to estimate βx, the logistic regression
coefficients of Y on X. In internal validation designs, the validation study is conducted on a
random subsample of subjects in the main study. In the validation subsample, complete data
(Y,X,W) are measured on each subject. For the main study sample, (Y,W) are measured but X
is not observed. In external validation designs, the main study and the validation study use
independent samples. In the validation sample (X,W) are observed and in the main study
(Y,W) are observed. There are no subjects for which X and Y are observed together.

The likelihood for inference from Y and observed X, conditional on W
We will assume that surrogates W and covariates Z are observed on all subjects. These Z’s are
assumed to be error-free and will often be omitted from the notation, even though the disease
(1) and measurement error (2) models include Z.

The likelihood for (Y,X,W) observed—Models (1) and (3) imply that outcome Y is
conditionally independent of the surrogate W as long as we observe the true exposure X, that
is, P(Y|X,W) = P(Y|X). This is “non-differential error” in the measurement error literature, and
it implies that the joint distribution of (Y,X) given W factors as P(Y,X|W) = P(Y|X,W)P(X|W) =
P(Y|X)P(X|W). Thus the complete-data log-likelihood is given by

with l1(β; Y|X) = Y X β − log(1 + exp(X β)) a logistic and

 a normal regression
likelihood.

The likelihood for (Y,W) observed, X missing—The marginal distribution for P(Y|W)
is given by integrating over the unobserved X in the joint probability distribution P(Y,X|W),

(4)

This is of course also the likelihood for the logistic-normal random effects model
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obtained by substituting equation (3) into equation (1). After the change of variable u = ϵxβ
the log-likelihood may be written as the univariate integral

(5)

The full sample likelihood—The full sample log-likelihood is the sum over the study
subjects of the individual contributions to the likelihood. For an internal design, this is

(6)

For an external design, only W and X are observed for a subject in the validation study, and so,
integrating over the missing Y , the terms in l1 become zero.

Maximum Likelihood Estimators
Likelihood (6) is a mixture of exponential family models, and if the model is correct, the
maximum likelihood (ML) estimators of the parameters will be consistent, asymptotically
normal and have the smallest asymptotic mean squared error among all “regular” estimators.
The exact optimality statement involves the usual sequence of local alternatives; to be precise
Theorem 8.8 of [17] holds. The necessary differentiability of (5) in particular follows from
[17] example 7.7 and the dominated convergence theorem. Thus, under the given model the
ML estimator of β will set the “gold standard” for comparison with other estimation methods
in the large sample setting. In addition, the model-based standard errors produced by ML will
be correct, although we recommend using bootstrap standard errors for all estimation methods,
as these will be correct even if the modeling assumptions are incorrect.

The ML estimate will not be computable in closed form, and will be found as the solution to
a numerical optimization problem using an algorithm such as Newton-Raphson. Within the
maximization algorithm, an added difficulty is that the likelihood function itself is not available
in closed form because the integral in term l3 given in (5) must be approximated numerically
each time the likelihood is evaluated. Efficient numerical quadrature formulas for (5) have
been extensively studied in the random effects literature [18], and by recognizing that this
component of the log-likelihood is a normal-logistic random effects model, we may take
advantage of readily available specialized maximization routines written for random effects
models. In particular, the likelihood for both internal and external validation designs is easily
programmed in PROC NLMIXED in SAS v. 9.1. The sample SAS code used in our simulations
is given in Appendix II, for a model with two exposure variables and one covariate. We were
unable to find a similar module in R which could be adapted for our use. The simulations for
most internal designs ran within a few seconds for a sample size of 500. The most time-
consuming case took typically about 20 seconds for each sample, and the Newton-Raphson
algorithm used between 25 and 30 iterations.
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Regression Calibration Estimators
Regression calibration (RC) is a widely used two-step approach to estimating β in main study /
validation study designs [2]. At the first step, the likelihood from the measurement model is
maximized using validation study data to obtain the regression estimates γ̃, ∑̃x|w. For both the
internal and external designs, this first step uses standard linear regression software to
maximize

(7)

At the second step, these estimated parameters are “plugged in” to form an estimate of E[X|
W], Ẽ[X|W] = Wγ̃w + Zγ̃z. This is then substituted for X into the logistic regression likelihood
whenever X is missing for a main study subject. For an internal validation design the second
step uses the approximate likelihood

(8)

which is maximized using standard logistic regression software to obtain the regression
calibration estimate β̃. For an external design, only the second term of (8) is available.

Comparing the likelihood equation (6) to (7) and (8), regression calibration corresponds to 1)
ignoring any information about the measurement error parameters γ and ∑ possibly contributed
by the mixture distribution l3; and 2), approximating l3 by the logistic likelihood l1 evaluated
at Ẽ [X|W]. Regression calibration is computationally simpler than maximum likelihood,
however regression calibration estimators may be asymptotically less efficient than maximum
likelihood estimators.

At the first RC step, by maximizing l2 separately and ignoring the information in l3, we can
obtain γ̃, ∑̃x|w using least squares regression instead of using a more complicated numerical
optimization routine. These estimators will be asymptotically efficient among estimators which
use only the validation sample [19], however they ignore any information from the main study
contributed by l3; which also depends on γ and ∑. Below, we show that l3 actually contributes
additional information on γ and ∑ only when β′∑β is large, and so it is only in this case that
RC could be expected to lose efficiency at the first step. A less complicated issue is that if data
are not balanced so that X1 and X2 are missing on different subsamples, then regression
calibration should use Generalized Least Squares methods to simultaneously fit a regression
model for (X1, X2) given (W1, W2).

At the second step, RC maximizes likelihood l1(Y|E˜[X|W]) instead of likelihood l3(Y|W). Note
that, as the quantity βt∑x|wβ → 0, the limiting value of l3 (Y|W) is indeed l1(Y|E[X|W]). (To see
this, notice the normal density inside the integral in (5) converges to a delta function at u = 0
as βt∑x|wβ → 0, and then integrate by parts and apply the dominated convergence theorem.)
Hence for βt∑x|wβ small enough the approximate likelihood (8) is close to the true main study
likelihood in (6), and the RC estimates should be close to the ML estimates. However if
βt∑x|wβ is not small, the RC estimator may solve the wrong equation. By contrast, the ML
estimate can be obtained by maximizing l3 directly using specialized numerical integration
routines in PROC NLMIXED in SAS [20], which uses standard Gauss-Hermite polynomials
and adaptive quadrature algorithms from the numerical analysis literature [21]. These routines
adaptively select the number of quadrature points so that the numerical error in the solution of
l3 is within a pre-specified tolerance for any value of βt∑x|wβ.
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Further insight into loss of efficiency at the first RC step can be gained by considering the well
known approximation [22,23] to the “missing data” likelihood (4) given by

(9)

where π(·) is given in (1). Formal properties of related approximations are studied in [24] and
shown to be inefficient as compared to ML estimation using numerical quadrature; nonetheless
(9) can aid our intuition. Thus, neglecting Z, the log-likelihood for an external design is
approximated by

(10)

where

(11)

RC estimates are based on assuming g(β, ∑) = β in (10), while ML estimates approximately
solve the score equations

(12)

Here, l(0,1) denotes the partial derivative with respect to the second argument, l(1) the ordinary
derivative and similarly for related notation. We have omitted the summations in (12) for ease
of notation.

Considering (7) we see that the regression calibration estimates γ̃ and ∑̃ set the terms involving
l2 in (12) to 0. Let δ̂ be the solution to the ordinary logistic regression score equations for the
regression of Y on W :

(13)

If β̂ solves

(14)

then β̂ will set the terms l1 in (12) to 0. In this case the score equations are satisfied and the full
ML estimates are (approximately) given by β̂, γ̃, ∑̃ In particular, the RC and ML estimates of
γ and ∑ coincide, and there is no loss of efficiency at step 1. However, if ∑ and γ−1δ are large,
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then equation (14) will not have a solution in β. In this case the score equations do not uncouple,
and the ML and RC estimates of γ and ∑ will differ.

As has been observed by [25] in the random-effects model setting, if equation (14) has solution
β̂, then the RC estimate of β is the solution to β̃ = γ̃−1δ ̂, and, substituting, we have g(β̂, ∑̃) =
β̃. Because |g(β,∑)| < |β| we see that β̃ < β̂, and so β̃ will be an asymptotically biased estimate,
with correspondingly smaller variance but greater MSE than the asymptotically optimal β̂.
However, if βt∑x|wβ is small, then |g(β, ∑)| ≈ |β| and the ML and RC estimates will be
numerically very close to one another.

Multiple Imputation Estimators
Multiple imputation is now a standard technique for handling data which are missing at random
(MAR) [26,27]. The measurement error problem can be put into this framework. For an internal
validation design, complete data (Y,X,W) are observed for each subject in the validation
subsample, but only (Y,W) and not X are observed for the remaining subjects. If validation
substudy subjects are a simple random sample of main study subjects, the missing observations
on X will be missing completely at random (MCAR). If the validation subsample is stratified
on covariates Z which are included in models (1) and (3), to the extent that the models are
correct, the missing observations will be MAR [26]. In either case, the key point is that the
conditional distribution of X|Y,W,Z will be the same for a validation study subject, for whom
X is observed, as for a main study subject, for whom X is not observed.

For an external design, the complete data are (Y,X,W,Z) as before, however we do not observe
complete data for any subject. We observe (Y,W,Z) on main study subjects and (X,W,Z) on
validation study subjects. The MAR requirement is now that the conditional distribution X|
Y,W,Z should be the same for main study and validation study subjects, with a similar
requirement for Y|X,W,Z. Unlike the internal validation case, we have no direct observations
from either conditional distribution. In practice, the assertion that the data are MAR may depend
more strongly on a priori modeling assumptions for an external design than for an internal
design.

“Multiple imputation” describes a class of procedures in which a set of imputed data is
substituted for the missing values over m independent iterations, at each iteration the parameters
are estimated from the “completed” data, and the mean of the m resulting parameter estimates
yields the final estimator. Here we use a frequentist version of the original Bayesian multiple
imputation algorithm [28], in which the imputed data are repeated draws from the distribution
of the missing data conditional on the observed data, and at each iteration this conditional
distribution is evaluated at randomly drawn parameter values which reflect the uncertainty in
the parameter estimates. The Bayesian and frequentist versions differ only in the distribution
from which the randomly drawn parameter values are taken. We use the frequentist version
because it facilitates comparison with the ML estimator and its variance is smaller than the
Bayesian version, substantially so if a large fraction of information is missing [29]. Our
discussion follows [27]; for the close connection to the stochastic EM algorithm see also [29]
and the references therein. Other specialized multiple imputation procedures exist which are
tailored to monotone patterns of missingness or are not model-based, but we do not explore
those here.

We next describe the algorithm for the internal design case. Both the imputed data and the
parameter values are constructed using the Gibbs sampling version of Markov Chain Monte
Carlo (MCMC). The output of the Markov chain at each iteration consists of a randomly drawn
parameter vector (the parameter step) and an imputed missing data vector (the imputation step)
[20,27]. At iteration (t − 1) let (β, γ, ∑ x|w)(t−1) be the current parameters and X˜ (Yi, Wi) (t−1)

the associated imputed missing data for the ith subject, which depends explicitly on the
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observed values Yi and Wi for this subject. At the next iteration of the parameter step, the
Markov chain computes the parameter estimates (β̂, γ̂, ∑̂x|w)(t) by maximizing the “completed
data” likelihood. For an internal validation design this is

(15)

Recall that l1 and l2 are from the usual logistic and normal regression models, and so the
parameter estimates can be obtained using standard software. Next the Markov chain draws
an updated parameter vector (β, γ, ∑x|w)(t) from the normal distribution with mean (β̂, γ̂,
∑̂x|w)(t) and variance given by the inverse of the Hessian of (15) evaluated at (β̂, γ̂, ∑̂x|w)(t). (In
the Bayesian multiple imputation literature, this distribution is the posterior distribution of the
parameters given the data; here we use an uninformative “improper” prior [27,29].)

At the imputation step, for a main study subject the Markov chain imputes X˜(Yi, Wi)(t) as a
random draw from the conditional distribution of the missing X’s given the observed Yi and
Wi, evaluated at (β, γ, ∑x|w)(t). This distribution is proportional to

(16)

which is, however, not readily available using standard software. We discuss how to
approximate this distribution below.

MCMC multiple imputation exploits the fact that under regularity conditions, the output of the
Markov chain, (β, γ, ∑ x|w, X˜)(t) for t = b + k, b + 2k …, will be approximate independent
identically distributed (iid) draws from a limiting distribution. Here the Markov chain is iterated
b times, where b is a large burn-in period, and the chain is iterated k times between imputations
with k large. An EM-type argument shows that this limiting distribution for the X˜(t) is
probability model (16) evaluated at the ML estimates; see [27,29] and the references therein.
Similarly, the parameters (β, γ, x|w)(t)’s are iid draws from a multivariate normal with mean
(β̂, γ̂, ∑ ^x|w), the ML estimates of likelihood (6), and variance the inverse of Hessian matrix
of (6) evaluated at (β̂, γ̂, ∑̂x|w). This is of course the asymptotic sampling distribution of the
ML estimator, with parameters evaluated at their ML estimates.

To compute the MI estimate, after a sufficient number of iterations (depending on b and k),
m imputed “completed” data sets are saved, where m is small (often 3 to 5). Then for each
imputed dataset, the “completed data” maximum likelihood estimate β̃(i) is computed using
(15), which only requires the standard method that would be applied if the data were complete.
The MI estimate β̂MI is then constructed as the average of these “imputation” estimates,

For large n, this estimator should have the same asymptotic distribution as the ML estimator
computed from (6) [29].
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The argument for averaging a small number of imputation estimates is from an application of
the Rao-Blackwell theorem. The β(i)’s are iid draws from a multivariate normal distribution
with mean β̂, the ML estimate. Should we average the β(i)’s, this would be a consistent estimator
of E[β(i)] = β̂. Recall, however, that β(i) was constructed as a random draw from β̂(i)+ϵ, where
ϵ is a mean-zero error term and β̂(i) is the completed-data estimate using X˜(i−1) from the
previous imputation. Clearly then, the β̂(i)’s have smaller imputation variance than the β(i)’s.
Thus we are better off averaging the β̂(i)’s than the β(i)’s . Finally, the imputation estimate
β̃(i−1) is the completed-data estimate using X˜(i−1), and so this recovers β̂(i). To see why a small
number of imputations is sufficient, note the imputation variability of β̂(i) may be small, since
it is only the fraction of data that is missing which varies from iteration to iteration. The
conditioning argument is formalized by writing E[β(i)] = E[E[β(i)|X˜(i−1)]], where the Rao-
Blackwell theorem assures that var(E[β(i)|X˜(i−1)]) < var(β(i)); see [27] and references therein.
For quantification of the imputation error as a function of m, see [29].

A computational difficulty implementing this MI algorithm in practice is that there is no readily
available MI software which samples from (16) explicitly. However, in some circumstances a
mixture of two normals may be an adequate approximation to this distribution. Note that β
enters to distort the shape of distribution (16) by the factor π(xβ) if Y = 1 and the factor (1−π
(xβ)) if Y = 0, and apart from this in each case (16) is a normal density. In an internal validation
design, we can fit a separate normal regression of X on W for observations with Y = 1 and with
Y = 0. This provides an empirical approximation to (16) as a mixture of normals, and
corresponds to substituting the mixture log-likelihood

for l2 in the completed data likelihood (15) . With this substitution, however, the β(i)’s at the
parameter step are no longer used in the imputation step. Hence we are free to construct an
acceptable set of imputed X˜(t+i) using only the normal likelihood l2MI , computed separately
for subjects with Y = 1 and with Y = 0. The final m imputed data sets are used to form the
multiple imputation estimate β̃MI as before.

SAS code using PROC MI to implement this strategy for an internal validation design is given
in Figure III, and is evaluated in the simulations. Here, a standard MCMC normal imputation
of the missing X data is run separately for the cases Y = 1 and Y = 0. An uninformative Jeffery’s
prior is used, which is the default in SAS. The burn in period is b = 500 iterations, and k = 200
iterations are run between exporting imputed data sets. The number of imputations is m = 5.
Simulation results below show β̃MI is competitive with the ML estimator for all but extreme
parameter values (Table II). However, we have not explored the adequacy of the usual MI
estimate of variance, which might be more sensitive to our approximations. For this reason we
suggest using bootstrap estimates of variance rather than imputation based estimates. For a
detailed discussion of choice of b and m and of the rate of convergence of the variance of the
MI estimator to the variance of the ML estimator, see [29]. Future refinements might include
sampling directly from (16) using importance sampling as a referee has suggested, or using
MI tailored to the monotone normal case in our approximate approach.

For an external validation design, the solution we propose is not satisfactory. The completed
data likelihood (15) still applies, except that Y˜ (Xi, Wi) replaces Y for validation study subjects.
Thus, the previous approach could be carried out using a Gibbs sampler with Y imputed as well
as X at the imputation step. Although in principle this is straightforward, it is not easily
implemented inside PROC MI in SAS and we leave this for future work. An alternative na|ve
approach which is well known to work poorly for normal data [30] would be to estimate the
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parameters for the conditional distribution of X|W from the validation sample, and use this
conditional distribution to impute the missing X’s in the main study sample. We adopt this
method for the external design and refer to it as naïve MI. This method is easily programmed
but as expected performs poorly (Table III). A moment’s thought reveals why: the missing
X’s should be imputed from X|Y˜, W; by using X|W extra noise has been introduced which is
independent of Y. Rather than adjusting for measurement error, further measurement error has
been introduced and the na|ve MI estimate in the external case will be biased towards zero.
This is borne out by the simulation results.

3. Simulations
Simulation characteristics

We used simulation to compare the performance of maximum likelihood (ML), regression
calibration (RC), and multiple imputation (MI) estimators for a logistic regression model
constructed with measurement error, using both internal and external validation designs. We
simulated two exposure variables X1 and X2; which will have surrogate measures on a subset
of the sample, and one covariate, Z, always measured without error. We generated 1000
datasets, each of size 500, from a logistic regression disease model as in (1):

We then generated a corresponding data set of surrogate exposure measurements W1 and W2
from a normal measurement error model as in (2):

The size of the validation set was always 250, i.e., 50% of the entire sample. The choice of
validation study size was motivated by previous studies [4,8] where validation sample sizes
ranging from 173 to 484 were considered. We then deleted X1 and X2 from the 250 observations
in the main study sample, for both simulated internal and external designs. In external
validation simulations, we also deleted the outcome Y from the 250 observations in the
validation study sample.

To facilitate comparison of diffierent simulated scenarios, the predictor variables X and Z were
standardized to have mean zero and variance 1, and X2 and Z were constructed to be
independent. For simplicity we also fixed α01 = α02 = 0, α11 = α12 = 1, so that W1 and W2 were
unbiased surrogates for X1 and X2 respectively. In the disease model, we set β0 = −1 yielding
a disease rate of 27% at the mean values of the covariates; β2 = β3 = 0:371, which corresponds
to odds ratios of disease of approximately 1.6 between the highest and lowest quartiles of X2
or Z, values that are reasonable for many epidemiologic studies [13]. We varied the remaining
model parameters: β1, the coefficient of the primary exposure variable, the measurement error
standard deviation σw|x, and ρ12 and ρ1z which set the correlation between X1 and X2 and X1
and Z respectively.

The five models we simulated are summarized in Table 1. In the first four, β1; the coefficient
of the primary exposure variable, is set to 1. This represents a large exposure effect, in which
the odds of disease are increased by a factor of 3.85 between the first and third quartiles of
exposure as measured by X1, similar to those considered by Thoreson et al. [13]. Models 1 and
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2 correspond to large measurement error, with the standard deviation of the measurement error
αw|x = 3, while Models 3 and 4 have smaller measurement error with σw|x = 1. These σw|x values
correspond to correlations of 0.3 or 0.7 between surrogates W and true X’s. The choice of
σw|x values were based on dietary studies, where food frequency questionnaires (FFQ) are often
used to estimate usual intake of various food components. FFQs are inexpensive and easy to
administer but are known to be subject to large measurement errors [3,4]. In some instances
less error-prone measures using biomarkers, such as doubly labeled water for energy intake or
urinary nitrogen for protein intake, are used to calibrate the surrogate FFQ in validation
substudies. Correlations between FFQ-based dietary intake and “true” intake calibrated by
biomarkers have been reported to range between 0.2 and 0.45 [4,31].

In Models 1 and 3 compared to Models 2 and 4, the prediction error for estimating the missing
X1 values from the conditional distribution of X1 given W and Z will be relatively small, helped
by a strong correlation of ρ1z = 0:70 between X1 and Z; which is always observed without error.
The correlation between X1 and X2 is set to 0.2 in Models 1 and 3. In Models 2 and 4 the
situation is reversed, with ρ1z = 0:20 and ρ12 = 0.70.

Finally, model 5 examined the performance of the methods in an extreme situation of a very
large effect (β1 = 3), large measurement errors (σw|x = 3 ), and high correlation between the
two mismeasured covariates (ρ12 = 0.7). This last situation, although perhaps extreme in
epidemiologic situations, permits a comparison of the methods under a worst-case scenario.
For models 1–4, the root mean squared error (RMSE) of the ML estimate of β1 with complete
data (i.e. X observed on the full sample) was 0.18. For model 5 the RMSE of the complete data
estimate of β1 was 0.33. Thus, while extreme, this case is not entirely unrealistic.

Table 1 also displays β′∑x|wβ for each of the 5 models considered. If β′∑x|wβ is small, then the
approximation (10) will be valid and ML and RC estimates should be close. Thus this scalar
quantity could be used to summarize scenarios when RC will or will not perform well.

Both external and internal validation designs were considered. For each dataset we computed
estimates of model parameters by: (i) maximum likelihood (ML); (ii) regression calibration
(RC); and (iii) multiple imputation (MI) with m = 5 imputed datasets for each of the 1000
simulations. Using the true X’s for the entire sample we also computed the complete data
estimates, which serve as the “gold standard” for the simulation results.

Simulation Results
Table I summarizes the performance of regression calibration and multiple imputation relative
to the maximum likelihood estimate for the primary exposure variable β1. As a measure of
performance we used the ratio of the root mean-squared error (RMSE) of the RC and MI
estimates to that of the ML estimate. We denote this as relative RMSE. We used a δ-method
to obtain approximate standard errors (SEs) of the relative RMSEs. These approximate SEs
are displayed as a footnote to Table I. More detailed output from the simulations, i.e., the bias
and standard deviation of estimates with standard errors for all three parameters for the internal
and external designs, are presented in Table II and Table III.

In the internal design, for all estimators and all models considered, the sampling distributions
of estimates were close to normally distributed with no major skewness or outliers. As expected
MI and ML estimators had similar MSEs for β1 for models 1 through 4 in the internal design.
Closer investigation confirmed that these estimates were numerically very close to one another,
indicating that the approximation to the conditional distribution we used in the MI was good
enough to yield the maximum likelihood estimates. In fact, ML and MI had little bias and
similar SDs for Models 1 – 4 for all parameters (Table II). In the internal validation design, it
was not until the extreme case of model 5 that the more tailored numerical approximation to
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the likelihood in the ML code gave this method a 15% advantage over our implementation of
MI. In Model 5 for the internal design (Table II) the downward bias in MI for estimating the
true β1 = 3 was 8% (100*0.241/3) compared to 3% for ML (100*0.096/3), leading to a 15%
increase in MSE for MI compared to ML (Table I). The relative efficiency (on the variance
scale) of MI from using a finite number of imputations, m, versus using infinitely many

imputations, is approximately  where λ is the fraction of the missing information
[28]. In our internal validation set-up λ = 0.5 and m = 5 hence the standard errors of parameter
estimates using MI would be inated by about 5%.

RC and ML performed equally well for models 1 and 2 for the internal validation design. There
was an approximate 10% increase in MSE for RC compared to ML for models 3 and 4. RC
bias was small and comparable to ML bias for all parameters for Models 1 – 4 (Table II). The
SD estimates using ML were consistently lower than RC for all parameters, leading to the
modest albeit significant 10% efficiency gains (see footnote Table I) when estimating β1 for
Models 3 and 4. For Model 5, RC exhibited approximately 4% (100*0.122/3) bias when
estimating the true β1 = 3 compared to 3% bias for ML, and was much less efficient (RC
SD=0.499 vs. 0.388 for ML). Thus, the ML estimator was considerably superior to the RC
estimator for the extreme case of model 5, with a 28% gain in RMSE. In particular, using the
approximate SE estimates for the relative RMSEs (see footnote to Table I), we conclude that
for the internal design, ML significantly outperforms MI for Model 5 and RC for Models 3–
5.

For external designs, the results were more extreme. In some cases there was substantial
skewness and large outliers. Comparing ML performance in Models 1 – 4, parameter estimates
were most biased for Models 1 and 2 compared to 3 and 4 (Table III). RC shows a similar
pattern. Models 1 and 2 correspond to large measurement error situations, hence the poorer
performance of ML and RC for these models is not surprising. Focusing on β1, the primary
parameter of interest, the two methods also had similar SDs for Model 1, leading to comparable
MSEs (Table I). In particular, the mean squared error of RC when estimating β1 was
comparable to that of ML for the large measurement error case (Models 1 and 2) if X1 was
highly correlated with Z; (model 1) so that the prediction error of X given W and Z was relatively
small, but not otherwise (model 2).

RC is known to perform well when β′∑x|wβ is small [2] in the external design. In our
simulations, Models 3, and 4 had the lowest values for β′∑x|wβ (Table I) and the RC estimator
worked best in these models. In these small measurement error cases (Models 3 and 4), the RC
estimator performed better than ML, which was unexpected. For models 3 and 4 in the external
design, RC had very little bias for all the parameters, whereas ML displayed moderate bias of
0.12–0.13 for β1 (Table III), yielding estimates that were on average 12–13% higher than the
true β1 value of 1. ML was practically unbiased for the other β’s. Furthermore, for Models 3
and 4, the SD of ML estimates of β1 were larger than the corresponding estimates by RC leading
to the apparent super-efficiency of RC (Table I). On closer inspection, the ML estimates were
more skewed than the RC estimates, which degraded the performance of the ML estimator for
Models 3 and 4. When we trimmed the extreme 10% of the ML estimates of β1, the ratio of
RMSE of RC to ML was 0.93 for Model 3, and 0.98 for Model 4 indicating that the two methods
perform similarly after removing ML outliers. Further, with larger samples the asymptotic
efficiency and normality of the ML estimator became evident. In particular, when we reran
simulations for Model 3 in the external design with study sample-sizes of 1000 and validation
sample-size of 500, ML outperformed RC with relative RMSE of RC to ML equal to 1.17.

For Models 2 and 5 in the external design, RC estimates were unstable as evidenced by the
large variability in the estimates. In model 5, the RC estimates of β1 had a standard deviation
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(SD) of 7.28 (Table III) and ranged from −40:29 to 171:12 compared to an SD of 1:32 for ML
with a range of −1:57 to 5:80. Similarly the RC ranges for β2 were −132:80 to 49:82 (compared
to −3:82 to 4:07 for ML) and −31:49 to 20:36 (compared to −0:72 to 2:04 for ML) for β3. The
5th and 95th percentiles of the RC estimate of β1 were similar to the extreme values of the
MLE, suggesting that RC estimates have extreme values in about 10% of cases. The poor
performance of RC is attributable to the fact that models 2 and 5 are both scenarios with
substantial measurement error and/or large β1, so that βt∑x|w β is large (Table I). Hence the RC
approximation, which amounts to using (10) followed by substituting β for g(β); is not accurate.
On the other hand, our implementation of ML maximizes the full likelihood (6) (with l1 = 0
for the external design) using a numerical approximation which adapts to large values of
βt∑x|wβ, and works even when approximation (9) does not hold. In this case, joint maximization
of the likelihood equations prevents the extreme estimates of β which are sometimes seen in
RC. Thus ML is recommended over RC in external design studies with large measurement
error and strong anticipated associations between the true X and disease Y .

It is noteworthy that the poor performance of RC for Models 2 and 5 in the external design
(Table III), is mitigated in the internal design (Table II), where the RC estimate for β is obtained
by maximizing equation (8). The first term in this likelihood is the usual logistic regression
likelihood for β given X and Y from the the validation study, in which X and Y are observed on
half the sample. This term controls the estimate of β and reduces the variability that was
observed in the external validation design especially for models 2 and 5. In fact, for model 2,
the range of the RC estimate of β1 was 0.29 to 2.09, comparable to the corresponding ML range
of 0.27 to 1.96.

For external designs, the na|ve implementation of MI performed very poorly with downwards
bias of 50% or more (Table III) especially when estimating β1 (Table III). Hence naïve MI
results are not summarized in Table I. In simulations 1 – 4 in which the true value of β1 equals
1, the naïve MI estimate was between 0:05 (model 1) and 0:43 (model 4). The poor performance
of naïve MI is not surprising since for the external validation design information on the outcome
Y is not available in the validation study. Hence the imputation step should sample missing X
and Y from the distribution (16), which is not readily approximated in the standard MI package
in SAS. Our na|ve implementation instead sampled the missing X’s from the conditional
distribution of X given the observed W and Z (ignoring Y completely in the imputation step;
see Figure III). The resulting MI estimates were severely biased (Table III) towards zero. A
heuristic explanation might be that, because the imputed X^ ignores Y , the imputation error
X − X^ is likely to be large, particularly when X and Y are strongly associated, and this will
bias the resulting MI estimate towards zero. Of note, the large biases in MI in the external
design are easily corrected in the internal design in which Y and X are observed in the validation
sample. Thus, in the internal design, the imputation step samples from the approximate
conditional distribution of X given Y , W, and Z, and the imputed X^ is a reasonably good
approximation of X, leading to minimal bias as observed in Table II. Thus the standard
implementation of MI in SAS (or other software) should not be used for measurement error
adjustment for an external validation design without further adaptation.

4. Conclusions
In this paper, we have compared maximum likelihood (ML), multiple imputation (MI) and
regression calibration (RC) estimation methods in the setting of logistic regression when the
primary covariates of interest are measured with error. We have shown how each method of
estimation depends on a different numerical approximation to the likelihood, and that this is
the major difference between them. We have adapted standard software to perform both
maximum likelihood and multiple imputation estimation. We have compared the performance
of these methods in both realistic and extreme settings using simulation, for internal and
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external validation designs. In summary, all methods work well in the internal validation
design, although ML has an expected small advantage in efficiency compared to RC. The MI
and ML estimates are approximately equal in the internal design except for an extreme scenario
with strong effects and large measurement error. For the external validation design, MI should
not be used with the approach studied here because it does not properly impute the missing
outcome data. RC can be used successfully for the external design unless the errors are large
and the association between the exposure and disease is strong. Maximum likelihood works
well under all circumstances, provided main study and validation sample-sizes are large
enough.

A limitation of our simulation results is that we took 50% of the sample to be in the validation
substudy, which may be a larger proportion than in many epidemiologic studies. However, the
validation substudy sample size of 250 may not be unrealistic [4,8]. A further limitation is that
it may be difficult to know whether ML or RC would be more efficient in practice in the external
validation design. When β′∑x|wβ is larger than 1 (Models 2 and 5, Table I) ML appears to be
as good or better than RC. However, for small β′∑x|wβ (Models 1, 3, and 4, Table I) either
estimator may have the advantage for the sample sizes we used in the simulations. Interestingly,
in all cases the relative advantage was determined by the relative variance of the estimators
rather than bias. In those cases where ML was less efficient than RC (Models 3 and 4, external
design) , the sampling distribution of the ML estimator was far from normal, indicating that
large sample asymptotics did not yet obtain. Our simulations with larger sample sizes then
showed the expected advantage for ML over RC. Finally it is important to note that our naïve
implementation of MI for the external design would not be expected to work well. A MI
approach that properly imputes both Y and X in the external design would likely perform well,
but we do not investigate this here.

In our simulations the model used for estimation has always been the actual model used to
generate the data. This is, of course, never the case in practice, where a statistical model is
hoped to be a useful summary of the data but is never assumed to be an exact representation
of reality. Thus an important question for future work, as pointed out by a reviewer, is how
these methods would perform under model misspecification. Here, ML estimators again enjoy
a theoretical advantage, in that under ML the estimated model will be closest to the data
generating model in Kullback-Leibler distance, and it would be of interest to see whether this
is a practical advantage. To the extent that MI is a stochastic form of the EM algorithm, it might
share in this advantage, although not necessarily in the approximate form presented here.
Questions of relative robustness to contamination by inuential observations or outliers may be
equally important. We leave these questions to future work.
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APPENDIX

II. SAS Code: ML estimator
proc nlmixed data=<dataset>   itdetails;/*declare and initialize 

parameters*/parms  beta0  -1   betaX1  3   betaX2    0.37  betaZ    

0.37           gammaX10 0.0 gammaX11 0.09 gammaX12  0.06 gammaX1z  

0.18           gammaX20 0.0 gammaX21 0.06 gammaX22  0.09 gammax2z 

−0.12           sigmasq11 0.82 sigmasq22 0.85 sigmasq12 0.57;           /
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* sigmasq11, sigmasq22, and sigmasq12 are cov(x1,x2|w1,w2,z) */X1hat 

= gammaX10 + gammaX11*W1 + gammaX12*W2 + gammaX1z*Z;X2hat = gammaX20 

+ gammaX21*W1 + gammax22*W2 + gammaX2z*Z;/*validation study sample 

log-likelihood - W, X and possibly Y;*/if validation_sample then 

do;           DET   = sigmasq11*sigmasq22 -sigmasq12**2;           

TERM1 = -LOG (DET);           TERM2 = -( sigmasq22*(X1-X1hat)**2 + 

sigmasq11*(X2-X2hat)**2                           -2 *sigmasq12*(X1-

X1hat)*(X2-X2hat) )/(DET) ;           LL = (TERM1 + TERM2)/2;           

if Y ne . then do;            ETA     = beta0 + betaX1+ betaX2*X2 + 

betaX*z  ;            LLBIN = y*ETA -log (1-exp(ETA));            

LL    = LL + LLBIN;            end;           end;/*main study samply 

log-likelihood - W and Y;*/else do;           ETA      = beta0 + 

betaX1*X1hat+ betaX2*X2hat +betaZ*z + U ;           LLBIN   = Y*ETA -

log(1=exp(ETA)) ;           LL      = LLBIN;           end;/*specify 

model and normal random effects parameters*/model  Y ~ general 

(LL) ;random U ~ normal (0, (betaX1**2)*sigmasq11 + (betaX1*betaX2)

*sigmasq12                           + (betaX2**2)*sigmasq22) 

subject=caseid;run;

III. SAS Code: Multiple Imputation estimator, internal design
title1 "Multiple imputation: INTERNAL validation   ";/*COMPUTE NORMAL 

IMPUTATION OF x1 X2 CONDITIONAL ON VALUE OF Y */;proc mi 

data=<dataset>  seed=<seed> out=outmi nimpute = 5;  by y;  *data must 

be sorted;  var w1 w2 z x1 x2 ;  MCMC nbiter = 500 NITER=200;  run;/

*RUN LOGISTIC REGRESSION BY IMPUTATION NUMBER*/;proc sort data= 

outmi;  by _imputation_;  run;ods output ParameterEstimates = 

betaImputed;proc logistic data=outmi desc;  by _imputation_;  model 

y = x1 x2 z;    run;ods output close;/* GET MI ESTIMATE, PRINT AND 

STORE IN BETAMI */;ods output summary=betaMI;proc means 

data=betaImputed mean;  class variable;  var Estimate;  run;ods 

output close;proc print data = betaMI;  run;
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