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Summary
We present a case study illustrating the challenges of analyzing accelerometer data taken from a
sample of children participating in an intervention study designed to increase physical activity. An
accelerometer is a small device worn on the hip that records the minute-by-minute activity levels of
the child throughout the day for each day it is worn. The resulting data are irregular functions
characterized by many peaks representing short bursts of intense activity. We model these data using
the wavelet-based functional mixed model. This approach incorporates multiple fixed effect and
random effect functions of arbitrary form, the estimates of which are adaptively regularized using
wavelet shrinkage. The method yields posterior samples for all functional quantities of the model,
which can be used to perform various types of Bayesian inference and prediction. In our case study,
a high proportion of the daily activity profiles are incomplete, i.e. have some portion of the profile
missing, so cannot be directly modeled using the previously described method. We present a new
method for stochastically imputing the missing data that allows us to incorporate these incomplete
profiles in our analysis. Our approach borrows strength from both the observed measurements within
the incomplete profiles and from other profiles, from the same child as well as other children with
similar covariate levels, while appropriately propagating the uncertainty of the imputation throughout
all subsequent inference. We apply this method to our case study, revealing some interesting insights
into children's activity patterns. We point out some strengths and limitations of using this approach
to analyze accelerometer data.
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1 Introduction
Physical activity during childhood and adolescence has an impact on a number of different
aspects of subsequent health and well-being. Studies have suggested that increased physical
activity during the childhood and adolescent years can (1) help build and maintain healthy
bones, muscles and joints; (2) help control weight, build lean muscles and reduce fat; (3)
prevent or delay the development of hypertension, and help reduce blood pressure in some
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adolescents with hypertension; (4) reduce feelings of depression and anxiety; (5) positively
influence mental health and feelings of independence; and (6) positively influence the
development of self-esteem (CDC, 2000; CDC, 2001; Dietz 1998; Pearce, 1999; Strauss et al.,
2001).

The systematic study of physical activity is complicated by the technical challenges of
measurement. One common approach is to use self-report questionnaires, but these are known
to correlate poorly with actual activity levels, often overestimating them (Matthews and
Freedson 1995, Epstein et al. 1996, Coleman et al. 1997). Recently, more objective approaches
have been used, including computerized accelerometers: small motion sensors that can digitally
record minute-by-minute activity levels. Their small size and automatic measurement
capabilities make them well-suited for objectively quantifying activity levels in large
populations over long periods of time (Westerterp, 1999). They are being used increasingly to
monitor activity levels in large surveillance studies and intervention trials, in children as well
as adults (Rowlands, Eston, and Ingledew 1999; Gortmaker 2002; Going et al. 2003; Talbot
et al. 2003; Algase et al. 2003; Abbott and Davies 2004). In this paper, we consider
accelerometer data obtained from Planet Health (Gortmaker et al. 1999), a Boston-area study
of a school-based intervention designed to reduce obesity in middle school youth by changing
key physical activity and dietary risk factors.

The Planet Health study used the TriTrac-R3D activity monitor (Hemokentics, Inc., Madison,
WI), which is worn in a small pouch on the hip and provides minute-by-minute acceleration
counts computed from motion sensors in three-dimensional space. The resulting daily profiles
are irregular functional data characterized by many peaks representing short bursts of intense
activity. Figure 1 contains two daily profiles from 9am to 8pm from two different children in
the Planet Health study. Other accelerometers yield similar data. In studies involving
accelerometers, it is standard practice to obtain 4 to 8 daily profiles for each subject in the
study. These profiles can be analyzed directly, or used to calibrate and validate questionnaire-
based measures of physical activity. In practice, many of the profiles are incomplete, having
periods of time for which the activity levels are missing, for example, if the accelerometer is
removed.

Approaches currently used to analyze these data are based on simple summaries, such as the
average daily activity level (Talbot et al. 2003), 30-minute averages (Going et al. 2003; Cradock
et al. 2004), or the proportion of time spent above specific cutoff levels that correspond to
sedentary, moderately vigorous, and vigorous activity (Rowlands, Eston and Ingledew 1999;
Goldfield et al. 2000; Westerterp 2001; Abbott and Davies 2004). While these summaries are
a reasonable starting point, they have serious limitations, mostly because they do not make full
use of the rich information contained in the functional data. The proportions and daily averages
do not account for time of the day variability, and the proportions do not even use the actual
activity levels. The arbitrary binning inherent to taking 30-minute averages results in
attenuation of the signal, and conclusions may be sensitive to the choice of endpoints for the
bins. A second important limitation of these approaches is that they may not effectively handle
the missing data in the incomplete profiles, which is a serious concern considering the large
degree of missingness that can occur in these data.

Methods that model the functional profiles in their entirety have the potential to extract more
information from the data compared with methods based on arbitrarily chosen summary
measures. For example, these methods are able to identify at what time of day children are
most active, detect covariate effects that vary throughout different times of the day, and allow
the variability in activity levels to differ across time of day. Functional data analysis (FDA,
Ramsay and Silverman 1997) is a general name for approaches that consider the functional
profiles as single entities rather than simply a collection of individual data points. A key

Morris et al. Page 2

J Am Stat Assoc. Author manuscript; available in PMC 2009 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



challenge with these approaches is that they must deal both with regularization, or borrowing
strength across measurements within a profile, and replication, or combining information
across multiple profiles to make inferences on the population from which they came.

The irregularity of accelerometer profiles makes them especially challenging to model in this
manner. They clearly cannot be represented by simple parametric structures, and the most
commonly-used nonparametric methods involve smoothing by kernels or splines, which are
not well-suited for modeling functional data with many local features like peaks. Since there
are typically multiple daily profiles per child, one must account for the possibility of correlation
between profiles. Also, there are many factors potentially affecting the profiles, including the
day of the week, time of year, school, and child-level characteristics like gender, age, and
obesity status. The effects of these factors may vary by time of day. A suitable modeling
approach should be able to simultaneously account for functional effects of multiple covariates
like these, some of which are of interest to investigators, and others of which are potential
confounders.

Morris and Carroll (2006) introduced a new method for analyzing functional data that
accommodates these concerns. It is based on the functional mixed model, a generalization of
the linear mixed model (Laird and Ware 1982) to functional data. This method is appropriate
for modeling irregular profiles with many peaks, since regularization is accomplished using
adaptive wavelet shrinkage. The functional mixed model allows multiple fixed effect functions
of arbitrary form, which can simultaneously represent time-varying effects for multiple
covariates, discrete or continuous in nature. It also allows multiple random effect functions of
arbitrary form, which can model the correlation between profiles from the same child. The
reasonably flexible assumptions made on the covariance matrices for the random effects and
residual errors accommodate a broad range of nonstationary covariance structures. The output
of the method consists of posterior samples for all quantities in the model, which can be used
to perform Bayesian inference.

While the method of Morris and Carroll (2006) cannot handle incomplete profiles, it is based
on a unified modeling approach, making it possible to develop rigorous methods for imputing
the missing data. In this paper, we introduce new missing data methods for the wavelet-based
functional mixed model. Briefly, our approach is to stochastically sample the missing regions
of the incomplete profiles from their approximate posterior predictive distributions, as
estimated from a preliminary model fit using only the complete daily profiles. This approach
borrows strength both from the observed measurements within the incomplete profile and from
other profiles, from the same child as well as other children with similar covariate levels, and
appropriately propagates the uncertainty due to the imputation throughout any subsequent
inference.

We apply these methods to analyze the TriTrac-R3D data from the Planet Health study in order
to explore patterns in the children's activity level profiles, to identify factors related to activity
levels, and to characterize the relative contributions of the day-to-day and child-to-child
sources of variability in order to aid the design of future studies. We also assess the model fit,
and discuss the strengths and limitations of this approach for analyzing accelerometer data.

The remainder of the paper is organized as follows. In Section 2, we describe the Planet Health
study and explore the characteristics of the TriTrac-R3D accelerometer data from that study.
In Section 3, we briefly overview wavelets and the wavelet-based functional mixed model, and
in Section 4, we introduce new methods for imputing missing data for incomplete profiles in
the wavelet-based functional mixed models setting. In Section 5, we present the results of our
case study analysis, and in Section 6, discuss these results and assess the strengths and
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limitations of this approach for analyzing accelerometer data. A technical appendix contains
the derivation of the posterior predictive distributions used to impute the missing data.

2 Accelerometer Data from the Planet Health Study
Childhood obesity is a major health problem in the United States. Planet Health was a school-
based intervention designed to reduce obesity in middle school youth by changing key physical
activity and dietary risk factors. The Planet Health study (Gortmaker et al. 1999) involved 10
Boston-area middle schools, which were paired up and randomized to either receive the
intervention or serve as control schools. For each of the 1295 children involved in the study,
various nutritional, behavioral, and health-related outcomes were measured at baseline (fall
1995) and follow-up (spring 1997). A subsample of 256 children was randomly selected to
participate in a substudy focusing on the technical issue of objectively measuring physical
activity using accelerometers. The activity levels of each child in the substudy were monitored
using the TriTrac-R3D activity monitor for one or two four-day sessions between February
and May 1997.

The TriTrac-R3D activity monitor is a pocket-sized motion sensor that, when worn on the hip
in a nylon pouch, measures motion in three planes (horizontal, vertical, and mediolateral). The
TriTrac stores data over several days, after which the data can be downloaded to a computer
to provide a minute-by-minute record of movement in each dimension. The counts in the three
planes may be combined into a single activity level for each minute by computing the vector
magnitude. The vector magnitudes may then be converted into estimated energy expenditure
per minute due to activity (EE). The TriTrac-R3D uses a proprietary formula involving the
subjects weight to compute EE; Gortmaker (2002) calculated this formula, and then converted
these into METS (metabolic units) using MET=(EE+BMR)/BMR, where BMR is the child's
basal metabolic rate, estimated from their gender, age, and weight using the World Health
Organization (WHO) equations (Recommended Daily Allowances 2000). The minimum
activity level is 1 MET, which indicates the child is stationary, while activities yielding levels
between 3 and 6 MET (e.g., walking) are considered moderately intense, and activities yielding
levels of more than 6 MET (e.g., running) are considered vigorous (Rowlands et al. 2004).

We focused on the weekday accelerometer profiles from children in the 5 control schools that
did not receive the intervention. This data set consisted of 550 daily profiles from 112 children.
Each daily profile contained 1440 measurements, the minute-by-minute activity levels for a
single day, measured in METs. If no movement was recorded for 30 or more consecutive
minutes, we assumed that the child removed the monitor, and the corresponding measurements
were considered missing. Figure 2 contains a heatmap of the 550 daily profiles. A heatmap is
a graphical device that is useful for representing high-dimensional data sets. Each row
corresponds to a single profile and each column is one minute in the day. The color of the pixel
(i, j) indicates the activity level of profile i at time tj, with higher activity levels represented by
lighter colors. For this graph, we coded missing measurements as 0 (black), and censored
moderate and vigorous activity levels (> 3.0 MET, white) to improve the contrast of the figure.
The white dashed horizontal lines delineate the schools, which we will refer to as schools A,
B, C, D, and E, respectively. Note the imbalance in the number of profiles obtained from each
school.

There were a large number of missing measurements in the data. Supplementary material
available on the first author's web site
(http://biostatistics.mdanderson.org/Morris/papers_files/TriTrac_supplement.html) contains
a plot of the proportion of daily profiles with nonmissing measurements as a function of the
time of the day, and a histogram of the proportion of minutes missing from 9am-8pm for the
550 profiles. We focused our analysis on the data from 9am to 8pm, since most of the profiles
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were missing outside this region. Only 95 of the 550 profiles were complete from 9am to 8pm,
and 187 profiles had more than 80% of this region missing. We focused on the 292 profiles
that were at least 50% complete from 9am to 8pm, which were from 106 children. All of these
profiles were obtained between February 10, 1997 and May 28, 1997. We also considered the
criteria of 80% complete or 20% complete, and found similar results.

For each child, we had a number of covariate measurements, including school, race/ethnicity,
gender, age, weight, height, body mass index (BMI), triceps skinfold (measured by skinfold
calipers applied to the triceps), and average number of hours spent watching television per day.
We also had a record of the day-of-week and the calendar date on which each profile was
obtained.

We were interested in assessing how activity levels tended to vary throughout the day, across
schools, across different days of the week, over time from early to late spring, and across various
child-level covariates. We also were interested in assessing the relative variability from day-
to-day and child-to-child, in order to provide design recommendations for future studies. We
accomplished these goals by applying the wavelet-based functional mixed model to these data,
after adapting the procedure to accomodate incomplete profiles. We assessed how well this
model fit the data, and specifically checked how closely it predicted the frequency of bouts of
moderate and vigorous activity for groups of children as a function of the time of day.

3 Wavelets and Functional Mixed Models
3.1 Brief Revew of Wavelets

Wavelets are basis functions that can be used to represent other functions, often very
parsimoniously. A basic introduction to wavelets can be found in Vidakovic (1999). A wavelet
series approximation to a continuous function y(t) is given by

(1)

where J is the number of scales, and k ranges from 1 to Kj, the number of coefficients at scale
j. The functions ϕJ,k(t) and ψj,k(t) are wavelet basis functions that provide a location-scale
decomposition of the observed function. They are dilations and translations of a father and
mother wavelet function, ϕ(t) and ψ(t), respectively, with ϕj,k(t) = 2-j/2ϕ(2-j t - k) and ψj,k(t) =
2-j/2ψ(2-j t - k). The coefficients cJ,k, dJ,k, …, d1,k are the wavelet coefficients. The cJ,k are called
the smooth coefficients, and represent smooth behavior of the function at coarse scale J, and
the dj,k are called the detail coefficients, and represent deviations of the function at scale j,
where smaller j correspond to finer scales. The wavelet coefficients at scale j essentially
correspond to differences of averages of 2j-1 time units, spaced 2j units apart. In addition, by
examining the phase properties of the wavelet bases, we can associate each wavelet coefficient
on each scale with a specific set of time points.

Theoretically, each coefficient may be obtained by taking the inner product of the function and
the corresponding wavelet basis function, although in practice more efficient approaches are
used. If the function is sampled on an equally spaced grid of length T , then the coefficients
may be computed using a pyramid-based algorithm called the discrete wavelet transform
(DWT) in just O(T) operations. Applying the DWT to a row vector of observations y produces
a row vector of wavelet coefficients d = (cJ,1, …, cJ,KJ, dJ,1, …, d1,K1). This transformation is
a linear projection, so it may also be represented by matrix multiplication, d = yW′, with W′
being the DWT projection matrix. Similarly, the inverse discrete wavelet transform (IDWT)
may be used to project wavelet coefficients back into the data space, and can also be represented
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by matrix multiplication by the IDWT projection matrix W , the transpose of the DWT
projection matrix. We use the method implemented in the Matlab Wavelet Toolbox (Misiti, et
al. 2000) for computing the DWT, although other implementations could just as well have been
be used. Supplementary material
(http://biostatistics.mdanderson.org/Morris/papers_files/TriTrac_supplement.html) describes
how this implemenation deals with data for which T is not a power of 2 and discusses some of
its properties.

Wavelets can be used to perform nonparametric regression using the following three-step
procedure. First, noisy data y are projected into the wavelet domain using the DWT, yielding
empirical wavelet coefficients d. The coefficients are then thresholded by setting to zero any
coefficients smaller in magnitude than a specified threshold, and/or nonlinearly shrunken
towards zero using one of a number of possible frequentist or Bayesian approaches. These
result in estimates of the true wavelet coefficients, which would be the wavelet coefficients for
the true function if there was no noise. Finally, these estimates are projected back to the original
data domain using the IDWT, yielding a denoised nonparametric estimate of the true function.
Because most signals may be represented by a small number of wavelet coefficients, yet white
noise is distributed equally among all wavelet coefficients, this procedure yields denoised
function estimates that tend to retain dominant local features of the function. In this paper, we
refer to this property as adaptive regularization, since the function is regularized (i.e., denoised
or smoothed) in a way that adapts to the characteristics of the function. This property makes
the procedure useful for modeling functions with many local features like peaks. References
on wavelet regression can be found in Chapters 6 and 8 of Vidakovic (1999), and in Donoho
and Johnstone (1995), Chipman, Kolaczyk, and McCulloch (1997), Vidakovic (1998),
Abramovich, Sapatinas, and Silverman (1998), Clyde, Parmigiani, and Vidakovic (1999), and
Clyde and George (2000).

Most work in wavelet regression to date has been limited to the single-function case, with a
few exceptions. For example, Brown, Fearn and Vannucci (2001) performed Bayesian variable
selection on wavelet coefficients of functions serving as predictors for a scalar response. Chang
and Vidakovic (2002) proposed a method to obtain a regularized estimate for the mean function
over a sample of curves. Morris, et al. (2003) developed a wavelet-based method for analyzing
hierarchical functional data, in which the functions are sampled from a nested hierarchical
design. This method produces adaptively regularized estimates and inference for the overall
mean function and individual profiles. Morris and Carroll (2006) generalized this work to the
functional mixed models setting.

3.2 Functional Mixed Models
Suppose we observe n functional profiles Yi(t), i = 1, … ,n, all defined on the compact set

. A functional mixed model for these profiles is given by

(2)

where Xij are covariates, Bj(t) are functional (time-varying) fixed effects, Zik are elements of
the design matrix for functional random effects Uk(t), and Ei(t) are residual error processes.
Here, we assume that Uk(t) are independent and identically distributed (iid) mean-zero
Gaussian processes with covariance surface Q(t1, t2), and Ei(t) are iid mean-zero Gaussian
processes with covariance surface S(t1, t2), with Uk(t) and Ei(t) being independent. Note that
Q indicates the covariance across the random effect functions k = 1, … , m, and S indicates the
covariance across the residual error processes for the n curves, after conditioning on the fixed
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and random effects. Note that the iid assumptions on the individual random effect functions
and residual error processes makes Equation (2) a special case of the more general functional
mixed model presented in Morris and Carroll (2006). Since the response, fixed effects, random
effects, and residual error processes are all functional, heuristically this model can be viewed
as fitting separate mixed models at each time point, but with an extra layer added for
regularization, i.e. to borrow strength across observations within a function.

Suppose all observed profiles are sampled on the same equally spaced grid t of length T . Let
Y be the n × T matrix containing the observed profiles on the grid, with each row containing
one observed profile on the grid t. A discrete, matrix-based version of this mixed model can
be written

(3)

The matrix X is an n × p design matrix containing (nonfunctional) covariates; B is a p × T
matrix whose rows contain the corresponding fixed effect functions on the grid t. The quantity
Bij denotes the effect of the covariate in column i of X on the response at time tj. The matrix
U is an m × T matrix whose rows contain random effect functions on the grid t, and Z is the
corresponding n × m design matrix. Each row of the n × T matrix E contains the residual error
process for the corresponding observed profile. We assume that the rows of U are iid MVN
(0, Q) and the rows of E are iid MVN(0, S), independent of U, with Q and S being T × T
covariance matrices that are discrete approximations to the covariances surfaces in (2) on the
grid.

This model is very flexible and can be used to represent a wide range of functional data. The
fixed effect functions may be group mean functions, interaction functions, or functional linear
effects for continuous covariates, depending on the structure of the design matrix. The random
effect functions provide a convenient mechanism for modeling between-function correlation,
for example when multiple profiles are obtained from the same individual. The model places
no restrictions on the form of the fixed or random effect functions. Since the forms of the
covariance matrices Q and S are also left unspecified, it is typically not feasible to fit this model
without first making further assumptions.

3.3 Wavelet-Based Functional Mixed Models (WFMM)
Morris and Carroll (2006) did not fit model (4) directly, but instead projected the observed
profiles into the wavelet space, then worked with the wavelet-space version of the model. This
allowed the modeling to be done in a more parsimonious and computationally effcient manner,
and enabled a convenient mechanism for adaptively regularizing the fixed effect functions.

The projection is accomplished by applying the discrete wavelet transform (DWT) to each row
of Y, yielding a matrix of wavelet coeffcients D = YW′, where W′ is the DWT projection matrix.
Row i of D contains the wavelet coeffcients for profile i, with the columns corresponding to
individual wavelet coeffcients and double-indexed by scale j and location k. It is easy to show
that the wavelet-space version of model (3) is

(4)

where each row of B* = BW′ contains the wavelet coeffcients corresponding to one of the fixed
effect functions, each row of U* = UW′ contains the wavelet coeffcients for a random effect
function, and E* = EW′ contains the wavelet-space residuals. The rows of U* and E* remain
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independent mean-zero Gaussians, but with covariance matrices Q* = WQW′ and S* = WSW
′.

Motivated by the whitening property of the wavelet transform, many wavelet regression
methods in the single-function setting assume that the wavelet coefficients for a given function
are mutually independent. Morris and Carroll (2006) effectively make this assumption in the
wavelet-based functional mixed model by constraining Q* and S* to be diagonal. Allowing
the variance components to differ across both wavelet scale j and location k yields Q* = diag
(qjk) and S* = diag(sjk). This assumption reduces the dimensionality of Q and S from T (T +1)/
2 to T, while still accommodating a reasonably wide range of nonstationary within-profile
covariance structures for both the random effects and residual error processes. For example, it
allows heteroscedasticity and differing degrees of smoothness at different regions of the curves.
Figure 1 of Morris and Carroll (2006) illustrates this point. By using transforms from wavelet
packet tables (see Percival and Walden 2000, chapter 6), it may be possible to accommodate
an even broader class of covariance matrices.

Morris and Carroll (2006) used a Markov Chain Monte Carlo scheme to generate posterior
samples for quantities of model (4). Vague proper priors were used for the variance
components, and independent mixture priors were used for the elements of B*. Specifically,
the prior for Bijk*, the wavelet coeffcient at scale j and location k for fixed effect function i,

was  with γijk ~ Bernoulli (πij) and δ0 being a point mass
at zero. This prior is commonly used in Bayesian implementations of wavelet regression, for
example see Clyde, Parmigiani and Vidakovic (1998) and Abramovich, Sapatinas, and
Silverman (1998). Use of this mixture prior causes the posterior mean estimates of the  to
be nonlinearly shrunken towards zero, which results in adaptively regularized estimates of the
fixed effect functions. The parameters τij and πij are regularization parameters that determine
the relative trade-off of variance and bias in the nonparametric estimation. They may either be
prespecified or estimated from the data using an empirical Bayes method; see Morris and
Carroll (2006) for details.

Posterior samples for each fixed effect function, , on the grid t are obtained
by applying the IDWT to the posterior samples of the corresponding complete set of wavelet

coeffcients , and similarly for the random effect functions Ui. If desired,
posterior samples for the covariance matrices Q and S may also be computed using matrix
multiplication Q(g) = WQ*(g)W′ and S(g) = WS*(g)W′, respectively. Since Q*(g) are S*(g) are
diagonal, this may be accomplished in an equivalent but more effcient manner by applying the
2-dimensional version of the IDWT (2d-IDWT) to Q*(g) and S*(g) (Vannucci and Corradi,
1999). These posterior samples of the quantities in model (3) may subsequently be used to
perform any desired Bayesian inference.

4 Handling Incomplete Profiles in WFMM
The method described above cannot be used to analyze data for which some profiles are
incomplete, i.e., not fully observed on the grid t, because the first step of the method, the DWT,
cannot be applied to incomplete profiles. Under these circumstances, one alternative is to
simply perform a “complete case” analysis that uses only the complete profiles. However, this
is ineffcient since it ignores information contained in the incomplete profiles. This problem is
especially severe when a high proportion of observed profiles are incomplete, which is true for
the TriTrac accelerometer data from the Planet Health study.
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In this section, we introduce two missing data approaches that can be used to incorporate
information from the incomplete profiles in the wavelet-based functional mixed model when
there are at least some complete profiles available. Both methods involve imputation of
“missing wavelet coeffcients” from predictive distributions at each iteration of the MCMC.
Missing wavelet coeffcients are wavelet coeffcients for an individual profile, for which the
support of the corresponding basis function intersect missing regions of the profile. In the first
method, the imputation distributions are defined based on the posterior means of model
parameters obtained from an MCMC applied to the complete case data, while in the second,
posterior predictive means and variances are used. These approaches are appropriate to use
when the data is missing completely at random (MCAR, Little and Rubin, 2002). Cradock, et
al. (2004) described a validation study in which they essentially concluded that the missingness
in the accelerometer data from the Planet Health study was MCAR.

Suppose we have an incomplete profile, Yi(t), that is observed on the set of times tO, but missing
on the set of times tM, with tO ∪ tM = t, an equally spaced grid on the region T . From (3), the
model for Yi, a row vector containing the full profile on the grid t, is given by Yi = XiB+ZiU
+Ei, where Xi is 1×p, B is p×T, is Zi is 1×m, U is m×T, and Ei is 1×T. The rows of U are
independently distributed as Normal{0,Q}, and Ei ~ Normal{0, S}. Let Ω be the vector
containing the covariance parameters determining the matrices Q and S. The joint distribution
of the profile on the grid, conditional on the fixed effects, covariance parameters, and random
effects, is {Yi|B, Ω, U} ~ Normal(μi, Σi), with

(5)

(6)

Partition , with  and  being vectors of length
 and  containing the observed and missing regions of the profile, respectively. Similarly

partition  and . By standard conditional normal calculations,
we find that

(7)

with  and . We refer to this
conditional distribution as the imputation distribution. This distribution represents a linear
regression of the missing data on the observed parts of the profile.

In the Bayesian paradigm, a natural way to deal with the missing data  is to treat it as an
unknown parameter vector to be updated at each iteration of the MCMC from its complete
conditional distribution, which is the imputation distribution (7). While conceptually
straightforward, this fully Bayesian approach is computationally infeasible here. It requires
numerous applications of the DWT and IDWT and extra matrix inversions and multiplications
at each iteration of the MCMC, since the missingness is in the data space and the MCMC is
applied to the wavelet space version of the model.
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A less computationally intensive alternative is to first perform a “complete case analysis” to
obtain posterior samples of the model parameters, then use these to characterize the imputation
distribution (7). This distribution may then be projected into the wavelet space to yield a
distribution from which random draws of the “missing wavelet coeffcients” can be taken at
each iteration of the MCMC. This approach does not require any DWTs, IDWTs, or extra
matrix inversions or multiplications to be done inside the MCMC.

Following are the specific steps necessary to implement this approach, using the posterior mean
estimates from the complete case run to characterize the mean and variance in (7).

1. Fit the wavelet-based functional mixed model to the set of complete profiles YC.
Compute , , and , the posterior mean estimates of the fixed effect functions,
random effect functions, and residual covariance matrix using the procedure described
in Section 3.3.

2. For each incomplete profile Yi(t),

a. Compute  and  in (7), using the posterior mean estimates of the
model quantities in place of μi and Σi.

b. Form the mean imputed profile Mi(t) on the grid t, Mi, by setting Mi(t) =
Yi(t) for t ∈ tO and  for t ∈ tM.

c. Form the covariance matrix for the imputed profile Vi(t1, t2) on t × t, by

setting  and Vi(t1, t2) = 0 if t1 ∈ tO or
t2 ∈ tO.

d. Apply the DWT to the mean imputed profile, yielding the corresponding
vector of wavelet coeffcients, , double-indexed by wavelet scale
j and location k.

e. Apply the 2-d DWT to the covariance matrix for the imputed profile to
compute the corresponding covariance matrix of the imputed wavelet
coeffcients, . Because of our independence assumption between
the wavelet coeffcients within a given function, we restrict attention to the

diagonal elements of this matrix, . Each element of the vector
, contains the imputation variance for a single wavelet coeffcient,

double-indexed by scale j and location k.

3. Fit the wavelet-based functional mixed model to the full data set, including the
complete and incomplete profiles. At each iteration of the MCMC, add a step whereby
for each incomplete profile indexed by i, we draw each wavelet coeffcient dijk (j = 1,
… , J, k = 1, … , Kj) from its wavelet-space imputation distribution, which is

. For any “observed” wavelet coeffcients for which the
corresponding wavelet basis function, ψjk(t), is completely contained within tO, the
imputation variance  will be 0 and the imputation mean  will be dijk, the wavelet
coeffcient we would have obtained by applying the DWT to the profile Yi if it were
completely observed.

This procedure assumes that for each incomplete profile Yi, we have at least one complete
profile from that child, since it conditions on estimates of the corresponding child-level random
effect function in U from the complete case analysis. The procedure is easily adapted for
profiles for which this is not true by substituting μi = XiB and Σi = Q + S for (5) and (6),
respectively. Recall that in our example Q represents the child-to-child covariance and S the
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day-to-day covariance. Inclusion of the child-to-child variability tends to inflate the imputation
variances.

This approach has several desirable qualities. It is easy to implement and makes full use of the
functional data, borrowing strength both within and between profiles while performing the
imputation. The borrowing of strength from within the profile is accomplished through the
conditional distribution in (7), and the borrowing of strength between profiles occurs from the
use of parameter estimates from the complete case analysis to characterize the distributions in
(5) and (6). Because multiple draws are taken from the imputation distribution, the estimated
variability of the imputation is propagated throughout any subsequent inference.

However, one weakness of this approach is that by conditioning on the parameter estimates
from the complete profile model fit, it fails to propagate the uncertainty of the parameter
estimation into the imputation variances. This problem can be fixed by using posterior
predictive distributions instead, which integrate over this uncertainty; that is, replace the
conditional mean and covariance in (5) and (6) in the imputation distribution in (7) by the

posterior predictive mean and covariance,  and , respectively.
Given a set of G MCMC samples from the complete profile run, these may be estimated by
the following equations:

(8)

(9)

with , and B(g) and U(g) being the posterior samples of B and U from iteration
g of the complete case MCMC, and  the posterior mean estimator of the within-function
residual covariance matrix S. Details of the derivations of (8) and (9) are in the appendix. These
distributions appropriately propagate the uncertainty in parameter estimation throughout the
imputation distributions. They are not fully efficient, however, since they integrate over the
posterior distribution of the parameters conditional on only the “complete case” data, while
the fully Bayesian approach would integrate over the posterior conditional on all available data.

Note that because of the mixture prior placed on B*, the predictive distribution f(Yi|YC) is not
multivariate normal. Thus, by representing this distribution by its first two moments and using
the normal distribution to perform our imputation, we are using an approximation. This keeps
the procedure computationally feasible, since sampling from the actual posterior predictive
distribution would require multiple DWT and IDWT calculations within the MCMC, as was
the case for the fully Bayesian approach. Our use of the posterior predictive means and
variances improves upon the conditional approach because it propagates the uncertainty due
to parameter estimation in the correct manner, as indicated by the second term in (9).

5 Analysis of TriTrac Data from Planet Health
5.1 Complete Case Analysis

We first modeled the set of complete profiles in order to obtain posterior predictive distributions
to characterize the imputation distributions for the missing parts of the incomplete profiles.

Morris et al. Page 11

J Am Stat Assoc. Author manuscript; available in PMC 2009 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



There were a total of 95 complete daily profiles from 61 children, i.e., had no missing
observations between 9am and 8pm. Let YC be the 95 × 660 response matrix, each row of which
contained the log accelerometer profile (in log METs) for one day from one child, sampled on
the time grid t = {tm, m = 1, … ,660}, consisting of every minute from 9am to 8pm. We log
transformed the data to stabilize the variance and make the data more symmetric to
accommodate the Gaussian error assumptions underlying the functional mixed model.

We modeled these data using the functional mixed model (3), YC = XB + ZU + E. The matrix
X was a 95×13 design matrix containing child and day-level covariates which correspond to
the 13 × 660 matrix B, whose rows were the fixed effect functions on the grid t. Entry Bij
described the effect of covariate i on the activity levels at time tj. The matrix Z was a 95 × 61
design matrix, with corresponding 61 × 660 matrix U, for which each row contained the random
effect function for a single child on the grid t. The 95 × 660 matrix E contained the residual
errors on the same grid. We assumed that the rows of U and E were mutually independent mean
zero Gaussians with 660 × 660 covariance matrices Q and S, respectively.

The X matrix we used included columns corresponding to an overall functional “intercept”, a
gender effect (=1 if boy, -1 if girl), an effect for higher tricep skinfolds (=1 if > 20, =-1 if ≤
20), a body mass index (BMI) effect, an effect for the average number of hours per day watching
television, day-of-week effects, a seasonal effect (=1 if after the beginning of daylight savings
time [DST], =0 if before DST), and school effects. All effects were functional, meaning that
they were allowed to vary as a function of time of day. Both the BMI and TV hours covariates
were treated as continuous, with the BMI covariate mean-centered and the TV hours covariate
standardized. School effects were only included for schools B, D, and E, since there were only
1 and 4 complete profiles from schools A and C, respectively out of the total of 11 and 15 that
were at least 50% complete from these two schools. We determined this was not enough
replication to estimate the corresponding school fixed effects.

Written out in scalar form, the model for profile i at time , was

, where Uk(tj) were mean-zero

Gaussians with  if k = k′, 0 otherwise; Ei(tj) were mean-zero
Gaussians with cov{Ei(tj),Ei′(tj′)} = Sjj′ if i = i′, 0 otherwise; and cov{Uk(tj),Ei(tj′)} = 0 for all
i, j, j′, k.

We fit the wavelet-based functional mixed model described in Section 3.3 and obtained
posterior samples for all parameters in this model. We chose a Daubechies wavelet with 4
vanishing moments (Daubechies 1992), and performed the wavelet decomposition to J = 8
levels. Maximum likelihood estimates were used as starting values for the MCMC for all model
parameters. The regularization parameters were estimated using the empirical Bayes approach
described in Morris and Carroll (2006), with πij ≈ 1 and τij chosen very large for the smooth
coeffcients and the 2 coarsest levels of wavelet coeffcients to make the degree of shrinkage at
these levels negligible. Vague proper priors were used for the variance components. After a
burn-in of 1000, we obtained 20,000 MCMC samples of the model parameters, keeping every
10th. This took roughly 7 hours to run on our Xeon 3.2 GHz Windows 2000 machine with 2GB
RAM, and the posterior samples occupied roughly 300MB. Trace plots and Metropolis-
Hastings acceptance probabilities indicated that the MCMC had good convergence properties.

5.2 Imputation Distributions for Incomplete Profiles
We used these posterior samples to estimate the posterior predictive means and variances for

each incomplete profile,  and  in (8) and (9). As described in Section 4, we used these
estimates as the basis for the imputation distributions for the missing data.
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Figure 3 contains six incomplete profiles, with their missing regions replaced by the mean and
95% pointwise bounds of their imputation distributions. Note how the imputation distributions
borrow strength from nearby observations and tend to “connect” the imputed data with nearby
observed data. They also allow the magnitude of the nearby observed data to play a role in the
imputation. Also, the imputation variances tend to be smaller for the values immediately
adjacent to observed values, and in regions of the curves with less variability in the population.

Using the DWT, we projected these imputation distributions into the wavelet space. At each
iteration of the MCMC applied to the full data set, we took random draws from this distribution
to fill in the “missing wavelet coeffcients.”

5.3 Model for Analysis of Full Data Set
We used the same underlying model for the full data analysis as for the complete case analysis,
except we removed the functional intercept term and allowed each school to have its own fixed
effect function, since the full data set contained enough profiles to reliably estimate them all.

We obtained posterior samples for all parameters in this model using an MCMC, with the
missing wavelet coeffcients sampled from their imputation distributions at each iteration, as
described in Section 4. We used the same method settings as used in the complete case analysis.
We ran four parallel chains, each with a burn-in of 1000 and consisting of 2500 MCMC
samples, keeping every 5. This took roughly 40 hours to run, and the posterior samples occupied
roughly 300MB. For 87% of the variance components, the Metropolis-Hastings acceptance
probabilities were between 0.25 and 0.50. Trace plots indicated good convergence properties.

5.4 Results
Analysis of Fixed Effect Functions—To consider the marginal time of the day effect on
activity levels, we computed the overall mean curve by equally weighting each of the schools'
fixed effects functions and conditioning on the mean values of all other covariates. Figure 4
(a) contains the posterior mean and 90% posterior pointwise credible bounds for the overall
mean curve in the logMETs scale. Throughout the school day, the curve is characterized by
numerous spikes that indicate periods of time of coordinated activity, e.g., class switches and
lunch periods for the different schools. There is a large spike between 2:15pm and 3:00pm
corresponding to the end of the school day. The mean activity profiles are less spiky after
school, indicating less coordinated activity across days and children. The mean activity levels
remained relatively constant from 3:00pm to 6:30pm, then decreased later in the evening.

For each fixed effect function, we plotted the posterior mean curve and computed pointwise
90% posterior bounds. Two of these are plotted in Figure 4, panels (b) and (c), and other curves
are available by request from the first author. Recall that the effects are additive on the log
scale, so they are multiplicative on the MET scale. Exponentiating the values in these plots
yields the multiplicative effects. These multiplicative effects can subsequently be converted
into percent increases or decreases in the MET scale.

To further summarize the results, we computed the average percent increases/decreases
corresponding to each fixed effect function, aggregating within the following time intervals,
chosen based on the structure evident in the overall mean curve: (1) all day, 9am-8pm; (2)
morning, 9am-11:30am; (3) lunch, 11:30am-12:30pm; (4) afternoon, 12:30pm-2:15pm; (5)
going home, 2:15pm-3:00pm; (6) after school, 3:00pm-5:30pm; (7) early evening,
5:30pm-7:00pm; and (8) late evening, 7:00pm-8:00pm. The 90% credible intervals for these
quantities are reported in square brackets.

The fixed effect curves for the different schools were characterized by numerous peaks present
throughout the school day. These were most evident for school E; see Figure 4(b). This school
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provided the most daily profiles in this data set (146 out of 292), and it appeared to have the
most regular schedule of the schools in the study; see Figure 2. The regular pattern of peaks
reveals the school's class schedule. The large peaks in the morning and afternoon are exactly
48 minutes apart, and indicate class switches. The three peaks around noon are 24 minutes
apart, and likely indicate different lunch periods. From the large extended spike in the
afternoon, we surmise that school let out around 2:15pm. Although regular peaks were evident
in the school's main effect curve, they were not obvious in any individual curve because of the
high levels of day-to-day and child-to-child variability. This can be seen in the bottom two
panels of Figure 1, which contain profiles from a child at this school.

We found that children tended to be less active on Tuesdays (3.3% decrease [-6.2%, -0.2%]),
Thursdays (2.9% decrease [-5.5%, -0.2%]), and Fridays (3.6% decrease [-6.8%, -0.4%]),
compared to Mondays, aggregating over the entire day. These effects were especially strong
during the after-school period (3:00-5:30, Tuesday -7.7% [-12.6%, -2.2%], Thursday -7.8%
[-12.5%, -3.1%], Friday -5.8% [-11.4%, -0.1%]) A similar but less pronounced trend was
present on Wednesdays (overall 1.9% decrease [-5.0%, 1.4%], after school 5.1% decrease
[-10.5%, 0.9%]).

In 1997, daylight savings time (DST) in Boston started on April 6th. We found that activity
levels were generally higher after DST than before DST (overall 8.2% increase [-0.5%,
18.1%]). See Figure 4(c). This effect was especially strong as school was letting out (2:15-3:00,
25% increase [4.2%, 53.4%]) and in the early evening (5:30-7:00, 29.5% increase, [5.6%,
59.2%] ), a time period during which the sun was still out after DST, but had already set before
DST.

Boys tended to be slightly more active than girls, on average, most notably over lunch (4.8%
increase [0.5%, 9.1%]).

Variance Component Analysis—We summarized the relative day-to-day variability by
ρ = Tr(S)/{T(Q + Tr(S)}, where Tr(Q) and Tr(S) were the traces of the child-to-child and day-
to-day covariance matrices Q and S, respectively. The posterior mean of ρ was 90.9%,
indicating 90.9% of the variability in the log accelerometer profiles was day-to-day and 9.1%
child-to-child. The 90% posterior credible interval for ρ was [88.8%, 92.8%].

To evaluate how these sources of variability varied over t, we considered the child-to-child
and day-to-day variances as a function of t, Vq(t) = Q(t, t) and Vs(t) = S(t, t), respectively (plots
available in supplementary material available at
(http://biostatistics.mdanderson.org/Morris/papers_files/TriTrac_supplement.html) describes
how this implementation deals with data for. We found the child-to-child variability was greater
during the school day than after school, while the day-to-day variability was greater after school
than during the school day. The relative variability from day-to-day as a function of time of
the day, ρ(t) = Vs(t)/{Vq(t) + Vs(t)}, revealed that the percent of variability from day-to-day
increased from 85-90% during the school day up to 95-99% after 3pm.

Assessing Bouts—In the literature on accelerometer data, there has been a great deal of
interest in studying “bouts,” or short bursts of intense activity. Here, we considered bouts to
be periods of time during which the child was engaging in moderate or vigorous activity, which
corresponded to activity levels of greater than 3.0 MET (Rowlands et al. 2004). In the existing
literature, the data analysis performed frequently includes estimating the probabilities of bouts
for different groups of individuals. In our wavelet-based functional mixed model approach, we
did not directly model these probabilities, but the unified Bayesian framework underlying the
method made it easy to compute these probabilities as a function of the time of day for any
group of individuals using the posterior samples output from the MCMC.
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Given a child with covariate levels X*, the posterior predictive probability that they experience
a bout at time t in a hypothetical future daily activity profile Y*(t) is given by ϕWFMM(t = Pr
{Y*(t) > 3.0|Y,X*} = ∫ I{Y*(t) > 3.0}f{Y*(t)|θ,X*)}f(θ|Y)dθ, where θ = {B, Q, S} are the fixed
effect and covariance parameters in the model, and Y are the profiles we used to fit the model.
This expression can be estimated from the G posterior samples θ(g) = {B(g), Q(g), S(g)}, g = 1,

… , G, obtained from the MCMC, by , where

, and Φ(x) is the standard normal cdf
evaluated at x.

For example, we computed the probability of bouts as a function of the time of the day for
Thursdays before DST for children from school E. This curve is given by the dashed line in
Figure 4(d). To check how well our model captured these bouts, we also computed an empirical
estimate of the probability of bouts for each time point averaging over the n = 42 accelerometer
profiles obtained on Thursdays before DST from children enrolled at school E. The raw

empirical estimator was . The solid line in Figure 4(d) is a
wavelet denoised version of this curve, denoised using Sureshrink (Donoho and Johnstone,
1995) with soft thresholding. Although we did not directly model the probability of bouts, our
wavelet-based functional mixed model appeared to do a reasonable job of capturing these
features of the data.

6 Discussion
We first discuss the specific results of our analysis, and then assess the fitness of the wavelet-
based functional mixed model for analyzing accelerometer data.

We were not surprised by the large daylight savings time (DST) effect we observed in the data.
Considering the weather in Boston, naturally children tended to be more active after April 6th
than before. In 1997, the sun set in Boston at times ranging from 5:10pm to 6:15pm from
February 10th through April 5th, then from 7:16pm through 8:11pm from April 6th through
May 28th. This may explain the very large spike in the DST effect between 5pm and 7pm.

In our relative variability analysis, we found that after adjusting for the covariates, the day-to-
day dominated the child-to-child variability, especially during the after-school hours. In other
words, the difference between the average log profiles of a very active and very inactive child
with the same covariate levels is small compared to the variability in activity for a given child
from day-to-day, especially after school. This suggests that it is important to get many days
per child in order to accurately quantify each child's typical level of activity. While it is already
typical in these studies to monitor each child for 4 to 8 days, it may be a better design to obtain
even more days per child, especially if this does not result in much increase in cost for the
study.

While not directly modeling the bouts, the wavelet-based functional mixed model yields
estimates of the probability of bouts at different times of the day for children with different
levels of the covariates. It appears that this model does a reasonable job of capturing these
bouts, indicating that it is at least somewhat effective in modeling some of the tail behavior in
the distributions. However, there is some evidence of attenuation in our model-based estimates
of these probabilities, especially during the after-school period in which there is less
coordinated activity and more day-to-day variability. These may be related to our underlying
assumptions of normality and equal covariances across different groups of children. It is
possible in our framework to allow different covariance parameters across different groups of
children, and to relax the normality assumptions using scale mixtures of normals. These
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adaptations would accommodate heavier tails and may do an even better job of capturing these
bouts.

The wavelet-based functional mixed model is a powerful tool for analyzing accelerometer data.
It allows one to consider the joint functional effects of multiple covariates, and has the ability
to model correlations between profiles obtained from the same individual using random effect
functions. The functions are allowed to be of arbitrary form, and the within-function
covariances are allowed to be nonstationary. The fixed effect functions are adaptively
regularized using the principles of wavelet shrinkage. Less adaptive methods using kernels or
splines would result in more attenuation of dominant local features in the fixed effects curves,
possibly resulting in reduced power for inference.

It is also possible to introduce other random effect functions to account for covariance due to
other clustering factors, such as school or neighborhood. In this analysis, we chose to model
the schools using fixed effects because there were so few of them, but given more schools, we
could use random effects. It would be a good idea to use more schools in these studies, since
the school-to-school variability appears to be large, and it would be interesting and important
to study a wider range of schools with different socioeconomic makeups.

Our model is linear in that we assume the effects are linear in the covariates. It would be
interesting to consider generalizing or testing this assumption. However, this framework is still
very flexible since the linear coefficients are allowed to be time-varying, and their functional
form over time is left arbitrary. A much less flexible model, for example, would be to allow
the overall mean function to be arbitrary, but to force the fixed effects to be constant over time.
It would be interesting to develop formal testing procedures for testing whether it is necessary
to allow the coefficient to be time-varying for a given covariate; this is a topic for future
investigation.

Also, we note that this model is very flexible in its representation of the covariances of the
profiles from day-to-day, S, and the covariances of the random effect profiles from child-to-
child, Q. Our assumption of independence in the wavelet space reduces the dimensionality of
these covariances from T(T +1)/2 to T , yet accommodates a reasonably wide range of
nonstationary covariance structures. Different variance components are estimated for each
wavelet coeffcient, which allows the day-to-day and child-to-child variability to differ across
both scale and location. This accommodates various types of nonstationarity, allowing the day-
to-day and child-to-child variances across profiles to vary over time, and also allowing the
level of smoothness in the random effect functions and residual error processes to vary over
time.

The missing data methods introduced in this paper allow the wavelet-based functional mixed
model to be applied to data with incomplete profiles, which are commonly encountered in
accelerometer data. In our case study, these methods allowed us to increase the number of
profiles in the analysis by a factor of three. The resulting gain in precision is evident if one
compares the posterior bounds from the full data and complete case analyses (not shown).

The wavelet-based functional mixed model method possesses some weaknesses and
limitations. It is based on linear models, and so assumes additive errors (in our case study,
additive on the log scale). Other types of variability may not be adequately picked up by these
models. The normality assumption is somewhat restrictive, although as previously mentioned
this could be relaxed using scale mixtures. As is true with nonfunctional mixed models, some
models can be unstable to fit, especially when there is near-collinearity in the design matrices,
or small effective sample sizes for some of the variance components. These problems are
exacerbated in the functional context, since we are effectively fitting T simultaneous scalar
mixed models. Also, it would be useful to have a global functional test for more formally
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assessing the significance of the fixed effect functions; this is an area we will investigate in the
near future. The method is computationally and memory intensive; the analyses performed for
this paper took a total of about 50 computer hours. However, this is not unreasonable
considering the time it takes to collect the data. The method is also highly parallelizable, so it
could be done in much less time whenever parallel computing resources are available.

While computationally intensive, the method is straightforward to implement. The minimal
information one must specify to use our scripts are the Y , X, and Z matrices, the wavelet basis,
the number of levels of decomposition, the number of MCMC samples, and the burn-in. By
default, maximum likelihood starting values, empirical Bayes regularization parameters,
Fisher's information-based proposal variances for the Metropolis-Hastings, and vague priors
on the variance components are automatically computed.

Although straightforward to implement, this method is considerably complex, combining
wavelets with mixed models and wrapping it all up inside a Markov Chain Monte Carlo. This
begs the question of what all this complexity buys, of what this method can do that simpler
approaches cannot. This functional data modeling approach can be used to perform the same
types of standard analyses found in the existing literature, including analyses of average daily
activity levels, 30-minute averages, and probabilities of bouts for different groups of
individuals, but these can be done more effciently because we can effectively incorporate
incomplete profiles into the analysis. More importantly, the functional approach opens new
possibilities in terms of analyses that can be done and types of information that can be extracted
from these rich data, for example, allowing us to perform inference on time-varying effects.
Given the posterior samples from our model fit, we can perform nearly any type of inference
we desire, functional or pointwise, on fixed effect functions, random effect functions, or
covariance functions. The Bayesian approach propagates the uncertainty from the different
sources of variability in the model and the different parameters estimated throughout any
subsequent inference.

The wavelet-based functional mixed model, supplemented with the missing data methods
introduced in this paper, comprises a promising tool for extracting information from
accelerometer data in activity level studies.

Supplemental Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Derivation of Posterior Predictive Means and Covariances
Suppose YC is an NC × T matrix whose rows contain NC complete profiles, observed on an
equally spaced grid t of length T. Assume this matrix is modelled using the functional mixed
model (3) with parameters Θ = {B, U, Q, S}. Let Yi be another profile following the same
model that is independent of each profile in YC conditional on Θ. Here we show that, given a
set of G posterior samples of (Θ|YC), we can estimate the posterior predictive mean

 and covariance matrix  by the expressions in (8) and (9).
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We start by showing (8). It is easy to show using alternating conditional expectation arguments
that if X and Y are independent, conditional on Z, then E(X|Y) = EZ|Y{E(X|Z)}. Since Yi and
YC are independent conditional on Θ, this means that

. Estimating this expectation using the MCMC

samples of Θ, we get .

To show (9), we first note that alternating conditional expectation arguments can be used to
show that if X and Y are independent, conditional on Z, then var(X|Y) = EZ|Y {V AR(X|Z)}+
varZ|Y {E(X|Z)}. This means that we can write

.

Since var(Yi|Θ) = S, the first term can be estimated by , the posterior mean estimator of S
computed from the MCMC samples, which is the first term in (9). Next, we can write

. This expression can be estimated using the MCMC samples by

, which is the second part of (9).
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Figure 1. Sample profiles from 2 days for 2 different children, from 9am to 8pm
Activity levels above 6 MET are considered vigorous, while activity levels between 3 and 6
MET are moderate.
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Figure 2. Heat map of all weekday accelerometer profiles
The rows are the daily profiles, ordered by school and child within school. The columns are
the minutes of the day, from 12:01am through 12:00 midnight. The black regions of the plot
indicate regions of the profiles where the activity level is missing. Since the minimum activity
level is 1 MET, all non-missing activity levels are some shade of gray, not black. The white
regions indicate bouts, or regions where the activity profile is > 3.0 MET. The dotted white
lines mark the divisions between profiles from different schools.
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Figure 3. Imputation distributions
Some incomplete profiles, with mean and 95% pointwise bounds from the joint imputation
distribution substituted for the missing regions, as indicated by the shaded regions. These are
based on the normal approximation to the posterior predictive distribution, estimated from
posterior samples obtained from a Markov Chain Monte Carlo scheme applied to the complete
case data.
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Figure 4. Results
Posterior mean curves and 90% pointwise posterior credible intervals for the fixed effects
curves for (a) overall mean curve, (b) school E, and (c) daylight savings time, plus (d) posterior
predictive probabilities of bouts for a child from school E on Thursdays. The curve in (a) is
obtained by averaging equally over the schools and conditioning on the mean value in the data
set for all other covariates. The curve in (b) can be interpreted as the mean log profile on a
Monday before daylight savings time for a child from school E with average BMI who is
average with respect to the average number of hours of TV they watch per day. The curve in
(c) is added to the mean log profile for any day after daylight savings time (April 6). The solid
line in curve (d) indicates the wavelet-denoised empirical probabilities of bouts for each time
point averaging over the 42 accelerometer profiles obtained on Thursdays from children
enrolled at school E, along with 95% pointwise confidence bands computed using the method
described in Bruce and Gao (1996). The dashed-dotted line indicates the posterior predictive
probability of bouts from the functional mixed model for a child enrolled at school E on
Thursday, for whom the levels of all other covariates are at their mean levels.
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