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Abstract
A three-dimensional simulation of the formation of metachronal waves in rows of pulmonary cilia
is presented. The cilia move in a two-layer fluid model. The fluid layer adjacent to the cilia bases is
purely viscous while the tips of the cilia move through a viscoelastic fluid. An overlapping fixed-
moving grid formulation is employed to capture the effect of the cilia on the surrounding fluid. In
contrast with immersed boundary methods, this technique allows a natural enforcement of boundary
conditions without the need for smoothing of singular force distributions. The fluid domains are
discretized using a finite volume method. The 9 + 2 internal microtubule structure of an individual
cilium is modeled using large-deflection, curved, finite-element beams. The microtubule skeleton is
cross-linked to itself and to the cilium membrane through spring elements which model nexin links.
The cilium membrane itself is considered to be elastic and subject to fluid stresses computed from
the moving grid formulation as well as internal forces transmitted from the microtubule skeleton. A
cilium is set into motion by the action of dynein molecules exerting forces between adjacent
microtubules. Realistic models of the forces exerted by dynein molecules are extracted from
measurements of observed cilia shapes.
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1. Introduction
One of the main protective mechanisms of the lung is a fluid layer coating the interior epithelial
surfaces of the bronchi and bronchioles. This is known as the airway surface liquid (ASL) and
it varies in thickness from 5 to 100 μm [36]. The ASL exhibits a two-layer structure. Adjacent
to the epithelium one finds a region of low-viscosity fluid known as the periciliary layer (PCL)
which is widely thought to exhibit Newtonian behavior [21]. The PCL is typically 7 μm thick.
Cilia sprout from the epithelial layer. It has been observed that cilia lengths are comparable to
the PCL thickness under healthy conditions [36]. The cilia beat in a coordinated fashion within
the PCL layer [15]. The region between the PCL and the airway is occupied by a more viscous
mucus layer. Under normal healthy conditions the mucus is a viscoelastic fluid with a typical
thickness of 30 μm in humans. The tips of the cilia have been observed to penetrate the bottom
portion of the mucus layer during their beat cycle [36]. Ciliar motion leads to entrainment of
the ASL, propelling it towards the trachea and then out of the body or into the gastro-intestinal
tract. This process is known as mucociliary transport. It is hypothesized that the PCL serves
both as a lubricant to allow motion of the viscous mucus layer and as a lower-viscosity medium
more favorable to the motion of cilia. Foreign objects present in the bronchi and bronchioles
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(e.g. inhaled particulates, bacteria spores) are trapped in the viscous mucus layer. Mucociliary
transport then ensures elimination of these foreign objects from the lung. The proper
functioning of this process is fundamental to maintaining a healthy state. A major disease
associated with the breakdown of mucociliary transport is cystic fibrosis [34]. Specific genetic
defects associated with cystic fibrosis lead to reduced mucociliary transport leaving the lung
subject to chronic infections from, e.g. bacteria spores that are not eliminated from the
bronchioles. Other mechanisms can eliminate the foreign objects (cough, airway constrictions,
see [14]), but a fundamental observation is that the healthy state is characterized by a
functioning mucociliary transport while other mechanisms such as cough are invoked as a
response to a diseased state.

Though the overall picture of mucociliary transport is qualitatively understood, the details are
unclear. The velocity distribution within the layers has long been open to conjecture [21]. The
role of ciliar beating in effective entrainment has not yet been elucidated. Models of reduced
dimensionality have been presented [15,4] in which various other simplifications of the
physical model are also introduced, in particular the fluid force acting on a cilium is typically
estimated from a generalized Stokes law. The exact mechanism by which cilia coordinate their
motion in order to produce overall motion has also been open to speculation. Hydrodynamic
interactions have long been proposed as a principal mechanism [32], but there also remains
the possibility of elastic coupling through the endothelium layer or synchronization through
biochemical signaling.

The present research seeks to provide the computational tools for testing hypotheses about the
mechanisms of mucociliary transport. Examples of the questions that can be addressed by the
present computational framework are:

1. Is mucociliary transport produced by cilia motion alone? (Alternative or additional
mechanisms include Maragnoni transport, [6].)

2. How is cilia coordination achieved?

3. How do cilia respond when the PCL thickness is reduced?

4. At what mucus viscosity is cilia penetration into the mucus impeded?

Directly answering these physiological or biomedical questions is not addressed here, but will
be the subject of subsequent papers. The focus is rather on the physical and mathematical model
for entrainment of the ASL by ciliar beating, an attempt being made to realistically and
quantitatively capture all relevant details. Essentially, the model is a fluid-structure interaction
(FSI) problem with the following distinguishing features:

1. The elastic structure is of biological origin.

2. There are two types of fluids: Newtonian and viscoelastic.

3. The elastic structure is composed of very many individual cilia that undergo large
deformations.

The remainder of the paper is organized as follows. Section 2 describes the biological system
to be modeled. Section 3 presents the physical and numerical models for the component parts
of the system. Section 4 presents typical results focusing on answering the question of how
ciliar coordination is achieved through hydrodynamic interactions. Conclusions and further
work are presented in Section 5.

2. Cilium morphology
A cilium is a thin filament with a 30:1 ratio between length and diameter. Electron micrographs
such as Fig. 1A reveal the remarkable internal structure of a cilium. A sharper image of the
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transverse structure is shown in Fig. 1B. The cilium exhibits a load bearing structure composed
of microtubules (Fig. 1B(a) and (b)) placed on a circle towards the periphery of the cilium
cross-section. Microtubules are filamentary structures formed by repetition of a tubulin dimer
macromolecule. The “A” microtubule (Fig. 1B(a)) has a circular cross-section and the “B”
microtubule (Fig. 1B(b)) a “C” cross-section. In addition to the peripheral microtubules the
cilium contains a central pair (Fig. 1B(d)) that induces a preferred bending direction. The
central microtubules are linked to a loosely defined central sheath (Fig. 1B(f)) that is in it turn
linked to the peripheral “A” microtubules through central spokes (Fig. 1B(c)). The peripheral
microtubules are linked to the surrounding cilium membrane. Peripheral microtubules are
linked to one another through passive nexin links and active dynein links. The dynein molecular
motor [1] is a complex molecule that in the presence of ATP (adenosine triphosphate) carries
out a stepping motion in which alternating globular heads of the dynein molecule successively
attach and detach to the tubulin dimer pairs of a microtubule, thereby exerting a small force
between microtubules. The dark regions (Fig. 1B(e)) adjacent to a microtubule are arms of the
dynein molecule. The cumulative effect of all ∼4000 active dynein molecules within a cilium
leads to an overall bending motion that drives the surrounding fluid. The overall load-bearing
structure of the cilium is referred to as the cilium axoneme. One can describe a cilium as a
membrane enclosing an interior fluid region containing the axoneme.

The cilia move mostly within the PCL layer, their tips at times penetrating into the more viscous
mucus layer. Increase of mucin concentrations in the mucus can lead to ineffective cilia motion
or stoppage. Typical dimensions of a cilium are presented in Table 1.

Devising a quantitative model of mucociliary clearance is challenging due to the disparity in
scales between the molecular motors driving a cilium and the length scale representative of
ASL transport, typically a region covering a few hundred cells. The representative length scale
for the driving force is the distance between adjacent microtubules l ∼ 60 nm, while that for
the ASL flow is L ∼ 400 μm a disparity of almost 4 orders of magnitude.

3. Mechanical models of cilium axoneme components
A three-dimensional model of the internal mechanical behavior of a cilium is introduced based
upon approximating microtubules as thin-walled beams and the connecting dynein and nexin
elements as forces and springs, respectively. Previous work on cilium axoneme models
includes that of Blake [4] and Gueron et al. [15] in which the cilium has no internal structure
and the two-dimensional model of Dillon et al. [8] in which microtubules are modeled by a
pair of inextensible filaments with no flexural resistance linked by diagonal springs to confer
overall flexural rigidity for the axoneme. Dillon et al. also use spring elements to model nexin
and radial (spoke) links. In the following, experimental measurements of microtubule flexural
behavior are presented to argue that the intrinsic flexural rigidity is important in the overall
mechanical behavior of a microtubule.

3.1. Physical properties
A brief summary of known mechanical properties of the biological components relevant to
mucociliary flow is presented. Based on these properties specific mechanical models are
chosen for each component. The mathematical details of the models are presented in Sections
3.2 and 3.3. It should be noted that the data presented here is affected by the difficulty in
obtaining mechanical properties for microscopic biological materials. This constitutes one of
the chief uncertainties of the overall model. One of the objectives of the present research is to
establish bounds on these physical values consistent with observed ciliar motion.

3.1.1. Microtubules—Experimental work of Gittes et al. [12] has shown that the flexural
rigidity of single, taxol-stabilized microtubules is significant, EI = 2.19 ± 0.18 × 10-23 N m2.
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The flexural rigidity was determined by analyzing thermal fluctuations in shape. Direct bending
of a microtubule using optical tweezers has been carried out by Felgner et al. [10]. They
measured a flexural rigidity EI = 1.0 ± 0.3 × 10-24 N m2 for taxol-stabilized microtubules and
EI = 3.7 ± 0.8 × 10-24 N m2 for pure microtubules. Van Mameren obtains a value of EI = 4.2
± 0.4 × 10-24 N m2 again using optical tweezers. There is a significant variance in these results.
We can however estimate 10-24 N m2 ≲ EI ≲ 10-23 N m2 to give an order-of-magnitude estimate
of flexural rigidity. The typical force exerted by a dynein molecule on a microtubule has been
measured by Shingyoji et al. [30] as F ≈ 6 × 10-12 N. A force of this magnitude applied to a
cantilevered beam with a flexural rigidity of EI = 2.19 ± 0.18 × 10-23 N m2 at a distance of l
= 3 × 10-6 m from the support (roughly the midpoint of a cilium) leads to a deflection of δ =
Fl3/3EI = 2.5 × 10-6 m which though large, does show that microtubule rigidity is high enough
to store as deformation energy the work done by a single dynein molecule. It is therefore of
interest to construct a mechanical model with realistic models of microtubule flexural rigidity.
Recent studies [27] of grafted microtubules suggest anisotropic behavior. Though this is to be
expected due to microtubule construction from a periodic array of tubulin dimers, the
anisotropic elastic moduli are uncertainly measured at present. Hence, isotropic behavior will
be used in the computations here.

3.1.2. Nexin links, microtubule-membrane links, and radial spokes—There are few
available measurements of the mechanical properties of the nexin links and radial spokes
present in the axoneme. Experimental observations [25] suggest that these are elastic strings.
Analysis of measured forces when an axoneme is subject to longitudinal shearing [23] suggest
a spring constant of k = 2 pN/nm for the nexin links. Similar protein complexes, but of much
shorter length, link the microtubules to the membrane and these are modeled by stiffer springs
with k = 200 pN/nm in the absence of more detailed experimental observation. This links a
microtubule almost rigidly to the immediate portion of cilium membrane adjacent to it. The
spokes are modeled as springs with k = 10 pN/nm [23].

3.1.3. Dynein motors—The force exerted by a single dynein molecule upon a microtubule
has been the subject of extensive experimental effort. A peak value of F = 6 pN has been
observed experimentally [33]. Though the force exerted by one dynein molecule is relatively
well known, the exact mechanism by which the dynein molecules in an axoneme act
cooperatively to produce an overall motion is still not clear. Various ad hoc mechanisms have
been proposed. These include the geometric clutch model of Lindeman [19] and the curvature
controlled model of Dillon et al. [8]. A separate research effort [24] is underway to determine
these forces as a function of microtubule positions from a first principle computation using a
random walker model of dynein molecules on the microtubule structures. Proof-of-concept
computations for the fluid-structure interaction problem considered here are carried out with
an assumed, analytical form presented below.

3.1.4. Cilium membrane and central sheath—The cilium membrane is a bilipid layer
as found in a wide variety of cells. The mechanical properties of such layers can be found by
atomic force microscopy (e.g. [38]) or dilation of membrane vesicles and the surface
extensional stiffness is in the range γ = 10-2 - 10-1 pN/nm [9]. A value of γ = 0.5 pN/nm is used
here. The exact structure of the central sheath is unknown at present. The protein composition
seems to be similar to that of the nexin and radial spokes so a value of γ = 1 pN/nm is used
here.

3.1.5. PCL—The periciliary liquid is hypothesized to be a saline solution that exhibits
Newtonian behavior. A dynamic viscosity value of μ = 10-3 Pa s [31] is adopted.
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3.1.6. Mucus—Mucus is an extremely complicated biofluid containing a number of mucin
macromolecules that impart viscoelastic behavior [28,17]. A full viscoelastic characterization
is not yet available. An active program that seeks to fully describe the rheology of mucus is
underway at the University of North Carolina as part of the Virtual Lung project. A good
starting point is to assume an upper convected Maxwell model [3]. For mucus with a mass
concentration of 2% mucins the principal relaxation time has been found to be λ = 3 s. The
mucus viscosity is μs = ρsνs = 10-1 Pa s (ρs = 1010 kg/m3). The additional viscoelastic stress
is generated proportional to strain fields within the mucus with a constant of proportionality
μp = 10-3 Pa s.

3.2. Cilium axoneme mechanical model
3.2.1. Geometric description—The cilium shape is described by a set of curves passing
through the centers of each microtubule. For cilia with a 9 + 2 internal structure 11 curves are
required

(1)

with s representing arc length measured from cilium base and t time. At any point along a
microtubule centerline the Frenet triad is used to define a local coordinate system. The tangent,
normal and binormal vectors are given by

(2)

with κ the curvature and τ the torsion of the centerline curve. The shape of the cross-section of
a microtubule is given as a polar curve

(3)

3.2.2. Elastic springs model for nexin, radial spokes—An elastic spring element is
described in a local coordinate system with the s-axis along the spring length. The element has

two nodes i and j with nodal displacements  and nodal forces oriented along the

s-axis . The rigidity matrix Ke of the element specifies the linear dependence of
forces upon displacements, F = KU and is given by

(4)

with k the element’s spring constant.

3.2.3. Beam model for microtubules—Each microtubule or microtubule doublet is
modeled as a thin-walled beam (Fig. 2). A total Lagrangian Timoshenko beam element is used
[2,16]. For details on derivation see [11,7]. The curved beam element has 6 degrees of freedom
per node and two nodes per element. The 6 displacements defined at each node are 3 linear

displacements (u, v, w) along the  directions and 3 rotations (α, β, γ) around the
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 axes. The angular displacement α specifies the section twist, while β, γ give the
section’s rotation. The displacements produce forces (VT, VN, VB) and moments (MT, MN,
MB) within the cross-section. Let U be the general displacement vector and F the general force
vector at a node i

(5)

(6)

The element displacement vector, force vector are

(7)

The element force vector is a function of the displacements Fe = Fe(Ue). Due to the large
deflections typical of ciliar motion the relationship between forces and displacements is
nonlinear. The rigidity matrix is given by the Jacobian

(8)

and can be written as the sum of a material stiffness matrix and a geometric stiffness matrix

(9)

A  interpolation is used to describe displacements within the element. Shear locking is
eliminated through the simple residual bending flexibility correction [20]. For completeness,
the detailed form of the stiffness matrix for plane beams is presented in Appendix A as taken
from [11].

3.3. Airway surface liquid model
3.3.1. Periciliary layer—The layer of approximate thickness l = 7 μm in the immediate
vicinity of the endothelium layer is considered to be a Newtonian fluid. Due to the small scales
involved, the unsteady Stokes equations are an appropriate model

(10)

with  the local cilium velocity. The time derivative of the velocity  is kept since it is
not evident a priori that the diffusive transport of momentum in the Stokes fluid is fast enough
to dissipate the local effect of ciliar forcing. The above equations are solved on two overlapping
domains. An overall rectangular domain contains the entire PCL. On this boundary far-field
boundary conditions (e.g. periodicity) are applied. Around each cilium individual, curvilinear,
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time-deforming grids are constructed. This technique allows the surface boundary conditions
on the cilium membrane to be easily applied. In order to maintain overall efficiency of the
model the grids around a cilium are constructed as a deformation of a cylindrical grid,
maintaining orthogonal coordinates in each cross-section. This allows Fourier transforms to
be applied and a fast Poisson solver to be used in solving the finite-volume discretization of
the Stokes equations.

Cilium curvilinear grid: An overall median line is established for each cilium given by

in the Cartesian unit basis vectors . The grid mapping (x, y, z, t) ↔ (s, θ, r, t) defined by

(11)

is introduced. The curvilinear basis vectors are

Note that if the torsion is null τ = 0 we have

and the  is orthogonal. This would indeed hold for in-plane bending of a cilium for
which there is experimental evidence [15] (in the absence of diseased conditions associated
with the abnormal motions known as ciliar dyskinesia). Under these conditions the curvilinear
nabla operator is

and the curvilinear Laplace operator is

This formulation is used in the flow equations (10).

3.3.2. Mucus layer—The mucus layer is modeled through an upper convected Maxwell
model [3] described by
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with material properties presented in Section 3.1.6. Here τ is the additional viscoelastic stress
tensor which is symmetric, and  is velocity gradient tensor.

3.4. Dynein forces
The final component of the mechanical model of a cilium is the force exerted by the dynein
molecular motors. For the proof-of-concept computations carried out here the dynein forces
are determined by least-squares fitting to observed single-cilium beat patterns. Such patterns
are being actively collected and cataloged at the University of North Carolina [29]. The force
between the m A-microtubule and the adjacent (m + 1) B-microtubule is assumed to depend
on the longitudinal position s and time t through the following analytical form:

(12)

Here p(m)(s) is a cubic spline interpolant defined at the same nodal positions as used for the
microtubule beam, k(m) is the dominant cilium beat-shape wavenumber and ω is the measured
cilium beat frequency. The phase ϕ(m) is set to zero for the single-cilium analysis but will be
allowed to vary when computing cilia arrays. The spline coefficients a(m) in p(m)(s) and k(m)

are unknown parameters in the microtubule interaction force. They are determined by least
squares fitting of the cilium beat shape obtained from solving (17) to observed beat shapes.
Let {t1 , ... , tn} be the times at which a cilium beat shape is observed (e.g. Fig. 4). The function

describes the error between the observed mean fiber beat shape  and that deduced from
the microtubule nodal positions X(tn) through the function  (e.g. average over nodal
coordinates). The parameters (a(m), k(m)) are determined from

with N the number of beam elements used to discretize a microtubule m.
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Given that the internal dynein forces are determined from experimental fitting, the present
model does not predict an individual cilium beat shape from first principles. The main interest
is to investigate multiple cilia coordination by allowing ϕ(m) to assume different values at
adjacent cilia. This is presented below.

4. Numerical algorithms
4.1. The Stokes equations

Eq. (10) are discretized on the curvilinear grid around each cilium and also on the overall
Cartesian grid covering the PCL. A finite-volume spatial discretization technique leads to an
ODE system that is to be integrated in time. A projection method [5] using a gauge
transformation

(13)

decouples the diffusive momentum transport

from the pressure effects encoded in

The diffusion equation is solved using a Crank-Nicolson method and the pressure correction
is computed by an FFT-based fast Poisson solver. The fast Poisson solver is expressed in
Cartesian coordinates for the background grid and in the curvilinear coordinates (11) for the
cilium grid. The Crank-Nicolson step for the Stokes equations can be obtained from that for

the viscoelastic equation (15) by setting τ = 0 and neglecting the convective term .
The approach is similar to that in [35] and allows for efficient simulation of the incompressible
flow.

4.2. The viscoelastic equations
The Maxwell model viscoelastic equations are solved using a similar approach. After
introducing the gauge transform (13) we obtain

where the convective term  has been maintained for the mucus layer. The additional
viscoelastic stress τ arises as a source term in the above equation. Its evolution is computed
from the equation
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which is typically dominated by the convective terms on the lhs. It is advanced in time using
the wave propagation approach of LeVeque [18] to obtain τn+1, the viscoelastic stress at the
next time level n + 1 starting from quantities defined at time level n.

Two types of boundaries arise: fluid-fluid interfaces and fluid-solid interfaces where a cilium
penetrates the mucus layer. At both types of interface we must have overall continuity of the
stress. At a fluid-fluid interface this can be written as

(14)

σ is the fluid viscous stress tensor, p is the pressure, I the identity matrix and [ ] denotes the
difference between the quantities enclosed in brackets between the two interface sides.
Capillary and other surface effects are neglected.

Determining appropriate boundary conditions for the viscoelastic τ stress is a research topic in
itself. In (14) there seem to be more unknowns than conditions such that we could freely choose
τ. This is due to the fact that the additional stress in the viscoelastic fluid arises from the
microscopic, configurational state of the polymers conferring viscoelastic behavior. This
microscopic information is not available at the continuum level considered here. Formalisms
on which to provide a rational closure are under investigation [37,13,26]. These depend on the
specific polymeric fluid involved, and as such are difficult to apply to mucus the detailed
composition of which is uncertain. An ad hoc approach is adopted here. The main modeling
question to be addressed is to determine what part of the stress from the Newtonian fluid leads
a viscoelastic stress τ. In the absence of additional experimental information the following
hypothesis is used:

This amounts to stating that half of the tangential stress from within the Newtonian fluid
(subscript 1) is transferred to the tangential viscous stress within the viscoelastic fluid (subscript
2) and half to the viscoelastic extra stress. There is no transfer of normal stress to the viscoelastic
stress component. A solid-viscoelastic boundary that arises in this computation occurs when
the tip of a cilium penetrates into the mucus layer. A hypothesis similar to the above is made
in which half of the normal stress acting on the elastic membrane is given by pressure and
normal viscous stress (pI + σ) · n and half by viscoelastic stress τ · n. The tangential viscoelastic
stress is assumed zero at solid-fluid boundaries τ · t = 0.

The gauge variable equation is advanced in time using a Crank-Nicolson scheme. The full
equation set is presented to show the extrapolation used for convective effects and how
boundary conditions are imposed

(15)

Finally the pressure correction is computed using an FFT-based fast Poisson solver
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4.3. Overlayed grid communication
The computational simulation in the immediate vicinity of each cilium is carried out on a local,
body fitted grid that deforms in response to the deformation of the cilium mean fiber as given
by (11). Each cilium grid interacts with an overall background Cartesian grid. The background
grid transmits cilium-cilium interactions and far-field boundary conditions. This approach
presents several advantages: (1) boundary conditions can be imposed on the cilium membrane
directly; (2) the individual cilia computations are decoupled and hence easily parallelized over
a time step. This second aspect is crucial in attaining the final goal of computation over a
realistic number of cilia.

The question arises of ensuring grid communication between the local curvilinear grids and
the background Cartesian grids. The role of the Cartesian background grid is to efficiently
transfer far-field boundary conditions while that of the cilium grid is to transmit the forcing
effect of the cilium. At each time step the following procedure is adopted:

1. The velocity and pressure fields from the background Cartesian grid  are used
to form boundary values for the individual cilia grids using bilinear interpolation.
Each grid point on the cilium curvilinear grid is enclosed in a Cartesian background
grid cell. Let {Qijk} be the eight nodal values from the background grid. The
interpolation valid over this background cell is

(16)

2. The fluid equations in each cilium, body fitted grid are solved to obtain .

3. The cilium values are used to update values of the background nodes that fall within

cilia body-fitted grids, leading to the values . For background nodes not in any

of the cilium grids we have . The background grid is then advanced
from these initial values. Given the elliptic nature of the pressure equation within the
Stokes system, this procedure effectively introduces a surface layer potential at
interfaces between cilia grids and background grids, in theory leading to a fall to first-
order accuracy of the base second-order procedure used for advancing the Stokes
equation solution. However given the extremely elongated shape of cilia, which
transfers to the body fitted grids, there is a minimal drop in order-of-accuracy,
essentially because the induced surface layer potentials correspond to jumps in the
pressure over a small number of nodes in comparison to the overall number of nodes
in the computation [22].

4.4. Fluid-structure interaction
Assembly of the cilium axoneme finite element model leads to an equation

(17)
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where X is the vector of all microtubule beam element displacements and all nexin spring
displacements. A lumped-mass model is employed to determine the mass matrix M. The force
exerted by the dynein molecules is assumed to be specified a priori, e.g. as presented in Section
3.4. The main question for the FSI problem is how to compute Ffluid. One simplifying
consideration in the mucociliary transport problem is that the volume of each cilium does not
change so there is no need to solve a strongly coupled problem between fluid stresses and
surface elastic stresses on the cilium membrane. This allows the computation of the fluid forces
from a given kinematic state of the cilia.

A splitting procedure results in which to advance from time step tn to time step tn+1 the
following steps are carried out:

1. The finite element model of the cilia is advanced in time from configuration Xn to
Xn+1 using fluid forces at time level tn

2. The fluid equations are solved for the new positions and velocities of the cilia thereby
obtaining the velocity fields ;

3. New fluid forces Ffluid(tn+1) (tangential and normal stresses) on the cilia are computed
from the updated velocity field .

A second-order Runge-Kutta scheme is employed to advance the model (17) with variable time
stepping as predicted by an associated third-order Runge-Kutta method. The typical relative
error bound used in the computations is ε = 10-3, e.g. results are determined to three accurate
digits.

4.5. Validation
Validation of the computational model considered here entails a number of steps and aspects.
First the structural elements used (springs,  total Lagrangian Timoshenko beams) have been
individually checked against textbook cases (spring extension, cantilevered beam deflection).
The question arises as to whether these particular structural elements are valid representations
of nexin links, microtubule and overall cilium axoneme behavior. This is unknown at present
and will be the subject of detailed comparisons with isolated microtubule and axoneme
experiments. The overlapping grids procedure used for the fluid solve has been tested on the
simple case of a sphere moving in Stokes flow. A moving grid that envelops interacts with a
background Cartesian grid modeling the surrounding fluid. Even though the grid does not
deform as in the cilia computation the accuracy of the grid communication procedure is tested.
Fig. 3 shows the velocity fields around the sphere on the two grids. A convergence plot is also
presented and compared to a computation on a single co-moving spherical grid. As expected
the overlapping, moving formulation exhibits some loss of accuracy the convergence rate
dropping to 1.77 from 1.90 for the single grid computation, but this superlinear convergence
rate is considered sufficiently accurate for the cilia model considered here - indeed the errors
due to uncertainties in the biological parameters are much higher than the truncation error of
the fluid solve steps. An analytical formula for the viscoelastic flow around a sphere is not
available, but a grid convergence study again exhibits superlinear convergence (at rate 1.68).

5. Results
Typical computational results are now presented. The cilium axoneme is discretized by
dividing each microtubule into nB = 20 beam elements for a total of 220 large-deflection beam
elements for each cilium. A beam element rigidity of EI = 1.0 ± 0.3 × 10-24 N m2 for an
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individual microtubule. Elastic springs modeling nexin links, radial spokes and microtubule-
membrane links are placed every 87.5 nm along the 7000 nm length of a microtubule. Body-
fitted cilium grids of size nr × nθ × ns = 16 × 18 × 448 nodes are generated in accordance with
(11). The overall background within the PCL is nx × ny × nz = 28 × 448 × 112 cells, that within
the mucus is 112 × 448 × 112 cells. The cilia beat in a z = const plane with x the depth direction.
Far-field periodic boundary conditions are used in the z- and y-directions. Along the depth, at
x = 0 a no-slip boundary condition is applied and at the top of the mucus layer a time-periodic
air flow is imposed to simulate tidal breathing. Many-cilia (256 cilia) computations are carried
out on in parallel using the natural decoupling of the individual cilium problems once the
boundary conditions have been set from the background Cartesian grids using (16). The relative
position of an individual cilium grid within the background Cartesian grid is shown in Fig. 5.
A sequence of grid shapes observed during the motion is shown in Fig. 6. The velocity field
around a cilium is shown in Fig. 7.

The main question addressed in this proof-of-concept computation is whether cilia coordination
is achieved through hydrodynamic effects alone. An initial random phase ϕ(m) has been
introduced in the Fdynein function (12). The phase is then adjusted at each time step to reduce
the work carried out by the dynein forces against the fluid friction acting on each cilium.
Consider two successive deformation states of a cilium axoneme X(n+1) and X(n) obtained by
evolving the system with phases ϕ(m,n) over time Δt. Dynein molecules have expended
mechanical work to change the deformation state of the axoneme from E(Xn) to E(Xn+1). The
same change in the axoneme position might have been accomplished with less expended work
by dynein forces with a different phase ϕ(m,*). The work carried out by the dyneins can be
computed as

with  the position vectors between attachment points on adjacent microtubules at time
tn. Consider that the W(ϕ) dependence is quadratic. Then the update

leads to a phase that would minimize the dynein work. Note that for W’(ϕ(m,n)) = 0, stationary
conditions are obtained ϕ(m,n+1) = ϕ(m,n). Such a model assumes that the dynein forces are the
same as in the isolated cilium case but act at different phases so as to minimize the work done
between given axoneme positions.

After 244 complete beat cycles the pattern shown in Fig. 8 is observed with obvious
synchronization between the cilia. The computation time was 57 wall clock hours on an 8-Intel
Xeon CPU 2.4 GHz cluster. This result suggests that when internal forces within each cilium
are allowed to adapt to local flow conditions, overall synchronization of cilia beating over large
distances is obtained, providing strong evidence for the theory of a hydrodynamic origin of the
formation of the metachronal wave.

The mechanism of formation for a metachronal wave is important from a physiological point
of view. Uncoordinated cilia motion is often observed in diseased states. The efficiency of
transporting pathogens out of the lung is markedly increased when cilia beat together in a

Mitran Page 13

Comput Struct. Author manuscript; available in PMC 2009 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



coordinated fashion. Elucidating the precise mechanism by which metachronal waves form
and break down is useful in devising treatments.

6. Conclusions
A computational procedure for simulating the three-dimensional problem of entrainment of
airway surface liquid by the motion of cilia has been presented. A realistic model of the internal
elastic behavior of the cilium axo-neme has been introduced based upon a finite element model
composed of large-deflection beams and elastic springs. The cilia interact with a two-layer
model of the airway surface liquid consisting of a Newtonian periciliary layer and a viscoelastic
mucus layer. The large number of cilia involved in a realistic simulation leads to considerable
computational expense. However the model is naturally parallelized due to the use of individual
body-fitted grids around each cilium that communicate through a background Cartesian grid
using an overlapping grid technique. Results for a representative configuration of several cilia
have been presented that provide evidence for a hydrodynamic origin to observed cilia
metachronal wave patterns.

Several aspects of the model are open to criticism. There is uncertainty as to the mechanical
characterization of the components of the biological system. The most important gap in the
model is the ad hoc nature of the dynein force model. Full comparison of real microtubule
bending motion with the beam model adopted here is not yet available. These points are under
active investigation and will be addressed in future work. It is of significant physiological
interest though that a metachronal wave in a row of cilia was obtained from tuning of the dynein
forces in each cilium. This suggests that for normal cilium axonemes, synchronization between
adjacent cilia occur naturally as a result of hydrodynamic interactions. Furthermore,
computational simulation of a large enough number of cilia to be physiologically relevant has
been shown to be possible and can be used as an additional tool that constrains parameters
characterizing the biological system.

Appendix A. Stiffness matrices for beam element
The results of Felippa [11] are reproduced here for completeness. In-plane bending is assumed:
M = MB, MN = MT = 0, VB = 0. The general displacement, force vectors at node i reduce to

The shear distortion is θ = ψ - γ with γ the cross-section rotation and ψ the longitudinal axis
rotation. The element longitudinal axis is at angle φ with respect to the global x-axis. Let ω =
γ + φ and s = sin(ω), c = cos(ω) at the element midpoint. L0, A0, I0 are the beam length, area,
moment of inertia in the reference state. Let e = Lcos (γ - ψ)/L0 - 1 with L the deformed length,
a1 = 1 + e.

The material stiffness matrix is

The axial stiffness matrix is
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The matrix is symmetric hence entries beneath the diagonal are not repeated. The bending
stiffness matrix is

The symmetric shear stiffness matrix is

The residual bending flexibility substitution is

The geometric stiffness matrix is

with

and
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Both KGN and KGV are symmetric. VT,m and VN,m are the axial force and shear force evaluated
at the element midpoint.
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Fig. 1.
(A) Electron micrograph of cilium showing longitudinal and transverse sections. (B) Detailed
electron micrograph of a transverse section through a cilium showing the 9 + 2 microtubule
structure and the internal structure of microtubules. (C) Micrograph: relative spacing between
cilia. Sketch: two-layer structure of ASL. (Micrographs are copyright Gwen C. Childs,
www.cytochemistry.net/Cell-biology/cilia.htm.)
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Fig. 2.
(a) Curved beam element. At nodes i, j a local coordinate system is defined based on the Frenet
triad. Six displacements, three forces and three moments are defined at each node. (b)
Transverse section of cilium model. Microtubules are modeled as thin-walled beams. They are
connected by elastic springs modeling nexin and dynein links. The entire structure is enclosed
in an elastic outer membrane. An inner membrane surrounds the two central microtubules. It
is linked by elastic springs to each microtubule; the springs model the radial spokes of real
cilia.
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Fig. 3.
Computation of Stokes flow around a uniformly translating sphere using the overlapping mesh
technique and convergence comparison with respect to single grid computation.

Mitran Page 20

Comput Struct. Author manuscript; available in PMC 2009 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
The sequence of cilium centerline shapes defining a beat-pattern body-fitted grid. Red shows
the cilium in the power stroke and blue in the recovery stroke.
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Fig. 5.
Depiction of the background grid (shown by cells on bounding planes) and a single cilium
body-fitted grid.
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Fig. 6.
Sequence of body-fitted grid deformations during cilium beat.
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Fig. 7.
The velocity field around a cilium. Far-field view and close-up.
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Fig. 8.
Final synchronized set of a linear array of cilia.
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Table 1
Typical cilium dimensions (in nanometers)

Cilium diameter, D 225
Microtubule exterior diameter, D1 25
Microtubule interior diameter, D2 14
Cilium length, L 7000
Microtubule centers diameter, D0 170
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