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Abstract
In this review, we summarize original methods for the extraction of quantitative information from
confocal images of gene-expression patterns. These methods include image segmentation, the
extraction of quantitative numerical data on gene expression, and the removal of background signal
and spatial registration. Finally, it is possible to construct a spatiotemporal atlas of gene expression
from individual images recorded at each developmental stage. Initially all methods were developed
to extract quantitative numerical information from confocal images of segmentation gene expression
in Drosophila melanogaster. The application of these methods to Drosophila images makes it
possible to reveal new mechanisms in the formation of segmentation gene expression domains, as
well as to construct a quantitative atlas of segmentation gene expression. Most image processing
procedures can be easily adapted to process a wide range of biological images.

Keywords
methods of image processing; confocal microscopy; quantitative gene expression; image
segmentation; spatial registration; background removal

Progress in the molecular genetics of eukaryotes has advanced the sequencing of gene coding
regions and the recognition of their regulatory regions with promoters, enhancers, and sites for
the binding of transcription factors, as well as the identification of the transcription factors that
bind to these regions. These genetic elements, together with mRNA and protein products,
produce the gene regulatory networks. The networks coordinate the gene expression that is
responsible for cell specificity, tissue differentiation, and, finally, for ontogenesis.

To gain greater insight into the principles of the organization, functioning, and evolution of
regulatory networks, it is necessary to provide a detailed quantitative description for the
dynamics of each component. Thus, the functional genomics technique is widely used for the
quantitative evaluation of gene expression (Banerjee et al., 2002). The method of fluorescence
restoration after photobleaching (FRAP) is applied for the estimation of the rate of molecule
diffusion or transport inside the cells (Shav-Tal, 2006).
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It should be noted that DNA microarrays, as well as other methods for the quantitative
evaluation of gene expression (quantitative PCR, CAT assays) with high resolution, are of
limited applicability for the study of the development process. These techniques are performed
on cell homogenates; therefore, the information on spatial gene expression is lost.

Cell determination and pattern formation during early embryogenesis take place in relatively
small morphogenetic fields in which slight differences in the spatial expression of a few genes
precedes the cell’s diversity (Gilbert, 2003). In Drosophila, segment determination takes place
in morphogenetic fields with lengths of less than 0.3 mm along the anteroposterior embryo
axis; at the syncytial balstoderm stage, it corresponds to a region of the presumptive germ band.
It follows from this that the study of the determination mechanisms requires detailed
information on spatiotemporal gene expression in situ.

Various methods are currently available for the identification of gene expression in both mRNA
and protein levels in living and fixed biological objects. The general technique used to detect
biological macromolecules is immunofluorescent labeling. This method is highly specific, as
it is based on the interactions of antibodies labeled with fluorescent dyes with the appropriate
antigens. It is widely used to detect and localize antigens in fixed cells and tissues. Cell and
tissue signals are registered by fluorescent microscopy with laser and confocal scanning
microscopes. The advantages of a confocal microscope lie in the detection of signals from the
focal plane only; fluorescence from nearby layers of the object examined is not recorded. As
a result, images are of a higher contrast and are less blurred. In addition, confocal microscopy
provides high-quality digital images ready for further computer processing.

Confocal microscopy has wide applications; profit and nonprofit approaches to processing of
confocal images has come to be in great demand. Here, we present a survey of techniques we
have developed to process confocal images of expression pattern of segmentation genes in the
fruit fly Drosophila (Kozlov et al., 2000, 2002; Myasnikova et al., 2001a, 2001b, 2005; Janssens
et al., 2005). These methods are aimed at acquiring quantitative data on the expression of these
genes and constructing a general atlas of gene expression. Finally, it will be possible to
reconstruct the total spatiotemporal gene expression of a particular gene network with an
accuracy of a single cell. Most procedures are universal and can be applied with slight
modifications for acquiring quantitative data from image patterns of gene expression in other
organisms. These methods are described in sufficient detail for the reader to consider their
applicability to the other objects. The reader may also become acquainted with detailed
information on processing algorithms in the original publications.

Methods for the Acquisition of Confocal Images
Experimental data

An indirect immunofluorescence technique was used to acquire information on gene expression
(Dequin et al., 1984; Frasch et al., 1987). About 1600 embryos of Drosophila melanogaster
Oregon-R were fixed and incubated with primary antibodies to proteins encoded by the
following genes that control segmentation in Drosophila: bicoid (bcd) and caudal (cad)
maternal genes; Kruppel (Kr), knirps (kni), giant (gt), hunchback (hb), and tailless (tll) gap
genes; and even-skipped (eve), fushi tarazu (ftz), hairy (h), runt (run), odd-skipped (odd),
paired (prd), and sloppy-paired (slp) pair-rule genes. All antibodies were obtained in our
experiments (Kosman et al., 1998) except for antibodies to the Eve protein (Azpiazu and
Frasch, 1993). Secondary antibodies were conjugated with FITC; Texas Red; Cy5 (Jackson
Labs, USA); or Alexa Fluor 488, 555, 647, or 700 (Molecular Probes, USA) (Janssens et al.,
2005).
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Each embryo was labeled for the expression of eve and two other segmentation genes. About
half of the embryos were labeled with histone-specific antibodies (Janssens et al., 2005). The
age of embryos ranged from cleavage stage 10 to the beginning of gastrulation. Only embryos
with lateral orientations were used for scanning.

Confocal microscopy was performed as previously described (Kosman et al., 1997; Janssens
et al., 2005;Myasnikova et al., 2005). Embryos were scanned using a Leica TCS4D confocal
microscope with an immersion objective of 16×/0.50 (Kosman et al., 1997) or 20×/0.70 Plan
Apo Leica TCS SP2 system (Janssens et al., 2005). For every four microscope channels, two
optical sections at distances of 1 μm were scanned for each embryo. To reduce the level of
noise in the recorded signals, every two optical sections were scanned 16 times and the resulting
images were averaged. Thus, each pixel of a particular image recorded in one channel is an
averaged value from 32 measurements. In total, 3 resultant images (one per channel) were
obtained for each embryo. The size of the images was 1024 × 1024 pixels; a signal was recorded
in 8-bit format. Confocal microscope options “gain” and “offset” were adjusted to have pixel
values of 0 outside of the embryos and 255 as the most bright. Pixels with maximal brightness
were selected as specific patterns of gene expression related to the stage of development with
the maximal intensity of that particular segmentation gene. Thus, an experienced researcher is
able to find in a slide an embryo for each gene with the expression pattern of maximal intensity
and to operate the brightest pixels of the pattern to adjust the photomultiplier settings. It is
obvious that adjustment makes it possible to estimate quite precisely the quantitative (in relative
units) expression of a specific gene, though not to compare the expression of different genes.

Temporal classification of embryos
To reconstruct the temporal dynamics of gene expression based on individual fixed embryos,
it was necessary to rank the embryos by age. Cleavage cycles 10–13 were identified by counting
nuclei in text files containing quantitative data on expression obtained by image segmentation
(see next section). As the interphases in these cycles last only 6–14 min, it is sufficient to make
a temporal scale for this period. Cycle 14A is much longer at 50 min; therefore, the embryos
inside the cycle are divided in 8 temporal classes equivalent in age based on the dynamics of
eve gene expression (Fig. 1).

A practical criterion for the adequacy in age of the temporal class is the inability of an
experienced observer to distinguish expression patterns of embryos that belong to a particular
class. Because embryos were scanned without taking into consideration their age and all 8
temporal classes have approximately an equal number of embryos, it is reasonable to assume
uniform age distribution in samples of the 14A cycle and to consider the duration of each
temporal class to be 6.5 min of the development (Myasnikova et al., 2001, Surkova et al.,
2008).

Figure 1 shows that embryo ranking based on the analysis of the eve gene expression pattern
is in a good agreement with a morphological marker, i.e., the degree of membrane invagination,
used for the determination of embryo age. In temporal class 1, embryo nuclei are round; in
class 2, nuclei are elongated; membrane invagination begins in temporal class 3 and is
completed at the end of the 14A cycle. Data on blastoderm morphology were obtained for 120
embryos by differential–interferential contrast (DIC) with a Leica TCS4D and for all embryos
with a Leica TCS SP2 (Fig. 1).

Orientation of embryos, one-dimensional expression patterns
Images of eve gene expression patterns (Fig. 1, left row) were oriented relative to the anterior–
posterior (A–P) and dorsal–ventral (D–V) axes so that anterior embryo part was on the left and
dorsal part was at the top. For the acquisition of one-dimensional data on gene expression (Fig.
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1, central row; Fig. 2), only the nucleus coordinates from the central 10% strip (45–55%) along
the D–V axis (y axis) cut in the A–P direction (x axis) (Fig. 2b) were considered. Thus, each
nucleus only had an x coordinate; the y coordinate was thrown away. Patterns are presented as
graphs showing changes in gene expression along the x axis.

Access to data
All images and quantitative data are stored in a FlyEx database
(http://urchin.spbcas.ru/flyex/; http://flyex.ams.sunysb.edu/FlyEx/) available on the Internet
(Poustelnikova et al., 2004).

Methods of Image Processing
1. Image segmentation

To study the dynamics of pattern formation, detailed information is required on the temporal
and spatial expression of all regulators of the morphogenetic field where the processes take
place. Available commercial software (e.g. VisiQuest, Accusoft Corp., USA and MatLab,
MathWorks, USA) and their free analogues (SCIRun, USA and TiViPe, Japan) are not always
sufficient for the quantitative evaluation of spatial gene expression. The method of
segmentation is based on confocal images of gene expression patterns in Drosophila embryos
(Janssens et al., 2005). The method makes it possible not only to separate the analyzed objects
(nuclei) simultaneously in several images recorded in distinct microscope channels, but also
to acquire quantitative information on gene expression in the form of text tables. For the
acquisition of quantitative data on gene expression in every nucleus of Drosophila embryo, it
is necessary to do the following: (1) to put experimental images into the standard orientation
(see previous section); (2) to mark the zone occupied by the object and to cut off blank regions
along the edges; (3) to construct a “nuclear mask,” i.e., binary image, where only pixels related
to the embryo nuclei are “switched on”; (4) to calculate nuclear centroid coordinates and the
average fluorescence intensity in individual nuclei for each microscope channel, i.e., for every
scanning protein (Janssens et al., 2005; Kosman et al., 1997). Most of the techniques described
above are standard and can be applied to treat images from other objects.

Image adjustment to the standard orientation—First, one image for each of the three
gene products registered in one embryo is constructed by averaging two optical sections (Fig.
3). It is necessary to provide a high level of signals in a maximal number of nuclei, including
nuclei located on the edges of the embryo. The pixel’s maximum is generated for images of
histone proteins used as a nuclear marker (Fig. 3). The enhancement of the signal facilitates
the quality of the nuclear mask, which is constructed during the subsequent stages of the
procedure (Figs. 5, 6).

To calculate the angle of embryo rotation into the standard orientation (see Section 1), as well
as for the removal of nonzero pixels outside embryos, it is necessary to plot the primary (rough)
mask of the total embryo. For this purpose, a pixel maximum from 4 images registered in
distinct microscope channels is created. Then, the threshold and median filters, as well as
several cycles of erosion and dilation follow (Gonzales and Woods, 2002 Gonzales and Woods,
2005) (Fig. 3). The entire embryo mask is a binary image with pixels related only to the area
occupied by an embryo with a value of 1. The angle of rotation is calculated by mask moment
invaants (Hu, 1962). The mask of the whole embryo and protein expression patterns in 4
channels are rotated at an angle and noninformative edge zones are discarded (Fig. 3). Resulting
images of expression are cut according to the mask size (Kosman et al., 1997;Janssens et al.,
2005).
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Smooth mask construction—The final phase before image segmentation is the
construction of a smooth mask that corresponds precisely to the embryo shape (Fig. 4). The
procedure is performed after the rotation and cropping of the image because the structural
elements employed are sensitive to the image’s orientation (Gonzales and Woods, 2002). First,
a new image of the pixel maximum is constructed based on preliminarily rotated and cut
images. Then, the equalization of the histogram for the enhancement of the maximal contrast
and median filter for smoothing and noise reduction are applied to the resultant image. Finally,
a binary image is obtained with a threshold filter. The application of Euclidean distance
transformation to the binary image yields an image in grey scale where the value of every mask
corresponds to its Euclidean distance from the border. Subsequent application of median and
threshold filters generate a mask with contours resembling the natural embryo outlines. With
the Shen–Castan (Shen and Castan, 1986) algorithm, the edge of the mask is delineated and,
after its filling and erosion, the novel smooth mask of the entire embryo is generated (Fig. 4).
Ultimately, images recorded in all microscope channels are cut according to the size of the
novel smooth mask (Janssens et al., 2005).

Segmentation of images and acquisition of quantitative data—To acquire
information on gene expression in every embryo nucleus, a so called “nuclear mask” is
constructed based on histone protein-expression images (if available, see above) or the pixel
maximum of the gene expression of the other three (Fig. 5). Local histogram equalization is
applied to enhance the contrast and to define the borders of the nucleus (Gonzalez and Woods,
2002). Speckle noise is removed with Crimmins’ algorithm (Crimmins, 1985); several cycles
of median filtrations facilitate the noise elimination. Then, a watershed transformation is
applied to the image to invert the values of all pixels (Gonzalez and Woods, 2005). The
watershed region is determined as the area occupied by a single nucleus and defined by a line
of single-pixel width. Each watershed region is characterized by a particular value of the grey
scale (Janssens et al., 2005). Application of the erosion and threshold filter transforms the
image into a binary one with 0 values for the watershed borders (Fig. 5).

Binary image multiplied by the image of the pixel’s maximum or the histone protein image
leads to each nucleus being separated from the neighboring nuclei by a border of zero pixels.
The procedure allows us to separate the fused nuclei on images. Erosion with the following
distance transformation (Vincent, 1993) and threshold filter remove unwanted non-nuclear
stains from the mask. After edge detection and filling, the resulting mask is a binary image
with the regions corresponding to nuclei given the value of 1. The quantity of the nuclear mask
construction is usually controlled visually by its superimposing on the image from histone
scanning or the pixel maximal image obtained in other microscope channels (Fig. 6a). In
addition, we developed a numerical method of nuclear-mask control based on the assumption
that the pixel intensity spread inside the nucleus is less than that between pixels inside and
outside of the nucleus. The quantity of pixels inside and outside nuclei are considered as two
classes (Figs. 6b and 6c, correspondingly).

The binary mask is used for the acquisition of quantitative data on gene expression. Centroid
coordinates of every nucleus are calculated with moment invariants (Hu, 1962). Superimposing
of a mask on images registered in each microscope channel allows us to calculate the average
concentration of products of all scanned genes in every nucleus (Janssens et al., 2005). The
ultimate result is the table with x and y coordinates of every nucleus in percentages of the
embryo’s length and width, correspondingly, as well as the average fluorescence intensity
(relative level of expression) for each scanned gene of a particular embryo (Fig. 5). The
procedure developed for acquiring quantitative information from biological images is realized
in ProStack (Processing of Stacks) software, which enables the visual construction of complex
procedures for data and image processing (Matveeva et al., 2006).
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2. Removal of background signal
It is well known that along with specific staining immunofluorescence technique produce
nonspecific signals named background. Unspecific staining is caused by various factors but
mostly by binding of primary and secondary antibodies (Fig. 7). Rough background removal
can be performed for the particular image manually by setting the “offset” option on the
confocal microscope. However, it is not easy in practice because (1) it is necessary to adjust
the scanning mode for each particular image and (2) the intensity of a background signal may
be spread unevenly within a biological object.

We developed a method for unspecific signal removal (Myasnikova et al., 2005) that is
applicable for images of various objects with fixed settings of the confocal microscope (see
above). It is clear that even slight background distorts the numerical value of gene expression.
In addition, the background level is varied between embryos and experiments and, therefore,
impedes the comparison of data from various experiments. Unspecific staining is also varied
in experiments on the expression of a particular gene using secondary antibodies labeled with
distinct fluorochromes (Fig. 7).

The method of background removal that we suggested is based on observations that the
fluorescence level in null-mutants stained on the product of the mutant gene is well
approximated with two paraboloids or, in the common case, with a convex surface of the second
order (Fig. 8). The paraboloid is very similar to the symmetric one by X (A–P) and Y (D–V)
axes. The parabolic distribution of background signals is probably determined by the properties
of the confocal microscope, which follows from experiments on microscope settings. It was
found that an increase in “offset” values reduced the background of the image, whereas its
decrease resulted in a parabolic background with increasing curvature. The basic idea for
background removal is to determine nonexpressing embryo regions. These regions are used
for approximation of nonspecific signals to remove the background by scaling the expression
pattern; the procedure is performed in several steps.

Determination of nonexpressing regions—Nonexpressing regions are defined as areas
with a particular gene being unexpressed in most nuclei. For each gene, these areas are shaped
by careful visual examinations of expression patterns in all embryos. Identified nonexpressing
areas, then, are precisely defined on the two-dimensional pattern of gene expression in every
embryo (Fig. 9).

As segmentation gene expression is basically the function of the position relative to the A–P
embryo axis (see above), it may be adequately represented as a one-dimensional signal.
Therefore, in most cases, it is sufficient to set the borders of nonexpressing areas along the x
axis. For example, the gene eve areas are located within 0–25 and 90–100% of the embryo’s
length (Fig. 9). Nevertheless, in a two-dimensional presentation there is a slight curvature in
the expression bands along the y axis. In embryos from our dataset, the curvature is enhanced
by mechanical deformation caused by coverslip pressure. Thus, to determine two-dimensional
nonexpressing areas, it is necessary to straighten the initially curved stripes of expression
(Myasnikova et al., 2005).

Approximation and background removal—The background signal is approximated
with a quadratic paraboloid fit to the points of support from nonexpressing areas of an embryo
(Fig. 9). An approximated paraboloid is created by an iterative optimization procedure. The
background is removed completely from an embryo through the linear mapping of the intensity
that transforms the value of fluorescence equal to or less than the background to zero, while
the maximum possible fluorescence (255 units) is transformed to its own value (Myasnikova
et al., 2005). Examples of the normalization of various gene patterns are presented in Fig. 10.
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Evaluation of the accuracy of background removal—The method of background
removal was carefully verified on embryos homozygous for null-mutations of bcd, eve, gt,
kni, and Kr genes and stained to visualize the product of a mutant gene. After background
removal, the expression patterns in these mutants are transformed into the null level of
expression in the entire embryo (Fig. 8). A visual evaluation of expression patterns shows that
the method of background removal displays good results for 14A cycle embryos.
Representative data on background removal from bcd, hb, Kr, eve, and run expression patterns
at this stage are shown in Fig. 10. The method is less satisfactory for gap and pair-rule
expression patterns at earlier stages of development (cycles 10–12) because of low signal
intensity and a lack of clear borders between expression areas (Myasnikova et al., 2005).

3. Registration of gene expression patterns
A confocal microscope permitted us to simultaneously record expression patterns for only a
limited number of genes. However, our aim was to reconstruct the spatiotemporal dynamics
of all genes in the gene network examined. Because the sizes of individual embryos are variable,
it is impossible to gain information on relative spatial expression of different genes by
overlapping of expression patterns in individual embryos stained with antibodies to distinct
proteins. To overcome the obstacles, the data on individual embryos should be adjusted to the
common coordinate system with the registration procedure.

In previous reports (Myasnikova et al., 2001a, 2001b; Kozlov et al., 2002), we used a
registration technique based on the allocation of control points in the image (Brown, 1992) and
the transformation of coordinates for the maximally complete matching of these points in
different images. Typical image features are usually used as control points. In the examined
dataset, all embryos were stained for the expression of the eve gene. The expression pattern of
this gene was highly temporally dynamic; therefore, as control points (peculiar pattern
features), we used the extremes of the one-dimensional expression pattern obtained by data
extraction from the central 10% embryo strip (Fig. 2). With control points for every image
being determined, coordinates were transformed in a way that minimized the distance between
corresponding points in different images. Then all registered images were subjected to
coordinate transformation.

Choice of Control Points for Registration
1. Spline approximation

Stripes and interstripes in the one-dimensional expression diagram (Fig. 1, central row)
represent peaks and minimums, correspondingly. It seems highly reasonable to use the x
coordinates of curve extremes as control points for the following registration. However, it is
very difficult to localize extremes directly from the original data because of the essential noise.
To overcome the obstacle and to localize extremes, we applied the method of expression-
pattern approximation with quadratic splines (Myasnikova et al., 2001a,2001, b). The approach
provides continuous approximation of the original curve and characterizes every pattern by a
certain set of parameters. A simple approximation is achieved by a quadratic spline with
unfixed nodes, which satisfies the requirement of the continuity of the first derivative in node
points. A node system is chosen as multiple different points on the x axis limited the region of
every peak. A node position is determined as a transition point between peak and neighbor
minimum. As a result of approximation each curve is characterized with multiple nodes and
spline parameters. The parameters are utilized to calculate the x coordinate of every extremum.
Figure 11 presents an example by demonstrating that the position of the peak on the curve is
accurately determined after approximation (Myasnikova et al., 2001b).
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2. Fast Redundant Dyadic Wavelet Transform (FRDWT)
The second method of setting control points is based on the iterative application of a wavelet
transform (Kozlov et al., 2000, 2002). A wavelet transform (Unser, 1996; Malozemov et al.,
1998) allows one to gain local high-frequency and large-scale information on an object. Its
application makes it possible to simultaneously examine the data in physical (time, coordinate)
and frequency spaces. It is necessary to choose the transformation type and basis in such a way
as to separate the information from the signal on the first derivative of the original signal.
FRDWT application makes this possible (Unser et al., 1994).

The common properties of FRDWT are strong noise inhibition and precise determination of
spatially localized features. The signal is factorized in two sequences, i.e., approximating (low
pass) and detailing (high pass) (Fig. 12, curves 1 and 2, respectively). Because of
transformation redundancy, the number of elements in each sequence coincides with the
number of observations in the initial sampling, which allows for complete information on
extreme localization from the initial signal to be retained. The original signal is smoothing at
each level by noise removal to the extent of a particular frequency and is represented as an
approximating sequence. The detailing constituent contains information on initial signal
properties that are determined by the option of the corresponding wavelet basis (Unser,
1996). To define extreme positions, i.e., nulls of the first derivative, basis functions are applied
to include the first derivative characteristics into the detailing sequence. Decomposition is
repeated iteratively, using the current low pass at each step instead of the initial signal (Fig.
12).

3. Image registration
Image registration is performed with the scaling of two-dimensional expression patterns along
the x axis by means of an affinity transformation minimizing the summary distance between
the x coordinates of the total control points in different patterns and the average position of
corresponding control points in overall registered images (Kozlov et al., 2002) (Fig. 13). The
method developed was used to register the segmentation gene expression in embryos of a single
temporal class. The example of registration of the gene eve expression patterns for embryos of
temporal class 8 is shown in Fig. 13. It is obvious that registration reduces the pattern location
of spatial variability. An evaluation of the accuracy of the image registration technique was
performed using the values of standard deviations in extreme x coordinates of the eve pattern
for each temporal class. In temporal class 3 with the expression pattern not yet formed and
only several control points available, these values are approximately 3.5% of the embryo
length. The accuracy of extreme sets and, therefore, and of registration is higher in later
temporal classes. In this period, the values of standard deviations in extreme positions becomes
less than 1% of the embryo length; rather, it corresponds approximately to the diameter of a
single nucleus in the 14A cycle and indicates the acceptable registration quality (Kozlov et al.,
2002).

4. Construction of integrated data
The main purpose of the spatial registration and background removal was to create a map of
mutual positions of expressing domains for all genes of the examined gene network for every
period of time. Thus, on the map, the expression regions of every gene are presented with
“reference” and “integrated” patterns characterized by average values of fluorescence intensity
for that particular period of time. For the gene network controlling the segmentation in
Drosophila, our goal was to construct integrated patterns for all of the embryos related to each
temporal class (Fig. 1). A perfectly integrated pattern for a gene could be created in a
hypothetical situation where all embryos have equal nuclear structures, i.e., composed of
multiple nuclei with equal coordinates for all embryos. In this case, the average values of
fluorescence intensity should be calculated independently for every nucleus independently;
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however, the quantity and position of nuclei in various embryos, as well as the density of
nucleus distribution inside individual embryos, are variable. Taking this into consideration, we
calculated the nuclear structure of the average pattern by defining the spatial density of nuclear
distribution and estimation of the average nucleus diameter in every point of average embryo
(Kozlov et al., 2002).

Two-dimensional integrated expression patters were constructed on the registered data for
embryos of every temporal class. For this purpose, a nucleus of an average pattern of a nuclear
structure with the most similar coordinates was found for each nucleus of an individual embryo.
Then, the average fluorescence intensity of total individual nuclei referring to the average
nucleus has been calculated. The example of the integrated two-dimensional pattern of gt,
Kr, and eve gene expression in embryos of temporal class 8 is presented in Fig. 14a. A
comparison of the pattern with this but in an individual embryo (Fig. 14b) shows that the
integrated pattern as a whole reflects the expression pattern of individual genes, including the
shape and size of their domain. Fig. 14c demonstrates the expression patterns of Kr, kni, and
gt genes. In these experiments, there were no embryos stained for simultaneous identification
of the gene expression. Overlapping the integrated expression pattern onto the nuclear structure
of the average pattern, it is possible to create so called “virtual embryos” with novel gene
combination for the visualization of mutual arrangement of domain expression (Kozlov et al.,
2002).

To create one-dimensional integrated patterns of segmentation, the gene-expression nucleus
coordinates of every one-dimensional registered pattern are grouped along the x axis by R
intervals (Myasnikova et al., 2001b). Then, inside each interval, the average value of the
fluorescence intensity is calculated for all embryos of a particular temporal class. R is found
as follows. For example, in the 14A cycle, the diameter of a single nucleus in the central part
of the embryo is 1% of its length; in this case, to correctly design the nuclear structure of the
pattern, R should be 100. One-dimensional integrated patterns of the expression of maternal,
gap, and pair-rule genes are shown in Fig. 15.

CONCLUSIONS
The paper surveys the methods we developed for the acquisition of quantitative data on gene
expression based on confocal images. The processing methods described include image
segmentation, background removal, spatial registration of expression patterns, and data
integration (Kozlov et al., 2000, 2002; Myasnikova et al., 2001a, 2001b, 2005; Janssens et al.,
2005). The procedures are basic for the acquisition and processing of quantitative data on gene
expression and can be used both in order and in various combinations. The general advantages
of techniques presented are the wide spectrum of treatment procedures and easiness of
adaptation to other biological objects.

Most of the methods for image processing are suggested mainly for limited purposes (e.g.
image registration) and, therefore, consist of one or two procedures. The most widespread and
relevant method is that of cell and tissue image segmentation (Ortiz de Solorzano et al.,
1999, 2001;Umesh Adiga and Chaudhuri, 1999; Chawla et al., 2004). An essential drawback
of most segmentation algorithms and basing software is the requirement for the user to take
part in setting the processing parameters. The segmentation method we developed is
completely automatic. The single step needed the visual control is the definition of embryo
orientation (Fig. 3). Other research teams have performed the segmentation of confocal images
of a Drosophila blastoderm using their own techniques. Thus, by moving a square window
with a size similar to the average nucleus size along the dorsal side of a confocal image of the
embryo, quantitative data on bcd and hb gene expression have been obtained
(Houchmandzadeh et al., 2002). In each square the authors calculated the average fluorescence
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values. Later, the same technique was applied by other investigators (Gregor et al., 2005). In
both cases, the method was realized with Mat-Lab, Mathworks (USA) commercial software.
The method has disadvantages—it operates with the notion of average nuclear size, does not
distinguish real nuclei on images, and, therefore, it is complicated to apply the technique for
image segmentation in other biological objects.

A recent development is the method of three-dimensional stack segmentation of confocal
images of Drosophila blastoderm (Luegno et al., 2006). The method is based on the estimation
of local maximums of nuclear fluorescence the and extraction of so called “seeds” for every
nucleus to identify positions of nuclei stained with Sytox Green Dye for DNA detection. Next,
seeds are intensified in the image obtained from the initial one with the application of a
threshold filter. This method, as well as those described above, is realized with Mat-Lab
software. Its advantage is that it was initially developed for three-dimensional data processing,
while its drawback is a difficulty in seed estimation, as most of the nuclei have several local
maximums and a complicated correction procedure is required. In addition, seed intensification
is performed with masks obtained using threshold filters, which does not always reproduce
nuclear shapes and sizes.

Currently, a few techniques are available to remove unspecific signals from confocal images.
Many researchers remove unspecific backgrounds only by subtracting a particular intensity
value from the total signal. It has been shown (Gregor et al., 2007) that images of Drosophila
living embryos with endogenous bcd gene substituted with expressing eGFP registered by two-
photon confocal microscope have approximately uniform unspecific fluorescence within an
embryo. However, these observations are exceptional and, undoubtedly, there should be
algorithms that allow differences in the background signal in various parts of confocal images
to be taken into consideration.

A procedure has recently been published for image registration that differs from what we
developed (Sorzano et al., 2006). This method, called “elastic registration,” elastically deforms
images to overlap expression patterns in different embryos. After transformation, all registered
images are reduced to the same size in x and y axes. The method is highly effective; however,
it is unsuitable for evaluating expression domain positions, as it transforms the coordinates of
initial images.

The general advantage of the method described in this paper for treating confocal images of
Drosophila blastoderms is the wide spectrum of procedures and progressive data treatment, as
well as the possibility of adaptation to other biological objects. We have applied the technique
to the processing of about 5000 images of segmentation gene expression at the protein level
in Drosophila. Quantitative data obtained have been successfully used for the elucidation of
the regulatory mechanisms underlying the border shift in gap domain expression in early
embryogenesis (Jaeger et al., 2004b), as well as for the identification of regulatory mechanisms
controlling gap gene expression (Jaeger et al., 2004a). The technique has also been employed
to characterize the processes of dynamic filtration of the temporal variability of the expression
pattern of zygotic segmentation genes (Surkova et al., 2008).

The general drawback of most task-oriented software for data and image processing is the
difficulty of adapting them to resolve similar problems in other objects. The procedures of
segmentation, background removal, and the creation of integrated patterns described in the
paper presented have been successfully adapted for processing data on segmentation gene
expression at the mRNA level. In Drosophila, the main difference in the expression of genes
encoding transcription factors at the mRNA and protein level is that RNA is localized in both
the nucleus and cytoplasm. For the segmentation of such images, a modified watershed
procedure that generates a mask for nuclei and the surrounding cytoplasm has been applied
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(Fig. 5). In addition, slight changes in the procedure including a search for the points of support
to remove an unspecific background have been made. As a result, average expression patterns
for the eve gene reporter constructs at the mRNA level have been produced. Based on these
findings, a novel model of transcriptional regulation has been suggested (Janssens et al.,
2006). The method was also partially adapted for processing three-dimensional data obtained
with a confocal microscope. Several image stacks of embryos stained for the identification of
rhomboid gene activity in nuclei have been treated. The procedure of nuclear-mask production
during segmentation is successfully modified for masking expressing regions and the
acquisition of quantitative data on gene expression in the early development of coral Acropora
millepora and sea anemone Nematostella vectensis (Kozlov et al., 2007).
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Fig. 1.
8 temporal equivalence classes of cycle 14A. A typical embryo of each class is shown in each
row. Left panel shows an image of eve expression in that embryo; middle panel shows
segmented expression pattern from the central 10% strip; right panel shows a high-
magnification differential interference contrast (DIC) image of blastoderm morphology. In
DIC images, vertical black lines indicate the cortical cytoplasm; black arrows in time classes
1 and 2 indicate nuclei elongation; white arrows in time classes 3–8 show position of membrane
front. All images have the same anterior–posterior (A–P) orientation.
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Fig. 2.
Extraction of one-dimensional quantitative data from images of segmentation gene expression
patterns in Drosophila. (a) Drosophila embryo from cleavage cycle 14A stained for expression
of hb, kni, and eve. White lines demarcate the central 10% strip; (b) one-dimensional expression
patterns of genes shown in (a).
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Fig. 3.
Preprocessing of the confocal images of Drosophila embryos. (a0, a1, b0, b1, c0, c1) individual
z sections of gene expression patterns a, b, c; (a2, b2, c2) images obtained by averaging of two
x sections for each gene; (d0, d1) individual z sections for the expression patterns of the nuclear
marker; (d2) pixel maximum image for these sections.
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Fig. 4.
Construction of smooth whole embryo mask.
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Fig. 5.
Acquisition of quantitative data on gene expression.
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Fig. 6.
Quality control for quantitative data extraction. (a) Fragment of the nuclear mask image
superimposed on the image obtained in the histone channel; (b, c) two classes of pixels: (b)
inside nuclei, (c) inside watershed regions but outside nuclei.
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Fig. 7.
Example of two expression patterns of eve gene (a, b) stained with the same primary rabbit
anti-Eve serum and two different goat anti-rabbit secondary antibodies, one conjugated with
Cy5 (white) and the other to Texas Red (black). (a) Patterns are presented in one dimension
for the data extracted from a 10% strip along the midline of an embryo in x direction. (b) The
same two expression patterns after background removal.
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Fig. 8.
Expression pattern of eve gene in an embryo homozygous for Df(2R)eve1.27 which expresses
no Eve protein. (a) Two-dimensional pattern in which individual nuclei are shown as gray
circles with black drop lines parallel to the vertical axis indicating the fluorescence intensity
in the nuclei; (b, c). Projections of 10% strip cuts taken along the midline in the A–P and D–
V directions. The 10% strips are indicated on the 2D image by dashed lines. The 1D patterns
are presented together with the 1D projections of the paraboloid.
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Fig. 9.
Extraction of the nonexpression areas. (a) Confocal image of a late blastoderm embryo stained
for Eve protein (inverted); (b) reconstruction of the same expression pattern from quantitative
segmented data. Individual nuclei are shown as circles with the color intensity inversely
proportional to nuclear expression levels. Nonexpressing areas are outlined on the
reconstructed image and labeled I1 and I2.
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Fig. 10.
Results of background removal from representatives of expression patterns of several genes.
All the patterns were obtained from embryos belonging to cleavage cycle 14A except for those
with cycle specified in the figure. Proteins and fluorophores are as follows: Bcd, Hb are rat
(FITC); Kr, Kni, Run are guinea pig (Cy5); Eve is rabbit (Cy5). white circles are non-
normalized patterns; black circles are background free patterns; solid lines are background
parabola.
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Fig. 11.
Spline approximation. Experimental curve of Eve concentrations (points) and approximating
function (solid line). x coordinates of spline extrema are taken as coordinates of signal extrema.
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Fig. 12.
Example of wavelet decomposition. eve expression patterns in embryos from class 3 (a, b, c)
and 8 (d, e, f). (a, d) The original signal; (b, e) low (1) and high (2) pass for first (b) and second
(e) decomposition levels; (c, f) third level of signal decomposition used for GCP extraction.
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Fig. 13.
Spatial registration. (a, b) Two-dimensional eve expression patterns in four embryos from
temporal class 8 before and after registration, respectively; lines correspond to the 50% of
maximal level of expression.
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Fig. 14.
Two-dimensional atlas of segmentation genes in time class 8. (a) Integrated patterns of gt,
Kr and eve; (b) expression patterns of the same genes in the individual embryo from the same
time class; (c) “virtual” embryo showing integrated patterns of Kr, kni and gt.
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Fig. 15.
One-dimensional atlas of segmentation gene expression. (a) Maternal gradients in time class
6; (b) gap genes in time class 8; (c, d) pair-rule genes in time class 8.
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