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Abstract
Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an emerging
tool for detection of colonic polyps. Compared to the conventional fiber-optic colonoscopy, VC has
demonstrated the potential to become a mass screening modality in terms of safety, cost, and patient
compliance. However, current CTC delivers excessive X-ray radiation to the patient during data
acquisition. The radiation is a major concern for screening application of CTC. In this work, we
performed a simulation study to demonstrate a possible ultra low-dose CT technique for VC. The
ultra low-dose abdominal CT images were simulated by adding noise to the sinograms of the patient
CTC images acquired with normal dose scans at 100 mAs levels. The simulated noisy sinogram or
projection data were first processed by a Karhunen-Loève domain penalized weighted least-squares
(KL-PWLS) restoration method and then reconstructed by a filtered backprojection algorithm for
the ultra low-dose CT images. The patient-specific virtual colon lumen was constructed and navigated
by a VC system after electronic colon cleansing of the orally-tagged residue stool and fluid. By the
KL-PWLS noise reduction, the colon lumen can successfully be constructed and the colonic polyp
can be detected in an ultra low-dose level below 50 mAs. Polyp detection can be found more easily
by the KL-PWLS noise reduction compared to the results using the conventional noise filters, such
as Hanning filter. These promising results indicate the feasibility of an ultra low-dose CTC pipeline
for colon screening with less-stressful bowel preparation by fecal tagging with oral contrast.

(Jerome.Liang@sunysb.edu).
*This work was supported in part by the NIH National Cancer Institute under Grant # CA082402 and CA120917. Dr. L. Li was supported
in part by the PSC-CUNY award program. Dr. H. Lu was supported in part by the National Nature Science Foundation of China under
Grant 30470490.

NIH Public Access
Author Manuscript
IEEE Trans Nucl Sci. Author manuscript; available in PMC 2009 January 23.

Published in final edited form as:
IEEE Trans Nucl Sci. 2008 October ; 55(5): 2566–2575. doi:10.1109/TNS.2008.2004557.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



I. Introduction
Colorectal carcinoma is the third most commonly diagnosed cancer and the second leading
cause of death from cancer in the United States [1][2]. According to the American Cancer
Society statistics (http://www.cancer.org/docroot/home/index.asp), it is estimated that 147,500
new cases will be diagnosed this year with 57,100 dying from the disease. Most colon cancers
(more than 90%) arise from polyps over a 5 to 15 year period of malignant transformation,
early detection and removal of the polyps can significantly reduce the risk of death. The
American Cancer Society has recommended a colon examination every three to five years for
people of age over 50. As of 2007, 41.8 millions of the 70.1 million average-risk adults of age
50 or older need colon screening, but less than 50% (20.9 millions) have been screened by any
manner and only 13.5 millions have undergone the preferred “total colonic examination” with
fiber-optic colonoscopy (OC). Patients are usually reluctant to take the OC procedure because
it is invasive, time consuming, and expensive. The cancer is usually diagnosed at an advanced
stage, after the patient has developed symptoms, explaining its high mortality rate.

Computed tomography colonography (CTC) or CT-based virtual colonoscopy (VC) is an
emerging tool for colon polyp detection [3][4]. Since the introduction of reimbursed CTC
screening at University of Wisconsin Medical Center, the number of patients screened by
colonoscopy (OC or VC) has been more than doubled [5]. Although CTC is minimally or non-
invasive and less stressful to the patient, CTC is not totally risk-free. The radiation in forms of
X-ray exposure to the patient during CT scan could lead to adverse health effects in a later time
of the patient’s life. By a recent survey, CT procedures account for as much as 60% of manmade
radiation exposure to Americans due to its increasing use in diagnosis, treatment planning and
follow-up examinations [6]-[8]. Sixty-two million CT scans are performed a year in the US,
including at least four millions for children. This manmade radiation exposure could be a
potential link to the increase of 1.5 to 2% cancer causes [9]. Minimizing the radiation risk to
the patient, while maintaining satisfactory CT image quality, becomes urgent for colon
screening with CTC.

Dose reduction for CT imaging can be achieved by acquiring projection data with low-mAs
protocols. With a low-mAs acquisition protocol, noise due to fewer X-ray photons will degrade
the CT image quality. In the past years, research effort on both hardware optimization and
noise filtering on acquired data has made noticeable progress from normal dose scans (over
100 mAs levels) down to low-dose CTC scans as low as 50 mAs level [4]. Further decreasing
the mAs level for ultra low-dose CTC scans (lower than 50 mAs) may induce streak artifacts
in the reconstructed images if oral contrast solutions are used to tag the stool and colonic fluid
because the contrast solutions absorb a noticeable amount of X-rays [10]. Therefore, more
sophisticated noise treatment than a simple low-pass noise filtering is necessary. Several
strategies based on local characteristic of projection data [11][12] have been proposed to reduce
noise acquired with low mAs protocols. Recently a statistics-based framework of sinogram
restoration followed by filtered backprojection (FBP) image reconstruction has shown
promising results for ultra low-dose CT [13]-[18]. This framework is based on noise modeling
of the projection data, where the noise modeling is similar to that of a statistical iterative image
reconstruction approach. Difference between this sinogram restoration framework and the
iterative image reconstruction approach is that the penalty or the smoothing constraint in the
sinogram restoration framework is in the sinogram space while the penalty for the iterative
image reconstruction approach is in the image domain. In our previous work [15], we have
shown a similar performance between a statistics-based sinogram restoration strategy and a
statistical iterative reconstruction algorithm in terms of image quality and detectability in low-
contrast environment, where both methods seek the same solution of minimizing the penalized
weighted least-squares (PWLS) cost function of the data distribution which was simulated from
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anthropomorphic digital phantoms. However, the iterative image reconstruction algorithm
consumed a great computing power for volumetric CT and might not be practical for clinical
use. For example, the reconstruction time for a routine clinical study consisting of several
hundred slice images of 512×512 array size is at the order of hours by a currently available
fastest PC platform. The sinogram restoration strategy is much more efficient (with more than
ten fold reduction of computing time) and has the potential to be utilized in real-time clinical
situations.

In this work, we performed a simulation study using patient CTC images to demonstrate a
possible ultra low-dose CT technique for VC screening purpose. The ultra low-dose projection
data or sinograms were simulated from the patient volumetric CTC images based on the noise
properties of clinical CT projection data [14][19][20] and had a noise level equivalent or less
than 50 mAs of a clinical low-dose scanning protocol. The simulated ultra low-dose sinograms
were first processed by the statistics-based Karhunen-Loève domain PWLS (KL-PWLS)
restoration strategy [13][15] and then the restored sinograms were reconstructed by a standard
FBP algorithm (i.e., by the use of the ramp filter which was apodized with a rectangular window
whose cutoff was at 100% Nyquist frequency). Promising results were obtained, demonstrating
the feasibility of an ultra low-dose CTC pipeline for colon screening with less-stressful bowel
preparation by fecal tagging with oral contrast.

II. Methods
A. Statistics-Based Sinogram Restoration for Ultra Low-Dose CT

The KL-PWLS restoration strategy [13][15] is a statistics-based algorithm that aims to estimate
the ideal sinogram by minimizing the PWLS objective function in the KL domain,

(1)

where l = 1,2,3,  and  are the l-th KL principal components of the noisy sinogram p and the
ideal sinogram  (to be estimated) respectively, and  is the diagonal variance matrix of .
Symbol ’ denotes the transpose operation. Notation dl indicates the eigenvalue of the l-th KL
component, β is a smoothing parameter which controls the degree of agreement between the

estimated and the measured data via the penalty term  which usually has a quadratic form
of

(2)

where Ni indicates the nearest or first-order neighbors of the i-th pixel in each KL component
along the bin (or x-) and view (or y-) directions (after the KL transform was applied along the
direction of rotation or z-direction) in the sinogram domain and parameter wim is equal to 1 for
the first-order neighbors. This objective function (1) models the first and second statistical
moments (i.e., the mean and variance) of the sinogram data and needs the knowledge on the
relationship between the mean and variance. In our previous work [20], a non-linear
relationship between the mean and variance was found, i.e., equation (3) below, which reflects
the non-stationary noise property of low-dose CT and specifies the weights or the diagonal
elements in matrix  in the PWLS criterion. It is noted that the first and second moments play
the essential role for noise modeling and treatment. The minimization of the cost function (1)
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can be computationally efficient. Furthermore, the decomposition by KL transform reduces
the correlation between the components in the projection space, hence realizing better
estimation potential than data matching via equation (1) in raw sinogram space.

In this work, three slices of the simulated ultra low-dose three-dimensional (3D) sinogram data
were selected to perform the KL transform, i.e., one slice above and one slice below the
concerned slice along the z-direction in the sinogram domain. The KL transform matrix A can
be obtained from the selected neighboring slices of the sinogram data through the covariance
matrix Kt of 3×3 size according to Kt A’ = A’D, where matrix A’ is the transpose of matrix A,
D is the diagonal matrix of 3×3 size with elements being the eigenvalues of the KL components.
The obtained KL transform matrix A is also of 3×3 size and represents the eigenvectors of the
KL components. The KL transform models the correlation among neighboring slices of the
sinogram data (i.e., along the axial direction of the helical scans) and, therefore, provides a
data-adaptive penalty role. The goal of minimizing the objective function is to find an optimal
solution based on the data statistics and data correlation. After the KL transform, the chosen
neighboring slices of the sinogram data were decomposed to three independent KL principal
components. Each KL component is associated with a KL eigenvalue, which reflects a
corresponding signal-to-noise ratio (SNR) of the KL component. A larger KL eigenvalue
corresponds to a higher SNR, and this information provides a mechanism to control the
smoothing strength at different KL components via the penalty. By setting the smoothing
parameter inversely proportional to the eigenvalue at each KL component, i.e., β / dl, the KL
component with lower SNR (small eigenvalue) will be smoothed more during the PWLS
restoration [13][15][18].

The minimization of the cost function (1) can be performed by many numerical means [21].
In this study, it was minimized efficiently by the Gaussian-Seidel updating strategy [15]. After
each of the three KL components was processed by the PWLS criterion in the KL domain, the
inverse KL transform was applied to the three processed KL components to obtain an estimate
of the concerned slice of the ideal sinogram data or recover the true line integrals of the
attenuating object. Each slice of the 3D sinogram data was processed sequentially by the KL-
PWLS strategy before CT image reconstruction in this study, although parallel computation
of all the slices can be performed by a computer cluster or multiple CPUs.

The restored 3D sinogram was reconstructed by a standard FBP algorithm slice-by-slice in 2D
fan-beam geometry. In order to avoid the non-uniform noise propagation problem in fan-beam
geometry, the intersecting area of fan-beam strip and square image pixel was used as the weight,
rather than a bi-linear interpolation, in the backprojection step in the FBP algorithm [22]. The
non-uniform noise propagation problem in fan-beam CT is believed to be caused by the
distance-dependent factor 1/L2 in fan-beam FBP reconstruction [23][24]. The “cause” implies
that the same CT data noise property in parallel geometry and different focal length fan-beam
geometries could generate different noise distributions in the corresponding FBP and fan-beam
FBP reconstructed images, resulting in variable regional quantitative measures across the field-
of-view (FOV) [25]. The spatially-variant area weighting term in the image reconstruction
formula plays the role in canceling out the non-uniform propagation effect due to the distance-
dependent factor 1/L2 in the fan-beam FBP reconstruction, thus the non-uniform propagation
effect during image reconstruction will be compensated across the FOV.

Similarly to the cutoff frequency in the conventional low-pass filtration during FBP image
reconstruction, there is also a free parameter β in the presented KL-PWLS method which
controls the trade-off of the noise level and the structure preservation in the standard FBP
reconstructed images. In this study, the choice of β was made by visual judgment based on an
error-and-trial fashion [15], which is somewhat empirical.
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The quality of CT images from the KL-PWLS sinogram restoration followed by the standard
FBP reconstruction is generally superior to the results from the conventional FBP
reconstruction with low-pass filters [15]-[17]. Comparison studies between the KL-PWLS
noise reduction and low-pass Hanning noise filtration for single-slice helical CT have shown
that the KL-PWLS strategy outperforms the Hanning filtration in terms of noise-resolution
tradeoff and lesion detectability in low-contrast environment.

B. Simulation of Low-Dose CT Sinograms
Ultra low-dose CT sinograms of the patient abdomen were simulated from a corresponding
patient CTC volume image acquired by a GE 16-slice CT scanner at a routine normal dose
level, i.e., acquired by a protocol with a mAs value around 100 (or 200 mA at a rotation speed
of 0.5 seconds per rotation) and a pitch value of 1.375:1 in helical mode. The other acquisition
parameters include 120 kVp, 1.25 slice thickness, and 32×32 cm2 FOV. The CT volume image
of size 512×512×413 was reconstructed using the STANDARD filter after weighting and
interpolation from the 3D spiral data.

The sinograms (or line integrals) of the patient abdominal CTC volume image were calculated
by re-projection in a slice-by-slice fashion. The simulated sinograms from all the image slices
mimic the experimental sinogram data in Radon space after system calibration, which includes
interpolation of spiral-sampled projection data from multi-detector bands, data conditioning
via the logarithm transformation, uniformity calibration on detector cells’ responses, etc.
Although simulating the transmission raw data is feasible to accurately model the statistics of
the interaction of X-ray radiation with matter in the object and at the detector, the system
calibration from the transmission raw data to the sinograms in Radon space remains a challenge
for CT sinogram simulation. In this study, we focus on the noise problem in low-dose situations,
and will not address the challenge problem. The geometry used to simulate the sinograms in
Radon space was a 2D fan-beam configuration, which is similar to the commercial (GE) CT
scanner. The number of detector cells per view is 888. A total of 984 views spans evenly on a
circular orbit of 360°. The detector arrays in each band are on an arc concentric to the X-ray
source with a distance of 949.075 mm. The distance from the rotation center to the X-ray source
is 541 mm. The detector cell spacing is 1.0239 mm.

Each of the 888 line integrals at each of the 984 view angles was calculated based on the
Siddon’s ray-tracing technique [26] between the X-ray source point and the center of the
detector cell. The intersecting length of the ray with a square image pixel was used as the weight
of the pixel’s contribution to the line integral. The re-projected sinogram size was
888×984×413. Lower dose data can be simulated by adding corresponding noise levels [27].
It has been shown that a lower dose scan can be simulated by adding Gaussian noise with a
variance dependent on the mAs level of the normal scan [23][28]. In our previous experimental
studies [14][19][20], the noise in CT sinogram (i.e., the line integrals of the attenuation
coefficient map after logarithmic transform) was shown to have a signal-dependent variance.
The variance of projection datum or line integral  at detector cell i, , can be estimated by

(3)

where η is a scaling factor and fi represents a scanner-specific adjustable parameter adaptive
to each detector cell across the FOV and considers mainly the bowtie filtration effect for

different incident photon numbers toward different detector cells. If the line integrals  are
calculated from the physical attenuation coefficient map, η =1. If the line integrals are
calculated from the CT image with intensity values in units of CT numbers or Hounsfield units
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(HU), η is the scaling factor relating to the line integral from the attenuation map and the line
integral from the CT numbers. The scanner-specific adaptive parameter fi can be determined
at a specific mAs level by repeated scans. Given a sinogram acquired at a high mAs level, a
lower mAs sinogram may be simulated by adding Gaussian noise with a corresponding curve
of {fi} across the FOV.

It shall be noted that as mAs value decreases, the noise of sinogram will be less likely following
Gaussian (or normal) distribution. From the experimental studies reported in [20], the
percentage of sinogram data that passes the normality test drops from 94% at 100 mAs to 91%
at 17 mAs, although the mean-variance relationship still holds even at 17 mAs level. When
mAs level goes very low such that photon starvation occurs, the model of compound Poisson
noise of X-ray photon energy integration plus Gaussian noise of electronic background in the
transmission (or raw data) space [29][30] may provide a better data simulation in such situation.
However, how will this model in the transmission space be altered in the Radon space remains
an open question. By the repeated phantom scans at 17 mAs level, the probability distribution
function (PDF) fits visually well to the Gaussian distribution (better than other functions, such
as Poisson and Gamma). The probability of receiving a zero photon number for a random
variable of Poisson distribution (i.e., the raw data) in the transmission space is very small
(approximately at the order of 4.5×10-5). In fitting the relationship (3) by repeated scans, the
electronic background noise has been implicitly considered into the adaptive parameter {fi}.
By explicitly adding the background noise term into equation (3) via the Taylor expansion, the

adaptive parameter form may be altered but the mean  and variance  are the same, so
the fitted adaptive parameter curve would not change much. Based on the above observations,
a Gaussian functional PDF would be acceptable for mAs greater than 17 under the condition
that a non-linear mean-variance relationship (3) is held. Given the determined relationship (3)
from repeated phantom experiments, a lower mAs sinogram was simulated from the line
integrals of a higher mAs CT image as follows.

The higher mAs patient CTC images were obtained at normal dose (100 mAs) from the
commercial GE scanner. The re-projected line integrals of the patient CTC images reflect a
corresponding high mAs level sinogram. By selecting a lower mAs curve {fi} across the 888
detector cells or at each projection view, a corresponding low mAs sinogram was simulated.
Each datum in the low mAs sinogram was a sample from a Gaussian random number generator
[21] with the mean being the corresponding line integral of the high mAs image and the variance
being determined by the corresponding relationship (3). Figure 1 shows the curve of {fi} at 50
mAs level by repeated scans of an anthropomorphic torso phantom using the GE CT scanner
[20]. Figure 2(a) shows a typical re-projected sinogram from the image slice of Figure 4(a) of
the 100 mAs CT volume image. Figure 2(c) shows the simulated low-dose sinogram from the
high mAs sinogram of Figure 4(a) using the 50 mAs curve {fi} via the mean-variance relation
(1). The computed variance map using the 50 mAs curve {fi} and the mean distribution of
Figure 4(a) is shown by Figure 2(b), which reflects a strong signal dependence. The dependence
is clearly seen in Figure 3(b) which is the horizontal profile drawn from the center of Figure 2
(b). Figure 3(a) is the horizontal profile drawn from the center of Figure 2(a) and Figure 3(c)
is the horizontal profile drawn from the center of Figure 2(c). The added noise is noticeably
high.

It shall be noted that the re-projected sinogram of Figure 2(a) will not reproduce the 100 mAs
level of noise present in the original scan. The original images, e.g., Figure 4(a), were generated
through some steps of weighting, interpolation, filtering and backprojection, all of which affect
the statistical noise in the images. In particular, the filtering step on commercial scanners is
highly optimized for image quality, trading off noise and resolution performance and
controlling aliasing via the shape of the window, the roll-off of the ramp filter, and the filter
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cutoff frequency. The re-projection by the Siddon ray-tracing strategy [26] will further alter
the noise characteristics by introducing high frequency artifacts. Therefore, adding in Gaussian
noise with variance at 50 mAs level upon the re-projected sinogram may not generate an
equivalent noisy sinogram at the exact 50 mAs level. The noise level would be less than 50
mAs. In addition, the simulated noise characteristics of the ultra low-dose sinogram may not
mimic exactly the real-scanned sinogram at the corresponding mAs level because of the
imperfect modeling of the re-projection as stated above. To mitigate this deficiency, we shall
set up a reference for comparison purposes between previously well-established method and
the presented algorithm. In doing so, we applied (i) the standard FBP algorithm (where the
ramp filter was apodized with a rectangular window whose cutoff was at 100% percentage of
the Nyquist frequency) which indicates a reference from the same sinogram data by laboratory
reconstruction method, not the optimized commercial reconstruction algorithm; and (ii) the
conventional FBP algorithm (i.e., the ramp filter was apodized with a Hanning window whose
cutoff was optimized at a percentage of the Nyquist frequency) which indicates the best results
that the conventional FBP can achieve. From the reconstructed ultra low-dose CT images, two
post-reconstruction operations are needed for VC application and are presented below.

C. Electronic Colon Cleansing by Partial Volume Image Segmentation
The reconstructed ultra low-dose CT images contained tagged residue stool and fluid inside
the colon lumen. The tagging was carried out by ingesting oral contrast solutions during a
period of one or two days prior to the CT scan and is necessary in order to differentiate the
stool and colonic fluid from the colon wall. The enhanced image intensity of the tagged
materials is the result of absorbing more X-rays and, therefore, a higher mAs value is needed
compared to CTC without stool tagging. The tagged colonic materials were virtually removed
from the CT images by an electronic colon cleansing (ECC) technique [31], which is based on
a partial volume (PV) segmentation algorithm [32]. The PV image segmentation algorithm
determines the tissue mixture percentages inside each voxel and therefore considers accurately
the PV effect upon the colon wall due to the enhanced image intensity of the tagged materials.
The segmentation algorithm models the image data statistics and seeks the maximum a
posterior (MAP) solution [31][32]. The MAP solution was computed by the expectation-
maximization (EM) algorithm [33]. The output of the ECC was a PV layer which covers the
colon mucosa. For hollow organs, such as colon, most clinical abnormalities occur on the
mucosa, e.g., colonic polyp. Therefore, any change on the mucosa reflects very useful clinical
information. Within the PV layer enclosure, the colon lumen was cleansed by a region-growing
strategy. The MAP-EM PV image segmentation-based ECC technique has shown advantages
in improving the detection of colonic polyps [32].

D. Construction of Colon Lumen Models for VC
The cleansed colon lumen was fed into the V3D-Colon Module developed by Viatronix Inc.
(Stony Brook, NY), where the virtual colon model of the patient was constructed. The V3D-
Colon Module simulates the navigation procedure of the clinical OC and provides a volume-
rendered 3D endoscopic view at each location on a centerline of the virtual colon model. During
the fly-through navigation along the centerline, the user has the control on the navigation speed
and the view angle to facilitate colon polyp detection [3][4][10].

III. Results
A patient CTC dataset of size 512×512×413 was selected to test the above described ultra low-
dose CTC pipeline for colon screening. A colon polyp of size 5 mm is centered at slice number
323 and indicated by an arrow in Figure 4(a). The polyp is covered by the tagged colonic fluid.
Electronic colon cleansing of the tagged colonic materials is needed for 3D endoscopic view
during flythrough navigation. All 413 slices of the CTC volume image were chosen to generate
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the line integrals or projection data. Each image slice generated a corresponding 2D sinogram
of fan-beam geometry.

After all the 2D sinograms were computed by re-projection from the 413 image slices
respectively, a signal-dependent Gaussian noise was added to the re-projected data according
to the sinogram noise model of equation (3), simulating low-mAs acquisition protocols. The
original CTC image was acquired at a normal dose level of 100 mAs and re-projected to
simulate the ultra low-dose sinogram. The noise was added by imposing a variance distribution
at 50 mAs level upon the re-projected data. By considering the “noise” propagated from the
original 100 mAs scan, the simulated noisy sinogram would have a noise level equivalent to
or lower than 50 mAs. A typical simulated 2D sinogram from an image slice of the CTC volume
image is shown in Figure 2.

To show the simulation accuracy, the re-projected normal dose sinogram of Figure 2(a) was
reconstructed by the standard FBP algorithm (where the ramp filter was apodized with a
rectangular window whose cutoff was at the Nyquist frequency) and the result is shown by
Figure 4(b). To visualize the similarity between the original image of Figure 4(a) and the
reconstructed image of Figure 4(b) from the re-projected data of Figure 2(a), two different
window displays (40/400 HU and 35/10 HU) are shown in Figure 5(a) and 5(b), respectively.
This similarity reflects a satisfactory simulation of the sinogram and reconstruction of the
simulated data.

The simulated noisy 3D sinogram (e.g., Figure 2(c)) was first reconstructed by the standard
FBP algorithm to set a reference for comparison purpose. Figure 4(c) shows the reconstructed
image slice from the corresponding noisy 2D sinogram of Figure 2(c). It can be observed that
the polyp is degraded by excessive noise. For comparison purpose, a conventional FBP
reconstruction of the simulated noisy 3D sinogram was also performed by carefully tuning the
low-pass Hanning filter at an adequate cutoff frequency for a visually best result among the
frequency range from 25% to 100% Nyquist frequency. The Hanning filter was the ramp filter
apodized by a Hanning window with an adequate cutoff frequency. The reconstructed image
slice from the corresponding noisy 2D sinogram of Figure 2(c) is shown by Figure 4(d). Some
improvement is seen by the optimized low-pass Hanning filter. This can be seen from the
different window displays of Figure 5(c) and 5(d). The low-pass linear Hanning filter
suppressed noise with compromise of losing details. It also altered the image texture toward
radial streaks across the FOV. This might be due to the use of spatially-invariant linear filter
for reduction of the spatially-variant low-dose CT noise.

Then the noisy 3D sinogram was processed by the KL-PWLS restoration strategy, followed
by the standard FBP algorithm for image reconstruction. A 2D sinogram or a slice of the
restored 3D sinogram is shown by Figure 2(d), which is at the slice corresponding to the noisy
2D sinogram of Figure 2(c). Major features were satisfactorily restored. This can be seen from
the profiles in Figure 3. The FBP reconstructed image slice from the corresponding restored
2D sinogram of Figure 2(d) is shown in Figure 4(e). It can be observed that the KL-PWLS
sinogram restoration produces a better image quality than that of the Hanning filter, in terms
of noise suppression and edge feature preservation. From the different window displays of
Figure 5(d) and 5(e), it can be seen that more isolated noise spots near the borders of the objects
(e.g., the colon and lungs) are removed by the KL-PWLS noise reduction strategy than by the
low-pass Hanning noise filtration. Compared to the normal dose reconstruction of Figure 5(b),
both Figure 5(d) and Figure 5(e) show some different image textures from that of Figure 5(b).
The KL-PWLS noise filter produces some local texture patterns. This may be due to its use of
the quadratic penalty on nearby pixels. The difference between the spatially-invariant Hanning
filter and the spatially-variant KL-PWLS noise treatment was further revealed by 3D
endoscopic views using the commercial V3D Colon-Module as follows.
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All the reconstructed 3D images after the ramp filter (i.e., the standard FBP result), the Hanning
filter (i.e., the conventional FBP result) and the KL-PWLS noise treatment respectively were
further processed through the ECC pipeline and then fed into the V3D-Colon Module for both
the construction of their corresponding virtual colon models and the navigation inside the
constructed virtual models. Due to excessive noise presented in the images, the whole virtual
colon model of the ramp filter result could not be constructed by the V3D-Colon Module. The
output was several separated colon segments. The whole virtual colon models from the Hanning
filtered and the KL-PWLS treated results were successfully constructed and navigated by the
V3D-Colon Module. The most visually-appealing endoscopic views from which the polyp can
be observed are shown in Figure 6. It can be seen that detection of the polyp in the colon model
from the KL-PWLS treated result is easier than that from the Hanning filtered result.

IV. Discussion and Conclusion
The KL transform provides a unique means to consider correlations among acquired data
[13][15][18]. In this work, the KL transform was applied among neighboring slices of a 3D
sinogram which was simulated from a patient CTC volume image by a slice-by-slice fashion
in fan-beam geometry. For a routine clinical CT scan with helical acquisition mode, it is
preferred to apply the KL transform directly on the 3D spiral-sampled sinogram data before
interpolating the 3D data into 2D sinogram slices. The KL transform shall be directly applied
to 3D helical CT sinogram of cone-beam geometry of flat-panel or multi-row detectors.

In this work, the sinogram data of normal dose scans were simulated from reconstructed CT
images based on Siddon’s ray-tracing method [21] because we were not able to access the raw
data of the commercial CT scanner. The noise properties in the re-projected sinogram may not
be the same as the original measurements due to the filtration as well as the back-projection
during the image reconstruction process in the commercial CT scanner. A more robust way for
the data simulation would be to add noise on the measured projection of normal dose scans.
This would be possible if the raw data from the commercial CT scanner were available. To
avoid the obstacle, the reconstructed CT image was chosen as a digital phantom with moderate
noise survived from the filtration by the commercial scanner. The low-dose CT sinograms were
then simulated by adding additional noise on the re-projected normal dose CT sinogram.

The PWLS criterion used in this paper is based on noise properties of the low-dose CT sinogram
after the logarithm operation and necessary calibration process. The noise properties are
reflected by the non-linear relationship (3) between the mean and variance, which is based on
the Poisson model in the transmission space, where the electronic background noise was not
explicitly considered and was implicitly included in the adaptive factor via the fitting by
repeated experimental scans. Alternatively, the electronic background noise could be included
explicitly in equation (3) via the Taylor expansion [34], i.e.,

(4)

where  indicates the electronic noise variance of Gaussian distribution. This is a theoretical
investigation under progress.

Minimizing the cost function (1) is computationally efficient since the cost function is in
quadratic form. The time used to de-noise the whole sinogram of size 888×984×413 was 200
seconds on a PC with 2.4 GHz CPU. Alternatively, the cost function for sinogram restoration
algorithm can be constructed based on noise modeling of measurement of detector counts in
the transmission space. For example, Whiting et al. [29] investigated a model of compound
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Poisson noise in the X-ray counts plus Gaussian noise in the electronic background for the
measurement of CT projection. While approximating the compound Poisson by the classic
discrete Poisson has shown no noticeable difference between these two Poisson functions
[35], modeling the detector counts in the transmission space by both the compound Poisson
and the classic discrete Poisson distributions may have the benefit of considering other physics
factors during X-ray detection, such as photon scattering, count starvation, difference in
spectral sensitivity of the X-ray detector channels, and non-linear response of the detector
channel at low energy. Comparison study of these two cost functions will be an interesting
topic and worth of investigation.

In the present work, we mainly focus on software-based approaches to reduce noise in low-
dose CT. Dose reduction can also be achieved through hardware optimization. For example,
current high-end CT provides automatic exposure control features in which mAs levels will
be adjusted at different views and z-axis positions with the aim to avoid under- or over-
exposure [36]. Others include dynamic collimation and bowtie optimizations. The KL-PWLS
strategy can be applicable to process the data of the optimized hardware technologies.

In summary, we have performed a simulation study to demonstrate a possible strategy for VC
screening with ultra low-dose CT scans (i.e., at 50 mAs level or lower) and less-stressful bowel
preparation by fecal tagging with oral contrast. Without noise suppression mechanism, the
whole virtual colon model could not be constructed using the commercial V3D-Colon Module,
which is dedicated to VC navigation mimicking the OC procedure. With an adequate noise
reduction mechanism, the virtual colon model can be successfully constructed. The KL-PWLS
noise reduction was shown to preserve more border details on the polyp than the Hanning filter.
This is confirmed by the endoscopic views on the polyp using the V3D-Colon Module
navigation system. This preliminary study indicates that an ultra low-dose CT-based VC is
possible by the use of an adequate noise reduction strategy, such as the presented KL-PWLS
sinogram restoration. It is expected that an ultra low-dose CT based VC could minimize the
radiation risk and improve the compliance of colon screening recommendation and therefore
reduce the mortality of colon cancers. Further studies are needed which include (1) generating
a large number (e.g., greater than 500) of ultra low-dose CT scans of the patient CTC data (with
the 5 mm polyp) and performing a polyp detection task using receiver operating characteristic
merit and (2) performing the polyp detection task on a large number of patient ultra low-dose
CTC scans with various polyp size and shapes.
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Figure 1.
Plot of fi used for simulation of the low-dose CT sinogram.
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Figure 2.
A typical simulated sinogram from an image slice. Picture (a) shows the re-projected sinogram
from the high mAs CT image slice of Figure 4(a). Picture (b) shows the variance map at 50
mAs level for the mean map of Figure 2(a). Picture (c) shows the low-dose sinogram by adding
non-stationary Gaussian noise with variance at 50 mAs level. Picture (d) shows the restored
sinogram by the presented KL-PWLS algorithm. The displays are in the full range from zero
to maximum pixel intensity respectively.
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Figure 3.
Horizontal profiles drawn through the centers of the pictures in Figure 2, respectively. Picture
(a) shows the horizontal profile drawn through the center of Figure 2(a). Picture (b) shows the
horizontal profile drawn through the center of Figure 2(b). Picture (c) shows the horizontal
profile drawn through the center of Figure 2(c). Picture (d) shows horizontal profile drawn
through the center of Figure 2(d).
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Figure 4.
Illustration of one slice of the volume image: (a) from the normal dose scan (the arrow indicates
the position of the polyp); (b) from standard FBP reconstruction of the re-projected normal
dose projection data (i.e., Figure 2(a)); (c) from standard FBP reconstruction of the simulated
ultra low-dose projection data (i.e., Figure 2(c)); (d) from conventional FBP reconstruction of
the simulated ultra low-dose projection data, where the Hanning window had a cutoff at 80%
Nyquist frequency; and (e) from standard FBP reconstruction of the simulated ultra low-dose
projection data after the KL-PWLS sinogram noise reduction was applied. The displays are in
the full range from zero to maximum voxel intensity respectively.
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Figure 5.
Illustration of two different window displays of the reconstructed images of Figure 4: (a) from
the normal dose scan; (b) from the standard FBP reconstruction of the re-projected normal dose
projection data; (c) from the standard FBP reconstruction of the simulated ultra low-dose
projection data; (d) from the conventional FBP reconstruction of the simulated ultra low-dose
projection data, where the Hanning filter had an optimized cutoff at 80% Nyquist frequency;
and (e) from the standard FBP reconstruction of the simulated ultra low-dose projection data
after KL-PWLS sinogram noise reduction was applied. Left column shows the displays at
window setting of 40/400 HU (this is the default window setting for pelvic CT images in clinic).
Right column shows the displays at window setting of 35/10 HU (i.e., displays at a narrower
window).
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Figure 6.
Endoscopic view of a polyp of 5 mm size: (a) from the result after noise reduction by the
Hanning filter; (b) from the result after the KL-PWLS sinogram restoration. The arrows
indicate the position of the polyp. The green line is the central line for guided navigation inside
the colon lumen, which is provided by the VC software and facilitates the navigation procedure.
Both pictures show the most visually-appealing views.
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