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Summary

In this paper, we carry out an in-depth theoretical investigation for inference with missing response
and covariate data for general regression models. We assume that the missing data are Missing at
Random (MAR) or Missing Completely at Random (MCAR) throughout. Previous theoretical
investigations in the literature have focused only on missing covariates or missing responses, but not
both. Here, we consider theoretical properties of the estimates under three different estimation
settings: complete case analysis (CC), a complete response analysis (CR) that involves an analysis
of those subjects with only completely observed responses, and the all case analysis (AC), which is
an analysis based on all of the cases. Under each scenario, we derive general expressions for the
likelihood and devise estimation schemes based on the EM algorithm. We carry out a theoretical
investigation of the three estimation methods in the normal linear model and analytically characterize
the loss of information for each method, as well as derive and compare the asymptotic variances for
each method assuming the missing data are MAR or MCAR. In addition, a theoretical investigation
of bias for the CC method is also carried out. A simulation study and real dataset are given to illustrate
the methodology.

1 Introduction

Missing data arise in nearly every type of application in the statistical sciences. Over the past
30 years, there has been an enormous literature on likelihood-based methods of estimation and
inference for awide variety of missing data problems, including missing covariate data in linear
models, generalized linear models, generalized linear mixed models, and survival models, as
well as missing response data for models of longitudinal data. Since the literature is too vast
to list here, we refer the reader to three review articles that discuss various methods for handling
missing data: Little (1992), Horton and Laird (1999), and Ibrahim, Chen, Lipsitz, and Herring
(2005). There has also been some literature for likelihood-based methods for establishing
identifiability and asymptotic properties of estimators in missing covariate problems including
Robins and Rotnitzky (1995), Lipsitz, Ibrahim, and Zhao (1999), Herring and Ibrahim
(2001), and Chen, Ibrahim, and Shao (2004). There also has been some work on models for
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longitudinal data with nonignorable responses, including Baker and Laird (1988), Ibrahim,
Chen, and Lipsitz (2001), and Tang, Little, and Raghunathan (2003). There has been some
work done on maximum likelihood estimation in the presence of ignorable or nonignorable
missing response and/or covariate data in longitudinal models, including Stubbendick and
Ibrahim (2003, 2006) and Chen and Ibrahim (2006). However, there has been almost no
literature examining theoretical properties of estimators in the presence of both MAR responses
and covariates in regression models. This type of missing data problem presents many new
challenges in estimation and theory that do not arise in missing covariate problems or missing
response problems alone.

We refer to a regression problem with missing covariates and responses as a “missing (x, y)
problem” throughout. An important issue in a missing (x, y) problem is the contribution to the
information matrix of the cases with missing responses alone, the contributions of the cases
with missing covariates alone, and the contributions of the cases with missing covariates and
responses. In particular, we consider theoretical properties of the estimates under three different
estimation settings: complete case analysis (CC), a complete response analysis (CR) that
involves an analysis of those subjects with only completely observed responses, and the all
case analysis (AC), which is an analysis based on all of the cases. Under each scenario, we
derive general expressions for the likelihood and devise estimation schemes based on the EM
algorithm. We compare the three estimation methods in the normal linear model and
characterize the loss of information for each method as well as derive and compare the
asymptotic variances for each method assuming the missing data are MAR. For the linear
model, we show that AC analysis has more information than the CR and CC analyses in the
sense that the Fisher information for the AC analysis has a greater determinant and trace
compared to the Fisher information matrices for the CR and CC analyses, and the CR analysis
yields a Fisher information with a greater determinant and trace compared to the Fisher
information matrix for the CC analysis. Moreover, we show that the asymptotic variances of
the estimates for the CC analyses are larger than the other two methods (CR or AC), and the
asymptotic variances for some estimates in the AC analysis are larger than that of the
corresponding estimates based on a CR analysis. We also carry out a theoretical investigation
of bias for the CC method and analytically show that CC estimates under certain settings are
biased.

The rest of this paper is organized as follows. In Section 2, we consider the basic data structure
for a regression model with MAR response and/or covariate data. In Section 3, we consider
the three analysis methods: CC, CR, and AC. For each method, we give the likelihood function
corresponding to the method. Section 4 gets into the heart of the theory and properties of
estimators for the three methods and several results are given characterizing the behavior of
the Fisher information matrix and asymptotic variances for each method for the normal linear
model with missing (X, y). Section 5 examines bias issues for MAR response and covariate
data. Section 6 presents a simulation study and real dataset illustrating the theoretical results
derived in Section 4. A brief discussion is given in Section 7. In the Appendix A, we devise
the computational schemes based on the EM algorithm for obtaining the maximum likelihood
estimates (MLE’s), and derive E and M-steps of the EM algorithm as well as the observed
information matrix based on the observed data using Louis’s method for the missing (x, y)
problem.

2 Model and Data Structure

2.1 Model

Suppose that {(x;, yi), i = 1, 2,..., n} are independent observations, where y; is the response
variable, and X = (Xig, ... , Xijp)" is a p x 1 random vector of covariates. We specify the joint
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distribution of (x;, y;) by specifying the conditional distribution of y; given x;, denoted [y; |
xi], and the marginal distribution of x;, denoted [x;].

We let
fxila)

denote the joint density for the marginal distribution [x;], where where a is the vector of model
parameters fori =1, 2, ..., n. Assume that the distribution function for [y; | x;] is of the form

fOilxi8.0) =f i | X8,0), 2.1)

where B = (B1, B2,.-., Bp)" denotes the p x 1 random vector of regression coefficients, and ¢ is
the column vector of nuisance parameters. In (2.1), we assume that the distribution [y; | x;]
depends on x; and B only through xB. If an intercept is included in the model, x; and p are
modified accordingly.

The generalized linear model (GLM) is a special case of (2.1). In the GLM, the conditional
density of [yj|x;] is given by

[GilxiB.r)=expla; ' 1(vif; — b(0;)+c(yi, )}, i=1,2, ..., 2.2)

where 0; = 0(n;) is the canonical parameter, ;=x/, and t is a dispersion parameter. The
functions b and ¢ determine a particular family in the class, such as the binomial, normal,

Poisson, etc. The functions aj(t) are commonly of the form a;(r)=7"" w;l, where the w;’s are

known weights. Thus, (2.1) reduces to the GLM with

JOilxiB.)=exp {ait(yif(x;B) — b(O(x;)))+c(y;.T)}

and {=1.

2.2 Missing Data Structures

We consider a general setting in which y; and some components of x; may be missing. Let
M; = {1 <I<p: X is missing}, which denotes the set of indices for the it missing covariates.
We also let Q = {1,2,...,p} denote the whole index space for x;. Table 1 gives the general data
structure and characterizations of the various missing data patterns in the missing (X, y)
problem.

We denote each pattern above by Bj, j = 1,..., 5, and refer to Bj as the jth pattern or jt block.

B, denotes the portion of the data with both y; and x; completely observed. In By, y; is observed
while each xj is at least partially missing or completely missing. In Bs, y; is missing and x; is
completely observed, in By, yj is missing but at least partial x; is observed, and both y; and x;

are completely missing in Bs.

Based on the data structure given in Table 1, we use y; if the it response is observed and
Yi mis if the ig, response variable is missing. Also, we write Xi=(x] X} 1i.)? where
X, mis =(Xitl € M) and X; ops is the observed portion of x;.
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3 Three Analysis Methods

In this section, we assume that the missing response and the missing covariates are missing at
random (MAR). Under the MAR assumption, we only need to model [y;, xj]. We give the forms
of the observed data log-likelihood functions under three analysis methods: complete case (CC)
analysis, complete response (CR) analysis, and all case (AC) analysis.

3.1 Complete Case (CC) Analysis

Because standard techniques for regression models require full response and covariate
information, one simple way to avoid the problem of missing data is to analyze only those
subjects who are completely observed. This method is known as a complete case (CC) analysis.

Based on the data structure displayed in Table 1, the CC analysis uses the portion of data given
in Block B;. Thus, the likelihood function under this method is given by

Le@= ]  fokBofile),

ity; observed, M;=0 (3.1)

where 6 = (B, ¢, a), and the log-likelihood function is given by

Le@= > llog [l Bg)+log f(xl)].

ity; observed, M;=0 (3.2)

3.2 Complete Response (CR) Analysis

The complete response cases (CR) analysis is to analyze only those subjects whose responses
are completely observed. Thus, in the CR analysis, we only include the portion of data given
in Blocks B1 and B, of Table 1. The likelihood function under CR is given by

Ler(0)=Lec 1_[ [ff(y:’|xisﬁs¢)f(xi.oh59xi.mis|(Y)d~xi.mis] >

i:y; observed, M;#60 (3.3)

and the log-likelihood function is given by

ler(O)=lcc+ Z log [ff(yi|xivﬂ»¢)f(xi.obs»xi.mis|(Y)dxi.mis] .

ity; observed, M;#0 (3.4)

3.3 All Case (AC) Analysis
The all cases (AC) analysis uses the whole data. The likelihood function is given by

Lac(0)=Lc, 1—1 ff(.Vi.mis|xisﬁ’¢)f(xi|a')dyi.mis

ity; missing, M;=60

X l l_[ fff()’i.mis|xi»,8»¢)f(xi.0b5sxi.mis|a')d)’i.misdxﬂmis

i:y; missing, M;#6, M;#Q

x ]_I fff()’iﬁmis|xi.misaﬁa¢)f(xiﬁmis|(Y)d)’i.misdxi.misl .

ity; missing, M;=Q

(3.5)
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f S @i mis i B.@)dyi mis=1 and f S (i misla@)dx; mis=1,

the likelihood function L4c(0) reduces to

[T - (xi|(Y)l

ity; missing, M;=60

X I 1—[ ff (Xi,0bs. xi.mis|(Y)dxi.mis| .

ity; missing, M;#0,M;#Q (3.6)

Loc(0) = Lo

Thus, the portion of the data given in Block Bs of Table 1 does not make any contribution to
the likelihood function even under the AC analysis under the MAR assumption.

Using (3.6), the log-likelihood function is given by

D, logyf <x,-|a>l

ity; missing, M;=60

+ Z Ingf (Xi,0bs »Xi,mis ) A mis
i:y; missing,M;#6,M;#Q

lac(H)= lcr+

3.7)

4 Theoretical Comparisons Between CC, CR, and AC for the Normal Linear
Regression Model

In this section, we characterize the properties of the three analysis methods by examining the
Fisher information matrix under each method and determining information loss (gain) for each
method as well as comparing the asymptotic variances for each method. This comparison
allows us to examine the efficiency of each method. To facilitate comparisons in this section,
we assume that the missing data are MCAR, since closed-form analytic results for the Fisher
information are available in the (x, y) missing problem only under MCAR.

4.1 Simple Linear Regression Model with Missing Responses and Covariates

We first consider a simple normal regression model with a single covariate and unit variances.
In this case, we have

.= Bo — Brxi)’ o)
JOilxip.a)= \/IZ—REXP {_(y, bo—Frxv) } and f(xi|(1’):\/% exp {_(x, 2) }

2 r 2 (4.1)

Write 0 = (B', a)'. Let nj = #(B;) be the cardinality of Bj for j = 1, 2, 3and n = ny + ny + na. For
the CC analysis, we have

lec(0)= Z

ity; observed, M;=60

B — 2 _ )2
—log(2n)—(y' Bo — B1xi) _(-xl (Y)I

2 2
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and the Fisher information matrix is given by

; 1 @ 0
Z X xf =m | @ 1+ 0 |.
i€B;

02
—’ICC(H)I =F
0600 0 0 )

I.c(0)= - E|

(4.2)

For the CR analysis, we have

_ _ _1 2\ _ 1 L _ 2
lc,-<e>—lcc(e)+i€232{ log V21 Slog(1+4}) —z<1+,3§)(” Bo ﬁm}.

After some messy algebra, we obtain the Fisher information matrix given by

I(O0)=— E | 3251.0)]
a B

1
1442 14432 1482
[ ! @ 0 ] o? 2/’)% ap
=np +ny

2 L’: >+ 7 %)

a l+a 0 l+'BI lJrﬁT (l+ﬁ%)_ l+ﬁi
0 0 1 By ap i

4B 144} 144} (4.3)

For the AC analysis, the log-likelihood function is given by

Lae@=Lo, @)+ > log f(xile)=le (O)+ )

ity; missing, M;=0 i€eB3

1
~log V2r - 5 i = a)?|.

The corresponding Fisher information matrix is given by

Le(O)= — E | 357 1ac0)
1 a Bi
Uow oy | TE AL T
2 a_ o’ I B
=ni | @ 1+a” 0 |4+m | Tp l+ﬁf+(1+ﬁf)2 N R
0 0 1 2

B B B
146} 1467 1487 (4.4)

(= ]
(=l e ]

- O O
~—

Using (4.2), we have

det(Iee)=n}, te(Ipe)=n (3+a?), and I =
1

—

—
I+
© g g

(3]
O»—ﬂ,&l\
- o O
| —

(4.5)

Observe that

n na 0 1
_ 2, 2B} n def ,
I..(O)=| nie ni+nma +(I+ﬁf)2 0 |+ 7 [ 1% ]( 1 a B)=A+ud,

0 0 n
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ny no
2282
A=| ma nl+ma/2+n;/j‘2 0
(1+B7)
0 0 ni
n
u= |—=(1 a B
and 1487 . After some algebra, we have
2 2, 2
1+(1/2+L‘72 - 0
1 n(1447)
Alee———— —a 1 0
ny | 14 —22EL 0 R P
ni(1+62)” (1442’

Note that u’A~1u = ny/ny. Thus, we have

_ P A1y 3 | 1 202B m
det(l,) =det(A)(1+u' A u)=n’ 1+m(l+,8f)lj(1+"‘)

2 5 2 +ny 2 9 2 +ny
= bty P el (o) tndny L,
(1+87) (1+87)
the trace of I, is given by
2 252
a
te(I,,)=tr(I,.)+ny |1+ 2+ﬁ],
4By (148D
and the inverse matrix of I is given by
—1 -1 1 -1 -1 -1 1 -1 -1
ICI' (0) =A"" - mA u'A”'=A"" — WA uu’ A
1 0 B
_A-1 _ n
=A m(r71+nz)(1+ﬂf) 0 0 02
B 0 181
1+ a? _ ny _ @ _ mpi
DY (1 +n2)(1+87) R (n1+n2)(14})
ul(wﬁ)z nl(lﬂ}%Jz
_ 1 e —1 0
_111 1+ 2/12/3'1" I+ lllz/i"l' 7
nl<|+/3f>' nl(l+ﬂ%)'
nf 0 ] - 2 ﬁ%

T (u+n)(1480) niny 1447

Similarly, we can write

[ac(e):[cp'+vv/,

wherev=n3( 0 0 1 ).Wehave
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det(l,e) =det(I.,) (1+v'I ' v)=det(I.,)+det(l.,) v'I ;' v

2”2/”2 )
=det(l,,)+n3 |n;+ L [n+ ]
(Ter)+ns |y Wy | M “o)
the trace of 1, is given by
tr(Lge)=te(le)+n3, (4.10)

and the inverse matrix of I is given by

-1 —_7-1 1 —1,,,7-1
Iac (9)—1” — m[cr vv Icr
2 2
n2,81 0 —n2ﬁ1[n1(1+ﬂ1)+}’lzj
= IC—’I _ ﬁ_j 0 0 0
2 9] 2
—-mfilm(+)+n2]l 0 [ni(1+B7)+n2]
o’ _ m R a ___ mp * *
1+1 LB () (4B by LB (nl+nz)(1+ﬁf)+b nmopiby
nl(wfi)z ”1(l+/i‘21)2
1 e 1 0
T om 1+ 3"2/?%7 1+ 2712/9%7 s
n[<l+ﬂ%)' nl(l+/3%)-
2
——mb * __m By _ pEE2
("l+"2>('+ﬂf>+b mpib) 0 1= 1442 b*by (4.11)

. n3
bhe :
where = (n+ny)(14+B) nanz+n (ny+ny+n3)(147)]

and b} =n;(1+8)+n,

Using (4.5) — (4.11), we are led to the following results.

Result 4.1—Based on either the determinant or the trace of Fisher information matrix, AC
yields most gain in information over both CR and CC, and CR gains more information than
CC. Specifically, we have

— _ 2173'3% -
det(le) = det(ler)=n3 m+ s l”‘ o J -0,
det(l,,) — det(lcc)zn%nﬁmw -0,
(1+8%)
tr(Iac) - tr([c.r)zns >O,
and
2 252
(03
tr(1,,) — tr({oe)=no 1+_2+712 .
1B (14+6))

The inverse of the Fisher information gives the asymptotic variance and covariance matrix of

the MLE’s under each analysis method. Now, let VVar (Ej,.) and Var (a.) denote the asymptotic
variances under each of CC, CR, AC. Then, we have the following results.
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Result 4.2—(i) CR leads to smaller asymptotic variances for all parameters than CC.
Specifically, we have

202
2mapy n

Var(Boc) — Var(Boer) = > .
Bo.ce) Bocr) (143 +2mp]  miu+m)(145y)
-~ -~ 2my3?

Var(Bycc) — Var(B1¢r) =—-F——
(ﬁl,cc) Br.er) "ll”l(1+ﬁi)~+2"2ﬂf|

Var(@,.) — Var(a,,) b,

:m(m +Hg)(l+ﬁ{')

>0,

)

(if) AC improves the asymptotic variances for g and « over CR, but not for ;. Specifically,
we have

Var(Bo.o,) = VarBoa)  =b*mopi>0,
Var(B1,cr) — Var(Brqc) =0,
Var(@,,) - Var(@ae) =b"b}>>0,

where b” and 5] are given in (4.11).

From Result 4.2, the additional information from Block B3 does improve the standard errors
of 3, and a. Surprisingly, the information from Block B3 does not help improve the standard
error of 3.

4.2 Multiple Linear Regression Model with Missing Responses and Covariates

To further examine the theoretical relationship among these three analysis methods, we
consider a multiple normal linear regression model with p > 2. For illustrative purposes, it
suffices to consider two missing covariates. Specifically, we assume that x; ,—; and Xj , have
at least one missing value and x;y, Xj2, and xj p— are observed in all cases as we have shown in
Section 3.3 that the cases in Block 5 do not make any contribution to the log-likelihood function
lac(0). For notational convenience, we let zj; = (1, Xj,...,Xj p—2)". We further assume

yiliB ~ N((Zy Xip-1:%ip) BoB1:B2).072),
b
Xip-1I™™ a1 ~ Ny a1, 1),

where a; = (010, 011,---,01,p-2)", and
bs) 2
x,-plxﬁ" » Xip-1,02 ~ N((Z1 %, p-1)(@21,@22),75),

where apq = (020, @91,..., 02 p-2)". We assume all variances 0,77, and 73 are known. For ease
of exploration, we choose o?=72=73=1.

In this setting, we need to consider the cases from Blocks 1 to 4.

For Blocks 2 and 4, we assume By=U;_, By and B4=U;_, By, where
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Bj1={i: both x; ,_| and x;, are observed},
Bjp={i: x; -1 is missing and x;, is observed},
Bj3={i: x; -1 is observed and x;, is missing}

for j =2, 4, and By4 = {i : both x; p—1 and Xjp are missing}. We further let nj = #(Bj) be the

4 3
cardinality of Bjy for j = 2, 4. Then we have "ZZZk:2”2k and "4:Zk:2”4k.

Define AFZCB,Z“Z”, where j = 1, 22, 23, 24, 3, 42, 43, and 6=(8),81 Ba.t} ¥} x22)7. For the
CC analysis, we have

i=2 Bo—B1Lxip-1—Paxip)”
l..(6)= Z [—%log(Zn) _ bz ﬁl; pt P

ity; observed, M;=0
2 2
_ (ip-1—zinar)”  (Kip—Zil @21 —Xip-1022)”
2 2

and the Fisher information matrix is given by

A] Al(ll A1(~1/12 0 0 0
@A ni+a Ay njan+a)Aian 0 0 0
Lo (0)= 6"12/\1 n[(Y22+(Y1Alﬁ/[2 n|(1+(lg2)+fi/l2A|(~l[2 0 0 0
« 0 0 0 Ay 0 0 ’
0 0 0 0 Al A](Yl
0 0 0 0 (l//lAl n1+(t’]A1a/1

where @ ,=ay +a1a-
For the CR analysis, we have

lcr(e):lcc (@)
+ Z log ”f()’i|xiﬁ)f(xi,p|2i1 Xip-1,02) f(Xi p-11zi1,@1) dxi.mis]

ity; observed, M;#6
:lcc (0)+lcc.l (9)+lcc.2(9),

where
lcc.l(g) 5 5
log(1+8+a3,) , ,
= D [Hlog@m) - =12~ [(@xn(i - o = xipB2) ~ Bi(xip = Fra21))’
i€Bgz

2 2 2 2
+(i — 2480 — Biz a1 — XipBa) +(xip — 721 — a7 @) ]/2(1+ﬁ1+022)}

and

J Multivar Anal. Author manuscript; available in PMC 2009 January 23.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Chen et al.

lcc.Z(H) 5
i — 24Bo — Xip—181 — Bo(Z, a1 +xi 1
_ Z log(2m) - llog(1+ﬁ2)— (i = 2,80 — Xip-1B81 — Ba(Z; @21+ Xi p-1222)]
2 2 2(1+82)
i€B)3 2
Xip-1—Zh @ 2 1 1
- ey S {—510g<2n> - Slog((B1+B2an) +1453)

iEB_7_4
_ [0i=z},Bo—Paz)j 1 -(B1 +hran)z 1)
2((B1+B2022)* +1+4B2) ’

After some messy algebra, we obtain the Fisher information matrix given by

2

0
I.(0)=-E Imlcr(a) =1c/(0)+1cr1(O)+n22ler 2(0)+n231r 3124101 4,

where

M, Ma, May, M, M; M3,
oMy o May o Mg oMy oMz o|Msa
~7 ~/ ~/ ~ ~/ ~ ~ 7
(Ilel (llel(l[ (l/le](l']z a’lez (112M3 (1/12M3(11

L. 1(0)= "
er,1(0) M, Mya, Moo Mg My Mya
M; Msa, Msa My M5 Msa,
(Y'1M3 (Y'1M3(Y1 (Z'lM3(712 (l/'lM4 (l'lMs a"lMS(ll
0 0 0 00 0
0 %*_125% "32(11,:"%3) 00 _(le,zfjl +2rj,zlzﬁl
an(l+ag,) (a3, pr=ad,)
ICI',Z(H): 0 U2 122 00 V22 ,
0 0 0 00 0
0 0 0 00 0
anBi | 2anB Bi(l-a3) g 2a2
0 - U2 + 1%2 U2 00 E ?
0 0 0 00 o
1 an B>
0 5% o 00 &
a» i 253 Brax
foa@=| O w00 St
) 0 0 0 00 o
0 0 0 00 o
0 B Baan 0 0 >
23 U3 U3
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0 0 0 00 0
0 2(:31+ﬂ72022)2 2(ﬂl+/322“22)l’15 00 Zﬂl(ﬂltﬂlﬂ/ll)z
vy, Ul;l U3,
2@22)U) 2v, 2B2(B1+Brarn)vas
0 2(ﬂ|+/37Y Y25 25 00 8 :
Iera(0)= V2 V24 Va4 >
0 0 0 00 0
0 0 0 00 0
0 2132(/?1;!’2022)2 2ﬂ2(ﬂ1t€2022)l’25 0 0 M
24 24 24

2, 2 2 2 2 +a3, 1 1 Bi
U =1+67+a5,,v23=1485,024=(B1 +B2@22) "+ 145,025 =L2 +(B1 +B2r22) 22, M = Ap+—Ax3+—A,Mr=—
22 U3 U4 U2
For the AC analysis, the log-likelihood function is given by
lac(6)
2 ’ 2
(Kip-1 — 1) (Xip — 2y @21 = Xjp-1a22)
= LO)+ ) {~log(2m) - — ' - ' :
e (0) . 2(2m) ) >
IEB3
2
. log@m) 1 . . (i - g a1 — 3,3, 1) .
-—— —2og( ay) — RETER
icB42 T3,
1 1 )
) {—Elog(zn) ~ 51 = zha)
i€B43
The corresponding Fisher information matrix is given by
Iac(a):Icr(H)
0p+ixpsny  Op+x(p-1) 0+ x(p-1) 0
5, an an
+ 0(p—x(p+1) A3+§7A42+A43 ﬁﬁhz ﬁAfzal
0(p-x(p+1) ==A4y Az+5-Ap Azai+5-Apa
Ygz_ 1~ -
01x(p+l) (”:(Y/IA@ (IIIA3+E(/1A42 122 (4.12)
2
=1+a?2, and in=nm3+a/, Az + 022+1 A
where Ug=1+@5, and ipp=n3+a A3 I’l42UT 0—4201 42(1/1.
4

For ease of exploration, we choose p=2, in other words, the completely observed covariates
only include the intercept.

Result 4.3—(i) When ny3 = ny4 = 0, CR leads to smaller asymptotic variances for $; and
S> than CC. Specifically, we have

Var(By ) — Var(By.c,)

ZIzglﬁ%[lqz(nl+n23)(nlzriz+2nzga/§2)+n2luizﬁ%+nlnzz(1+a/3ll)[7’21]
. . di
Var(ﬁlcc) - Var(BZ,cr)

4ngznglﬁf+nznm xr§z+2nlnvvmwr§3ﬂ% (ny+n22)+2n; n%z(rr%z +ﬂ% +31r%2/3f)

1t22Y5, 22U22

= m >0,

>0,
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2 2 2, 2 02 2 2 22 2
where dy=n7(n1+n2)vnl n1vs,+2nn (B +as,+B1a5,) 1+2n1n5,B1 @5, (3n1+2n2)).

(if) When np3 = ny4 = 0, AC leads to smaller asymptotic variances for #; and 5, than CR.
Specifically, we have

2 2 a6, 02 2 212
4)1[1122022ﬂl(1131142+2n42(1/22) [1/41(111+1132)+n1ﬂ1]

Var(B1,¢r) — Var(Bi,ac)= s >0,
— — i, B (n3v2, +2n4002,) [2n0 B2 —nyady +ny (1452)°]
Var(Ba.cr) — Var(Ba qc)=——= s . = — >0,

where

2 04 2 2 2 2 3,2 .3 4 2 2 2
d13:d11{2n3n22U42,81+2n22U42r122(n22+n42)(2n22,81+n1U42)+n1U42U22+n1n22v42[n3u42+21142,81(2n3u42+n22+(122(n22u

Result 4.4—(i) When ny; = ny4 = 0, CR leads to smaller asymptotic variances for $; and
o than CC. Specifically, we have

n 1172172 +2ny3, 2 na3+(ny+n3 Uzlel
1723%3 2 22

Var(ﬂl'“) - Var(ﬂl‘cr): ny(ny +llz3)l@3(2”33ﬁ%+"| 1/%3) >O’

3 =y 212333
Var(Ba cc) — Var(Bacr)= m2n » >0.

o B
235 +n1U35)

(if) When np» = nyg = 0, AC improves the asymptotic variances for #1 over CR, but not for
p1. Specifically, we have
Var(ﬁl .cr) - Var@l .ac): "53(“12'13;23052”42%5 >0,
Var(ﬂlcr) - Var(ﬁZ.ac):Oa

) 2 2
where dyz=n(n1+ny3)va3[ ny(n1+n23) U235, +(2nar a5, +1305, (1 v23+123) .

Result 4.5—(i) When ny, = ny3 =0, CR leads to smaller asymptotic variances for g than CC.
Specifically, we have

— s, 2, ﬂl
Var(ﬂl.cc) - var(ﬁl.cr): ];’:1 L>0,

= 73 2483
Var(By cc) — Var(Ba )= IZ/;] >0,

2 2,2 2 2.2
where d31:2n1n24[,81v23 +2U23,31,32(l/22+ﬂ2+ﬁ2(1/221}23 ]+n1 Usy-

(if) When nyy = np3 = 0, AC leads to smaller asymptotic variances for g than CR. Specifically,
we have

41754,3%[)’%(,31 +1723ﬁ3)2(20f§2n41 +"3”-2t2) )

’

Var(B1 ¢) — Var(B.ac)= &3
= = 4!‘[2 (ﬂ1+(Y37 15-(203 n42+n3172 )
Var(B,cr) — Var(B2.qac)= 2 a3 = >0,
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where

dy3=d31 [ 2104 (B +B2@2) (N30, +111 023U+ 2114000 )+ U3, (11 +113)(21aa B3 +11 U5 )+ 214005, (21aa B3 +11 03 )]
Remark 1—The information in Block B3 does not improve the asymptotic variances of the
estimates of B1 and B, in all of the three situations considered here.

Remark 2—When ny3 = nyy = 0 (Result 4.3), the differences of the asymptotic variances for
1 and B, do not depend on B, comparing CR to CC and AC to CR.

Remark 3—When ny» = ny4 = 0 (Result 4.4), the differences of the asymptotic variances for
31 and B, do not depend on 1 comparing CR to CC and AC to CR.

Remark 4—When nyy = nyg = 0 (Result 4.5), the ratios of the asymptotic variances
improvement of By versus B, equal to 57 /43 for CR versus CC and AC versus CR, i.e.

Var@l.cc) - Var@l.cr) _ Var@l.cr) - Var(,’gl ac) :l[ﬁ
Var@Z.cc) - Var@Z.cr) VH@Q_L.,-) - Var(ﬁlac) ﬁ%

Remark 5—When ny3 = nyy = 0, the differences of the asymptotic variances of B, are
monotone decreasing function of n; for CR versus CC and AC versus CR. Other monotonic
properties are listed in Table 2.

5 Analysis of Bias

In this section, we examine bias in the CC situation when the missing data are MAR. For
inference with only missing response data, Little and Rubin (2002, page 43.) note without proof
that when the data are MAR, the CC estimates are not biased when the missing data mechanism
depends only on the covariates and not the response. The estimates, however, are biased if the
missing data mechanism depends on the response. We now examine this bias issue in the
missing (X, y) problem, where missingness is MAR.

Based on the data structure given in Table 1, define missing data indicators r;=(r;, r.,)’ as
- 1 ify; is observed
Y71 0 ify;is missing
and
1 if the j”’ component of x; is observed,
Fix,j= . +th pdE At
0 if the j” component of x; is missing,
forj=1,2,...,p.
Let f(ril$, yi, xi denote the distribution of rj, which may possibly depend on y; and x;, where

¢ is the vector of parameters in the r; model. Under the MAR assumption, following models
for rj are possible:
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f(rilg.yixp)=f(rilg), (5.1)

Sild.yix)=f(ricld) f(riyld2.rixox:), (5.2)

where o denotes the direct product, or

S(ild.yix)=[f(rild1) f(riclda.riyyi). (5.3)
Note that the model specified by (5.1) defines MCAR and some other versions of the MAR
models can be considered as well.

Because standard techniques for regression models require full response and covariate
information, one simple way to avoid the problem of missing data is to analyze only those
subjects who are completely observed. This method is known as a complete case (CC) analysis.

Based on the data structure displayed in Table 1, the CC analysis uses the portion of data given
in Block B;. Thus, the likelihood function under this method is given by

Lee(6)= [ Qi) fede) f(rilgyix),

i: both y; and x; observed (5.4)

where 0 = (B,a,¢), and the log-likelihood function is given by

lec(0)= > [log f(yilxi,B)+log f(xla)+log f(rilg.yixi].

i: both y; and x; observed (5.5)

Under CC, we will make conditional inference given rj =1, where 1 = (1, 1,...,1)". More
specifically, we need to consider conditional distribution [y;, Xj|rj = 1] in examining biasness
of the MLE’s and in deriving the Fisher information matrix. We assume throughout that ¢ is
distinct from B and a.

Under the model given by (5.1), we have

Tk B) f(xila) f(rile)
[ FOikiB) fxile) f(rild)dxidy;

SixilB.a.¢,ri=1)= =filxiB) f(xil).

Thus, under MCAR, the conditional distribution of (y;, X;) given rj = 1 is the same as the
unconditional distribution and hence, the MLE’s of g and & are unbiased or asymptotically
consistent under certain usual regularity conditions.

Under MAR with the model given by (5.2) for r;, we have

_ SOilxiB) f(xila) f(ri=1 ) f(riy=1|d2.x;)
[ FibiB) fxil) f(riv=Ll¢1) f (riy=11¢p2.x;)dy;dlx;

[xila) f(riy=1]¢2.x;)
=filxi,B) x : .
TOB) X Tt fry=1lgn 56

J Multivar Anal. Author manuscript; available in PMC 2009 January 23.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Chen et al. Page 16

From (5.6), it is easy to see that the MLE of p is unbiased or asymptotically consistent, but the
MLE of a may not be in this case.

Under the MAR with the model given by (5.3) for rj, we obtain

— SGikiB)f (i) f(riy=1¢1) [ (rix=1l¢2.yi)
ff(yllxl’ﬁ)f(xll(y)f(rl\ =11 f(rix=1l2,yi)dyidx;
SOilxi B fGile) f(riv=1l2 yi)
7 GieB) f il f(rin =iy dyid; 5.7)

SixilB.a.¢,ri=1)

In this case, the MLE’s for both p and a are likely to be biased.

To obtain the closed form analytical results for (5.6) and (5.7), we consider the simple normal
regression model given by (4.1). For notational simplicity, we assume that both y; and x; are

1 1 1
. X =
observed fori=1,2,....m. LetYops = (Y1, Y2,---» Ym)'s = O ( X1 X2 ... Xy J,androps = (1,
1,...,1)". Then, the MLE of B is given by ,BCC:( Xobs) 'x’ *bsYobs and the MLE of a is
— ] m

Qee=— . X,
mé-i=1

obs

Fr=11d2.x)= exp(¢20+¢21.x;)
In (5.6), we assume / iy = H02.Xi 1+exp(dao+doi x;)- 1hen, (5.6) implies

1 i —ho —,31)61')2}
ilB..¢.xiri=1)=f(yilxi )= ex {—
fGiBa. Snli=—=exp .
and
exp{—(x; — @)?/2} | (2R dax)
fxila,g,ri=1)= 1+exp(¢r+421 ,)]

Jexpl=(x; - @22} | {22t ] gy,

L+exp(¢ao+ea1xi) (5.8)

Thus, we have

Elﬁcclrobsl E{E[(X] obs obs)—lx(’)bSYObs|Xobs ”r()hs}:E{(X(,)bSXOhS)*lX;bSXOhSBIrObS}:ﬁs

which is unbiased. However,
E[@cclrons] # «,
which may be biased. Also, an analytical derivation of the Fisher information matrix is not

possible as the conditional distribution of x; given r; = 1 involves an analytically intractable
integral.

Under MAR given by (5.3), we assume a logistic regression model for rjy, i.e.,
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exp(d20+d217iyyi)
1+exp(da0+d217iyi)

Srix=1¢a,riyyi)=

From (5.7), we obtain

_ 0i-Bo—P1x)? [ exp(P20+21i)
2 L+exp(pa0+d21yi)

exp {
f(Yi Iﬁ’(l’¢*xisri:1):

('\'i*ﬁ()*ﬂ].\‘,‘)l exp(éa0+d21yi) J ,.
2 } 1+exp(dao+da1yi) dyi

[exp {_

Thus, E[yilB, e, ¢, Xi, ri = 1] # Bo + BaXi. In this case, both 3. and G, may be biased. Again,
an analytical derivation of the Fisher information matrix is not possible.

6 Simulation Studies and a Real Data Example

In this section, we present two detailed simulation studies and a real data example,
demonstrating the various properties of the CC, CR, and AC methodology for analyzing MCAR
and MAR response and/or covariate data in linear regression and logistic regression. In
particular, we study efficiency and bias in the estimates for the three methods for these two
types of regression models.

6.1 Simulation Study I: Normal Linear Regression Model with MCAR Response and Covariate

Data

We consider a multiple linear regression model with an intercept, a completely observed
covariate and two missing covariates. 5000 replicates with n = 500 subjects are considered.
The response model is yj ~ N(Bg + B1zi1 + P2Xi1 + BaXiz, 1), where zj is simulated from Unif(0,
1), xi1 is simulated from N(ayg + a112j1, 1), Xj2 is simulated from N(opg + 0212j1 + aoXi1, 1),
and yj, Xj; and xj, are missing for some subjects. In each simulation, the sizes for each missing
pattern, nq1, Ny, Na3, Nog, N3, Ngo, Ng3 and ns, were varied in order to evaluate the various
properties of the CC, CR, and AC methods. To better study the differences of the asymptotic
variances of the estimates of the regression coefficients using the three methods, we calculated
the variances in two ways: plugging in the true parameter values as well as plugging in the
maximum likelihood estimates into the Fisher information matrix.

Table 3 gives the simulation results of the linear regression model with the variances evaluated
at the true parameter values. We note here that the variance estimates decrease monotonically
based on the three methods, CC, CR, and AC. In particular, Result 4.3 and Result 4.4 hold and
Remark 1 — Remark 3 hold, but not Remark 4. We note that Remark 1 is only true for the
regression coefficients of the missing covariates but not of the completely observed covariates.
The information in Block B43 does improve the asymptotic variances of regression coefficients
of the zjp = 1 and zj; when the AC method is used.

Table 4 gives the simulation results of the linear regression model with the variances evaluated
at the maximum likelihood estimates (MLE’s). The results show the gain in using the AC
method over CR method, and using CR method over CC method. When when ny, = 200 and
N3 = Nyg = 0, the gain on the asymptotic variance of B3 is small compared to the AC to CR
method and the difference of the empirical variances is slight.
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6.2 Simulation Study II: Logistic Regression Model with MAR Response and Covariate Data

A simulation with 1000 replicates was conducted to numerically compare the CC, CR and AC
methods in a logistic regression model. The estimates using the full data (FD) before missing
are also provided as a benchmark of other methods. In each simulation, we generated 500
binary samples from a logistic regression model logit(P(y; = 1)) = Bo + B1Zij1 + B2Xj1, Where
zj1 was simulated from Unif(0, 1) and xj; was simulated from a Bernoulli distribution with the
success probability modeled as logit(P(xj; = 1)) = ag + a12j1. The covariate zj1 is completely
observed for all subjects, and x;; and the response y; are missing at random (MAR) for some
subjects. The missing mechanisms for y; and Xy are logit(P(riy = 1)) = ¢20 + ¢21zj1 and logit(P
(rix = 1)) = d10 + $11Zi1 + 12riyYi, where riy = 1 or riy = 1 if yj or Xjy is observed, 0 otherwise.
On average, 31.4% samples have completely observed covariate and response, 34.8% have
missing covariate but observed response, 15.0% have observed covariate but missing response,
and 18.8% have missing covariate and missing response.

Table 5 gives the simulation results of the logistic regression model. The AC method provides
estimates with higher precision (smaller standard error) and lower mean square error (MSE)
than the CR method for all the parameters. Both the CR and AC methods are uniformly better
than the CC method in terms of bias, simulated standard error and MSE.

6.3 Analysis of Small Cell Lung Cancer Data

We consider a real dataset to compare the three analysis methods in terms of bias and efficiency.
We consider a lung cancer dataset from a recent phase 11 clinical trial (Socinski et al., 2002)
of non-small-cell lung cancer (NSCLC), which is the leading cause of cancer-related mortality.
In the year 2001, among approximately 170,000 patients newly diagnosed, more than 90%
died from NSCLC and approximately 35% of all new cases were stage I11B/IV (malignant
pleural effusion) the disease. A randomized, two-armed, multi-center trial was initiated in 1998
with the aim to determine the optimal duration of chemotherapy by comparing four cycles of
therapy versus continuous therapy in advanced NSCLC. Patients were randomized to two
treatment arms: four cycles of carboplatin at an area under the curve of 6 and paclitaxel 200
mg/m? every 21 days (arm A), or continuous treatment with carboplatin/paclitaxel until
progression (arm B). At progression, all patients on both arms received second-line weekly
paclitaxel at 80 mg/m2. One of the primary endpoints was quality of life (QOL). There were
n = 230 patients in this dataset. The response variable considered in this analysis is the quality
of life (QOL) factg score. The covariates included in the model were treatment (trt, 0=arm A,
1=arm B), gender (0=female, 1=male), Histology (hist, 0=Non-Squamous, 1=Squamous), age
at entry in years, highest grade toxicity (recorded by cycle) (apex, 0 if highest grade toxicity
=0 and 1 if highest grade toxicity > 0), and recovery status (recov, 0 if recovered and 1
otherwise). For these six covariates, apex and recov had missing information and trt, gender,
hist, and age were completely observed for all cases. In this population, 63% of the patients
were male, and the age at entry ranged from 32 to 82 with a mean of 62. The missing data
fractions were 28% in apex, 54% in recov, and 35% in factg. There was a total missing data
fraction of 74% on apex, recov, and factg.

We use a linear regression to model the response variable, factg, as

factg;=By+ptrt;+Brgender;+B3hist; +S4age;++L5apex; +Lsrecov;+&;.

We consider two models for the missing covariates recov and apex as follows.

Model M1—
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logit(apex;=1)=a o+ trt+apgender;+a3histi+a4age;,
logit(recovi=1lapex;=1)=azo+a2;trti+aprgender; +ap3histi+a4age; +@asapex;.

Model M2—

logit(recoviz D=a0+a 1tm+(xlzgenderi+(x13histi+(xl4agei,
logit(apex;=1|recovj)=ayo+ay; trtj+a2; gender; + a3 histj+ap4age; +azsrecov;.

Table 6 shows the results for the CC, CR and AC methods discussed in Section 4. We assume
that the missing data are MAR so that a missing data mechanism need not be considered in the
estimation scheme for B. As shown in the table, the overall conclusions are the same for the
CR and AC methods, as these two methods yield similar p-values for the various regression
coefficients. significance level. However, the CR and AC methods yield more significant p-
values than the CC analysis, especially for the age effect. Table 6 also shows that the estimates
of B and the standard errors of the estimated regression coefficients are quite similar for model
M1 and model M2, indicating robustness of estimates to the the choice of covariate distribution.
The EM algorithm was implemented for computing all maximum likelihood estimates. The
convergence criterion for the EM algorithm was that the squared distance between the k' and
(k + 10)tN iterations was less than 10~7. The EM algorithm required 25 iterations to converge
under both model M1 and model M2.

Although we have assumed that data are MAR and a missing data mechanism need not be
modeled, it is of some interest if we could determine the best fitting MAR missing data
mechanism, so that we could at least (though somewhat ad-hoc) determine whether the missing
data are MAR or MCAR. Towards this goal, we posited several different MAR and MCAR
missing data mechanisms, and using the complete cases to fit these models as logistic regression
in SAS. We then computed the log-likelihood statistic to determine the best fitting missing
data mechanism. We considered 5 missing data mechanism, two of them are MCAR, and the
other three are MAR. Let I factg, I apex, aNd Tj recov d€note the missing data indicators for factg,
apex, and recov, respectively. To determine the final log-likelihood statistic value, we added
the three contributions from the three parts of the binary regression models for r; factg, i apex:
and rj recov- TWO MCAR models are [rj factgl[Fi apex[Firecov] (MCARL) and [Fj factg|Fi,apex:

Ti recov][Fi,apex] [Fi recovlTi,apex] (MCAR2), where, for example, [rj factg] denotes a logistic
regression model with intercept only and [ factg|li apex: Ti,recov] 1S @ logistic regression model
with intercept and covariates Iy gpex and I recov- L€t Xj obs = (trtj, gender;, hist;, age;). Three
MAR models include [F; actg|Xi obs: @PEXiliapex: 'ECOVili recov] [Fi apex|Xi,obs][Fi recovlXi obs:
apexifi apex] (MARL), [F factglXi obs: I apex: i,recov] [Fi,apex|Xi,obs] [Fi recov[Xi,obs: Fi,apex] (MAR2),
and [ri factgltrti, gender;, Ii apex, Iirecovl[Fiapexltrti, genderi] [ri recovltrti, gender;, ri apex]
(MAR3). For the lung cancer data, the log-likelihood statistics, —2 log(likelihood), are 889.4,
873.5, 868.5, 856.6, and 860.5 under models MCAR1, MCAR2, MAR1, MAR2, and MAR3,
respectively. We see from these results that the best fitting model is MAR2 as the missing data
mechanism suggesting that the missing data are missing at random.

7 Discussion

We have given several results regarding bias and efficiency of estimates in missing (x, y)

regression problems, and have shown that the AC analysis provides the most efficient estimates
and the least biased estimates in the MAR setting. The results derived in Section 4, Section 5,
and Section 6 are new and important and shed light on the bias and efficiency of estimates in
regression problems with MCAR or MAR responses and/or covariates. In Section 4.1 and 4.2,
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the variances are assumed to be known. This assumption can be relaxed. The asymptotic
variance and covariance matrix of the MLE’s under each analysis method for the simple linear
regression model with unknown variances is derived in Appendix B. With the known variances,
as shown in Result 4.2, the AC analysis does not improve the efficiency of the MLE for 1
over the CR analysis. When the variances are unknown, it is interesting to see, from Appendix
B, that the AC analysis improves the efficiency of the MLE for 2; over both the CC and CR
analsyese. Thus, the AC analysis becomes even more important in this case. However, the
derivation of the asymptotic variance and covariance matrix of the MLE’s under each analysis
method for the multiple linear regression model with unknown variances becomes very lengthy
and hence, detailed derivations are omitted for brevity.

Finally, we mention that we have assumed throughout that jointly, (x;, y;) are iid. This is by far
the most common approach in regression settings with missing covariate and/or response data.
We note here, however, that since inference typically focuses on the parameters of [y;|xi], the
yi’s conditional on the x;’s are not iid, but rather only independent. This development is still
quite general since is covers settings such as the linear model and generalized linear models
with MAR covariate and/or response data. Future work involves examination of the proposed
methods for dependent responses, including dynamic linear models, models for longitudinal
data, and generalized linear mixed models. Such theoretical investigations are currently being
examined. The initial investigation taken here is the first of its kind, and should lead to fruitful
results for other types of models.
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Appendix A

Computational Development

0(016")

We describe the model fitting and computational procedures for each of the analysis methods.
For CC, the MLE of 0 can be obtained by standard statistical software such as SAS. Here, we
consider only for AC as the computation of the MLE’s under CR is similar to and even easier
than AC.

We first consider the case where all x; mis’s are categorical. In this case, we use the EM
algorithm via the method of weights proposed by Ibrahim (1990). Let 60 = (B®, $®, ()
denote the value of 0 at the ! iteration of EM algorithm.

The E-step at the (t + 1)t iteration can be written as

D, llog foikiBg)+log fixil)]

it y; observed, M;=0

D wiio log fGiki()B.g)+og [l

it y; observed, M;#0x;mis(j)

+ ) log flxila)

it y; missing, M;=60

+ Z Z wij o log f(i(pla)

it y; missing, M;#60,M;#QX; mis())

0V (B,8160)+0P (l6"), (A1)
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where Xi()=(x] gy X7 is (D)7,

0Bl = D, log ki)

it y; observed, M;=60

+ Z Z wijn log f(yilxi(7).8.¢)

it y; observed, M;#0x; mis(j) (A.2)

and

02(f6")= > log f(xla)

it y; observed or missing, M;=6

+ Z Z wijn log f(xi(Dla)
it y; observed, M;#0x; mis(J)

+ Z Z wij o log fOi(Pla).

it y; missing, M;#6, M;#Qx; mis()) (A.3)

The inner sum extends over all of the possible values of the missing components of the covariate
vector, with j indexing the distinct covariate patterns for subject i.

The weights, wjj (1), are the conditional probabilities corresponding to [Xj mis|Xj,obs, Yi 0] or
[Xi.mislXi,obs: @] and are given by

Wij@y=f (i, mis (D, obs»i-07)
S i |-\'i.obs~-\'i.mis(j>~ﬁ“)-¢<”)f(-\'i.obs~»’Ci,x11is(j)|(YlI))

Z 5 P _/‘(_‘.il-\-i.(\hS‘ -’fi.mis(j>~ﬁ“}A(b(”)f(-xi.nhk -“i.mls(j)la/“))
Xi,mis (/)

or

J i, 0bs X, mis (Dla®)

oo Giops Kimis (D)

Wi (0= O mis ()i obs,@ )=

The M-step at the (t + 1)t iteration proceeds as follows. We first compute

(V. V)=arg max 0V (B¢ 16)
Bo

and

a™V=arg max 0?(«|6).
a

When we use the saturated model for X; mis, We have a = (ayj)), where o,j) denotes the probability
of the j" missing pattern. In this case, we update
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n
QD Zi:1w’j'(’)

(W) n

where when x; is completely observed, wij ) = 1 if xj(j) = xj and wij ¢y = 0 if xi() # X;.

Let & denote the estimate of  at EM convergence. We use Louis’s method (Louis, 1982) to
compute the estimated observed information matrix of @ based on the observed data. Write the
matrix of second derivatives of Q(0]6(") as

N L 600 0
90(1) - ayﬁy Q (ﬁ¢| .
Q( | ) 0 O(:j(;a’ Q(Z)((Z | 8(1))
wherey = (B', ¢)',
&
2= 0V (B, 60)= ayay 08 S0ikiBY)

it y; observed, M;=60
+ > Z wij o log fOii().B.),

i: y; observed, Miana Ximis (/)

and

0
2 —
0P| 60)= e

it y; observed or missing, M;=60

FY S wagtos fsle)

i y; observed, M;#0x; mis(j)

dmm 10g f(xl )

&
+ Z Z Wij, O 90da’ Slog Jxi(Dla).

i y; missing, M;#60,M;#QxX; mis(J)

Write the gradient vector of Q;(0]6®) for the it" observation as

0i (0|0<’>)
ae log[ f (.Yr|xuﬂa¢)f (xila)] if y; observed, M;=6
Z‘\.. (Wi 05 log[ filxi(j),8.0) f(xi(la)] if y; observed, M; # 6
% log f(xila) if y; missing, M;=6
Zx, )0 5 99 7 10g [0k if y; missing, M; # 0,M; # Q.

In addition, write the complete data score vector S;(0|x;, yi) as

J =

< lo ilxi B, xila)] if y; observed
Si(9|xis)’i):{ 61901 g[f()’l B.®) f(xila)] : y' et

35 log f(xil@) if y; missing.

Then, the estimated observed information matrix of & is given by
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10)= -0(016)
{ DT wioSi@n(DyS @Gy |- Y 0iO)0; (9@}
i: M #0X; mis(j) i:M;#0 (A.4)

where the weights, wjj (y), are computed at EM convergence. Thus, the estimate of the
asymptotic covariance matrix of 8 is [I (8)] 1.

When missing covariates are continuous or mixed Continuous and categorical, a Monte Carlo
EM (MCEM) algorithm is required. The implementation of the MCEM is similar to the EM
algorithm for the categorical missing covariates, and is developed in detail in Ibrahim, Lipsitz
and Chen (1999), and Ibrahim, Chen, and Lipsitz (1999). Specifically, we replace the weight
average in (A.2), (A.3) and (A.4) by a Monte Carlo average. For example, in the E-Step, for
missing covariates in the Block B, we take an MCMC sample of size

m®_ D (12) (tm?)
1 > Yi,mis’ i,mis® **C i,mis » from

S (X mis|%i,0bs ’yi’g(l)) o f(Yilxi,obs »Xi,mis »,3(’)’(/)(’) )f(xi.obs»xi.misI(Z(’))~

Then, we compute

0V (B.p16)= Y, log f(yibiB.e)
it y; observed, M;=0
m®

S S log FOi” ).

it y; observed, M,-;te =1

tl) (I[)

=X, s i mis) - We then take m®1) = m® + Am, where Am > 0. In such a way, the MCEM
algorlthm requires much less computational time, as a large m® is not needed in early iterations
of the algorithm.

Appendix B

Simple Linear Regression Model with Unknown Variances

We consider a simple normal regression model with a single covariate and unknown variances
here. In this case, we have

PN _0i=Bo-Bix)’\ | N _(i—a)
[GilxiBo)= Wexp{ o7 }andf(x,lw,r)— chp{ 5 }

Write ® = (B, 0%, 0, t2)". Let nj = #(B;) be the cardinality of Bj forj=1,2,3andn=n; +n, +
ns. For the CC analysis, we have

)2
lec(0)= Z [ log (27 \/(T"T‘-) i — 2lel _ (xi — @) l

2
it y; observed, M;=60 20 2t

J Multivar Anal. Author manuscript; available in PMC 2009 January 23.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Chen et al. Page 24

and the Fisher information matrix is given by

1/0? a/o? 0 0 0
5 ajo?r (*+a?)/o? 0 0 0
L.(0)=-E [(Wla.(e)] =n| 0 0 1/Qc% 0 0
0 0 0 1/72 0
0 0 0 0 1/

For the CR analysis, we have

- _ 2
=L@+ Y { g VBT RED_ (=0 pre) }

fEBl

where uz(rz+,3f72. After some messy algebra, we obtain the Fisher information matrix given
by

v v 0 Biu 0

& 1 av (sz+2ﬁ%7'4 B2 afv ﬂ?‘l‘z

I (0)=-E [chr(g)] :Icc(g)‘l'u_z 0 Bsz 1/2 (2) ﬁ%/z
BLv aBv 0 By 0
0 BT B2 0 B

For the AC analysis, the log-likelihood function is given by

2
—log Vant? - b - @) 3

272

Le @=L, O+ > log f(ala)=L (O)+ )

it y; missing, M;=0 i€B3

The corresponding Fisher information matrix is given by

000 O 0
e 000 O 0
L.(0)=—E [Wl“(e)] =L,@+m |0 0 0 0 0
00 0 1/7? 0
000 0 1/2th

Based on either the determinant or the trace of Fisher information matrix, AC yields most gain
in information over both CR and CC, and CR gains more information than CC. Specifically,
we have

det(lac) - det(lcr)
gt n2U5(2n1+3n2+n3)+n1n2(rzu4(n1+2n2+2n3)+n2(rzu3(n2n3(rz+n1n2ﬁf12

4Sostt [
+n1n3/3%72)+n%/3%0'272v2(n302+2n1B%TZ)+n%ﬁ‘1‘0'2T4v(n2(rz+n1/3%1'2)+n§/3?0'476I
> 0,
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det(I.,) — det(Z..)

5
nyny

= 4”,1714[nlu4(2n1+n2)+n1,3‘fr4u2(n1+n2)+no 10'274(n1+n2)(u+B%72)] >0,

n3(1+272)
—_—>

tr(loc) — tr(ler)= 27

O’

and

t(l) — tr(ICC):zn—zz |20(1483 +a?) 483 428141 >0,
v

CR leads to smaller asymptotic variances for all parameters than CC. Specifically, we have

Var(Biec) = VarBie) = 2mBot(naBirt+mn?)/a>0,
Var(c2,) — Var(c2,) 2my 0 (myBitt+ni1v%) /a1 >0,
Var(a..) — Var(ae,) = nZ,B%Tll/nl(nl +n)u>0,
Var(72,) — Var(z2,) 2n2,8‘1178[2n1v2+n20'2(v+,8%72)]/a1 >0,

where a;=n, (n%v4+n§ l0'274(v+,3f 2)+nnv* (1’ +,B‘11T4)).

In addition, AC improves the asymptotic variances over CR. Specifically, we have

Var(By ) — Var(Bi4c) = 2v4n§n3ﬁ?0'4r4/a2a3 >0,
Var(c2,) — Var(c2,) = 2v4n§n3ﬁ‘1‘(r$r4/ araz>0,
Var(@,,) — Var(@ae) = mti(nao?+n1v)/ni(n+n2)(man3o2+ny(ny +ny+n3)v)u>0,
2
Var(72,) - Var(t2,) = 2I13T4U4[I’l1U2+i’l20'2(U+ﬁ%T2)] Jaraz>0,

where

aZ:U4n1 (ny +n2)+n2,3‘11(r4v(n1 u+n2(rz)+n§,8?(rz‘r6, and az=n(n;+n, +n3)v4 +n2(rz(v+,3%72)(n3 v2+n2B‘11T4)+n1 nzﬁ‘l“r“u2
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Note: Blank block stands for missing, marked block stands for observed.

Figure 1. Missing Patterns
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Table 1
The Data Structure with Various Missing Patterns
Pattern (Block) Response] Covariates
Yi X

B, observed observed (M; = 6)
B, Observed partially or all missing (M; # 6 or M; = Q)
B, missing observed (M; = 6)
B, missing only partially missing (M; # 6 and M; # Q)|
B: missing completely missing (M; = Q)
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Variance Comparison with True Parameters Plugged-in for Linear Regression

Table 3

Page 30

(Mg, Nop, Nz, Nass Ny, Nz, N3, Ns) Para CC (Vo) CR (Vcc‘Vc§) AC (VCR'VAg)
By =1.0 1.224 x10* 6.111 x10™ 1.451 %10~
B, =10 2.895 x107* 1.420 x107* 3.481 x1072
B,=2.0 1.000 x107* 6.419 x107° 1117 x107°
(50, 200, 0, 0, 100, 100, 50, 0) By=3.0 2.000 x1072 1.336 x10° 8.718 x10°®
)= 1.0 1.224 x10°* 6.111 x1072 1.451 x10°2
B, =1.0 2.895 x10* 1.420 x10°* 3.481 x10°?
B,=2.0 1.000 x10°* 6.419 x1072 1117 x10°°
(50, 200, 0, 0, 100, 100, 50, 0) By=25 2.000 x1072 1.336 x10° 8.718 x10°®
Bo=1.0 1.224 x107* 6.111 x1072 1.424 x1072
B, =1.0 2.895 x107* 1.420 x107* 3.412 x107?
B,=2.0 1.000 x10°* 6.419 x1072 1117 x10°°
(50, 200, 0, 0, 100, 100, 20, 30) B3=3.0 2.000 x10°2 1336 x10° 7 8.718x10 °
Bo=1.0 1.224 107! 1.660 x1072 8.930 x10°°
B, =1.0 2.895 x10°! 3.001 x1072 2.380 x1072
B,=2.0 1.000 x10°* 3.509 x1072 1.749 x10°°
(50, 0, 200, 0, 100, 100, 50, 0) B3=3.0 2.000 x10°? 8.372 x107° 0
Bp=10 1.224x10°" 1.660 x10°2 8.930 x10°®
By =10 2.895 x10™* 3.001 x10°2 2.380 x10°2
B,=15 1.000 x107* 3.509 x1072 1.749 x107°
(50, 0, 200, 0, 100, 100, 50, 0) Bs=30 2.000 x10°* 8.372x10° 0
By=1.0 1.224 x107* 1.660 x1072 8.921 x107°
B, =10 2.895 x107* 3.001 x1072 2.378 x1072
B, =20 1.000 x107* 3509 x10°2 1.749 x10°3
(50, 0, 200, 0, 100, 100, 20, 30) By =3.0 2.000 x10°2 8.372x10°° 0
Bo=1.0 1.224 x10°* 7.183x10°° 2.314 %102
B, =10 2.895 x107* 1.057 x1072 4.814 x1072
B,=2.0 1.000 x10°* 1.439 x10°2 8.327 x10°°
(50, 0, 0, 200, 100, 100, 50, 0) By=3.0 2.000 x102 5173 x1073 1.090 x10°3
Bo=1.0 1.224 x107* 1.116 x1072 3.274 x10°°
B;=1.0 2.895 x107* 1.476 x1072 9.621 x107?
,=2.0 1.000 x107* 2.191 x1072 1112 x10°°
(50, 0, 0, 200, 100, 100, 50, 0) By=2.0 2.000 x1072 7.754 x1073 1.264 x10°3
Bo=1.0 1.224 x107? 7.183 x10°° 2.206 x10°7°
B, =1.0 2.895 x10°! 1.057 x10°2 4519x10°°
B,=2.0 1.000 x10°* 1.439 x1072 8.327 x10°°
(50, 0, 0, 200, 100, 100, 20, 30) B3=3.0 2.000 x10 2 5.173 x10°° 1.090 x10°°
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