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Abstract

Background: The fibre type attributes and the relationships among their properties play an important
role in the differences in muscle capabilities and features. Comprehensive characterisation of the skeletal
muscles should study the degree of association between them and their involvement in muscle
functionality. The purposes of the present study were to characterise the fibre type composition of a trunk
(Psoas major, PM) and a limb (Flexor digitorum, membri thoraci, FD) muscle in the bovine species and to study
the degree of coordination among contractile, metabolic and histological properties of fibre types.
Immunohistochemical, histochemical and histological techniques were used.

Results: The fibre type composition was delineated immunohistochemically in calf muscle samples,
identifying three pure (I, lIA, and 11X) and two hybrid type fibres (I+IIA, and [IAX). Most of the fibres in FD
were types | and IIA, while pure 11X were absent. All fibre types were found in PM, the IIX type being the
most frequent. Compared to other species, small populations of hybrid fibres were detected. The five fibre
types, previously identified, were ascribed to three different acid and alkaline mATPase activity patterns.
Type | fibres had the highest oxidative capacity and the lowest glycolytic capacity. The reverse was true
for the IIX fibres, whereas the type IlA fibres showed intermediate properties. Regarding the histological
properties, type | fibres tended to be more capillarised than the Il types. Correlations among contractile,
metabolic and histological features on individual fibres were significantly different from zero (r values
varied between -0.31 and 0.78). Hybrid fibre values were positioned between their corresponding pure
types, and their positions were different regarding their metabolic and contractile properties.

Conclusion: Coordination among the contractile, metabolic and histological properties of fibres has been
observed. However, the magnitude of the correlation among them is always below 0.8, suggesting that the
properties of muscles are not fully explained by the fibre composition. These results support the concept
that, to some extent, muscle plasticity can be explained by the fibre type composition, and by the
properties derived from their metabolic and histological profiles.
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Background

Myofibres are the functional units of individual skeletal
muscles. Such muscles consist of a heterogeneous popula-
tion of fibres, differing in their molecular, structural, con-
tractile and metabolic features, which contribute to a wide
variety of functional capabilities. Up to now, the different
isoforms of the myosin heavy chain (MyHC) protein have
seemed to be the best markers to characterise muscle fibre
type diversity [1]. Traditionally, studies in the field of
muscle research have relied on a histochemical classifica-
tion based on the staining for acid or alkaline stabilities of
the myofibrillar ATPase (mATPase) activity [2]. The alter-
native, of immunohistochemistry with specific poly/mon-
oclonal antibodies, was identified as a much more
objective method for the accurate identification of muscle
fibre types according to the MyHC isoform they express.
This is due to the ability of such a method to identify
hybrid fibres [3], which show the coexistence of several
MyHC isoforms. This coexistence in a single fibre is
detected by monoclonal antibodies (MAbs) against the
different MyHC isoforms; the predominant isoforms
being responsible for the fibre's functional properties,
such as the speed of contraction and the fatigue resistance
[4].

Eight MyHC isoforms have been identified in adult
bovine striated muscles, including cardiac, developmen-
tal, adult and extraocular isoforms [5,6]. All eight iso-
forms are co-expressed in extrinsic eye muscles, three (1,
IIA and IIX) in limb and trunk muscles and two (I and a)
in masseter. The expressions of IIB and Eo are restricted to
extraocular muscles, and developmental isoforms are
only found in specialised muscles in the larynx and in the
eye. The expression of MyHC IIB represents a controver-
sial issue in cattle. While Chikuni and co-workers [7,8]
concluded that a functional gene coding for MyHC IIB
was not present in the genome of all ungulates they exam-
ined, Toniolo and co-workers [9] proposed that the
expression of 1IB and Eo in extraocular muscles could be
related to an embryological origin or to their specialised
contractile requirements. They also suggested that fibres
expressing MyHC-a are particularly suited for the bovine
diet and the chewing action. Bovine trunk and limb mus-
cles consist of a population of type I or slow fibres, and
two fast isoforms, or type II (IIA and 1IX) [3] similarly to
humans [10], carnivores [11], small ruminants [12] and
horses [13], but with a lower proportion of hybrid fibres.
The sequencing and expression of the genes coding MyHC
proteins have previously been reported in different bovine
muscles [5,6]. Fibre type composition from similar skele-
tal muscles seems to differ among species [3,9,14] and
breeds within the same species [15,16], somehow reflect-
ing a process of adaptation to the animals' functionality
(the functions that the animal carries out, such as grazing,
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ruminating, movement, etc.) and/or the result of selection
towards a breed specialisation [17].

Muscle specialisation is the result of the coordinated
expression of contractile and metabolic proteins together
with the histological features that characterise the fibres.
Studies characterising and relating contractile, metabolic
and morphological attributes of muscle fibres have been
performed in several species [11,18]. These studies show
that cellular expression of the various MyHC isoforms is
coordinated with the metabolism (oxidative or glyco-
lytic), the activity of myofibrillar adenosine triphos-
phatase (mATPase), and some morphological features.
However, to what extent the pattern of coordination is
maintained across species is unknown and, therefore,
extrapolation of results across species should be per-
formed cautiously. Muscle plasticity is an intense area of
research. Plasticity is mainly characterised by changes in
the expression of tissue specific isoforms and the ability to
undergo adaptive metabolic processes [19]. These mecha-
nisms of muscle plasticity may somehow affect the pat-
tern of coordination within and across species. From this
perspective, accomplishing comprehensive studies to
characterise the coordination of properties responsible for
muscle capabilities appears to be of interest. To the best of
our knowledge, this type of study has not yet been per-
formed in cattle on a fibre to fibre approach. The under-
standing of such interrelationships is important to
ascertain aspects related to beef quality differences as well
as to muscle diseases.

In this study we characterised fibre type composition and
features in two muscles, M. psoas major (PM), and M. flexor
digitorum superficialis, membri thoraci (FD), which were
representative of two meat cuts. These two cuts clearly dif-
fer in their meat quality attributes. Among other proper-
ties, PM muscles have more intramuscular fat content and
are more tender than FD [20].

The purpose of the present study is twofold: firstly, to
characterise the fibre type composition of these two
bovine skeletal muscles by using a combination of inmu-
nohistochemical and histochemical techniques which
allows us to identify the MyHC isoforms they exhibit; Sec-
ondly, to examine accurately the interrelationships of rel-
evant contractile, metabolic and histological properties of
bovine muscle fibre types on a fibre-to-fibre basis.

Methods

Muscle samples

Male calves of the Avilena-Negra Ibérica breed were sam-
pled for the experiment. Animals were fattened under the
same diet and location conditions, and slaughtered when
they were fit for commercial requirements, which is to say
at a weight of about 500 kg, normally achieved at around
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450 days. Samples of approximately 1 x 1 x 0.5 cm3 were
removed from the superficial layer of the PM and FD mus-
cles from each calf. These two muscles were chosen
because of their different anatomical locations and poten-
tially distinctive functional roles in motion. While PM is a
dynamic muscle that causes the propulsion of the leg, and
is involved in activities of high energy cost, the FD is a pos-
tural muscle that is involved in long activities of low
energy cost. Moreover, these two muscles are part of two
specific meat cuts which markedly differ with respect to
relevant meat quality traits [20]. Two samples (one per
muscle) of each of five calves (n = 10, 2 per animal) were
collected after slaughter.

Muscle samples were placed on a suitable piece of cork,
allowing their relaxation for a few minutes, covered with
OCT™ Compound (Tissue-tek®, Sakura Finetek) and then
frozen in isopentane chilled in liquid nitrogen. They were
stored at -80° C until analysis.

Serial cross sections were cut in a cryostat at -20°C, and
placed on labelled and coated glass slides for immunohis-
tochemistry, histochemistry and histology. Two consecu-
tive sections from each muscle and individual were used
for each of the procedures described below.

Immunohistochemistry. Fibre typing

Four monoclonal antibodies (MAbs), BAF8, SC71, BF35,
and S58H2, whose specificities for the MyHC isoforms
have been previously demonstrated in mammals, were
used [3,21,22]. Their source and specificities are in the
Acknowledgement section and Table 1, respectively, and
also described elsewhere [3,21]. Serial sections of 10 pm
from both muscles were pre-incubated in a blocking solu-
tion of stock goat serum for each MAb, and then incu-
bated overnight at 4°C with the primary MAb. The
working dilutions were 1/300 in PBS for BAF8, SC71 and
BF35, and 1/50 in PBS for S58H2. An additional section
was incubated without specific primary MAb and used as
blank tissue to demonstrate the non-specific reactivity and
control the background staining.

Table I: Specificity of the monoclonal antibodies used in the
immunohistochemistry

Cattle skeletal muscle fibre types

Monoclonal antibodies | I+1IA 1A HAX X
BAF8 + + - - -
SC71 - + + + +
BF35 + + + + -
S58H2 + + - + +

Positive (+) or negative (-) reactions of specific myosin heavy chain
isoform or fibre type to each monoclonal antibody.
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After incubation, the sections were washed and incubated
with the secondary antibody (biotinylated goat anti-
mouse IgG; code n° E0433; Dako) for 30 minutes. Sec-
tions were washed again and reacted for 1 hour in the dark
with ABC reagent. The immunocomplexes were visualised
by incubating the sections for 2-3 minutes in a diami-
nobenzidine solution. After being stained, TRIS solution
(pH 7.6) and tap water were applied to the slides to stop
the progress of the staining. The slides were dehydrated in
an ethanol series, cleared in xylol and cover-slipped with
DPX resin for microscopy (BDH Lab Supplies, Poole, Eng-
land).

The fibres were classified according to their MyHC content
by means of visual examination of the immunostained
serial sections. After the image analysis of consecutive
frames (each of the four sections stained with a particular
anti-MyHC MADb), the reactivity of each fibre was judged
as positive or negative by comparing the staining intensity
with that of the neighbouring fibres. Five fibre types were
characterised as I, I+IIA, TIA, TIAX or IIX according to the
pattern of immunoreactivity shown in Table 1.

Histochemistry: Myofibrillar ATPase activity and
metabolic properties

Additional 10 pum serial sections were stained for mAT-
Pase activity after acid and alkaline preincubations by
using a modification of the Brooke and Kaiser (1970)
method [23]. The optimum pH for both mATPase dena-
turation protocols was carefully searched in each muscle,
in order to visually distinguish at least two or three inten-
sity levels of staining. For this purpose, serial sections were
stained using a range of pH values, from 4.25 to 4.55 in
increments of 0.05 for the acid preincubation, and from
10.25 to 10.50 for the alkaline one, likewise in increments
of 0.05. The optimum values were 4.42 and 10.35 for the
acid and the alkaline preincubation respectively. This
mATPase histochemical approach was pursued to charac-
terise the acid and alkaline stabilities of the mATPase
activity in bovine skeletal muscle fibre types, which had
been classified according to their differential MyHC con-
tent. These activities are not only species-specific [24] but
they can also vary greatly within the same species accord-
ing to the mATPase histochemical method employed
[25].

The histochemical activity of succinate dehydrogenase
(SDH) enzyme was used as a marker of the oxidative
capacity of muscle fibres. Staining was carried out on 10
pm thick sections according to the histochemical proce-
dure previously described [26], except for the optimum
incubation time which was 10 minutes. The histochemi-
cal activity of glycerol-3-phosphate-dehydrogenase
(GPDH) enzyme was used as an indirect marker of the
glycolitic capacity of muscle fibres. Staining was carried
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out on 14 um thick sections according to Martin et al.,
[27], except for the incubation time which was increased
to 45 minutes. The linearity of the quantitative histo-
chemical reactions (SDH and GPDH) in relation to the
incubation time has been previously verified in a number
of mammalian species [11,18]. Optical density (OD) was
measured in the stained sections, as it has been demon-
strated that a high degree of analytical precision can be
achieved by measuring the OD of the fibres on histochem-
ical sections [26,27].

Histology

Additional 14 pm thick serial sections were stained
according to a standardised periodic-acid-Schiff (PAS)
technique for selective staining of glycogen in individual
fibres, using a 1% acid solution for 5 min at 37°C. Other
sections of 14 um thickness were incubated for 60 min at
37°Cina 2.2% o-amylase (Sigma Chemical Co., St Louis,
MO, USA. Product No. A-2771) solution and then were
stained with the same PAS protocol [28]. These sections
were used both to visualise capillaries and to measure the
cross sectional area (CSA) of individual fibres. Additional
10 pum thick sections were stained with haematoxylin and
eosin to determine the number of nuclei.

The absolute values of both nuclei and capillaries for each
fibre were converted to relative values by dividing them by
the CSA of the corresponding fibre. This staining did not
distinguish myonuclei from other nucleus types (intrafi-
bre nuclei, and nuclei of the satellite cells and capillaries).
The number of nuclei was obtained by counting all the
nuclei around each individual fibre.

Image analysis and morphometry

Sections were visualised and analysed by a Leica DMLS
microscope (Leica Microsistemas, Barcelona, Spain), a
Leica high-resolution colour charge-coupled device cam-
era (Leica Microsistemas, Barcelona, Spain), an eight-bit
Matrox Meteor frame-grabber (Matrox Electronic Systems,
Barcelona, Spain) and the Scion Image (ScnImage) soft-
ware (Scion Corporation, Maryland, USA, available at
http://www.scioncorp.com).

All sections were carefully surveyed to find regions which
were free of artefacts, and ten regions (five per muscle)
were taken for analyses. These regions contained between
50 and 128 fibres (mean, 81 fibres). A minimum of 15
fibres of each type were present in each region, except
hybrid I+IIA and I[IAX types, due to their low frequency.
Fibres in each area were individually identified, and a
fibre mask was manually drawn along the edge of each
fibre, for the inmunohistochemical, histochemical and
histological assays. The CSA and OD were determined for
each fibre. The CSA was measured in the a-amylase PAS
stained sections, as this staining does not have a negative

http://www.biomedcentral.com/1471-2121/9/67

impact on fibre size. The numbers of capillaries and nuclei
around each numbered fibre were obtained from the a-
amylase-PAS and haematoxylin-eosin staining tech-
niques, respectively. They were expressed in both absolute
and relative terms (as the number of capillaries or nuclei
per 1,000 um? of the fibre CSA).

A total number of 814 individual muscle fibres, 455 in FD
and 319 in PM, could be fully characterised in all the sec-
tions of the ten samples (5 specimens by 2 muscles).

Substantial variations in ODs were detected between dif-
ferent muscle specimens for all immunohistochemical
and histochemical stainings. Accordingly, the OD of each
fibre was normalised by means of the Z scores within each
muscle based on the following algorithm:

where X; is an individual OD measure, x is the mean for

all fibres within a group (fibre population, digitalised
image and individual muscle sample), and s is the stand-
ard deviation [29]. Standardisation to Z score was carried
out separately for each fibre type within a digitalised
image, for each digitalised image within each individual
muscle sample, and for each individual muscle sample
within each skeletal muscle. The resultant positive and
negative Z values were then expressed on a scale ranging
from 0 to 1.

Statistical analysis

Statistics and charts were obtained by the Statistical Advi-
sor software (StatSoft, Inc. 2001. STATISTICA data analy-
sis software system, version 6. http://www.statsoft.com).
Descriptive statistics were used to derive means, SE and
0.95 confidence intervals for all variables. Statistical anal-
yses of each dependent variable were carried out using a
two-way analysis of variance (ANOVA) including the
effects of fibre type and muscle, and the interaction
between them. In the presence of a significant F ratio, post
hoc comparisons of means were provided by a Fisher's
least significance difference test. Statistical significance
was accepted at p < 0.05. In general, variations attributa-
ble to the muscle of origin were low, although not totally
absent, for the immunohistochemical and histochemical
features of the fibre types, but they were significant for the
morphological features. Accordingly, data for immuno-
histochemical and histochemical variables of myofibres
are shown as pooled means of the total number of ana-
lysed fibres, in the two muscles, and in the five animals.
However, data concerning CSA, capillaries and the total
nuclei of the fibre types are presented separately for each
muscle. Pearson's coefficients of correlations were also
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obtained for specific fibre types within and between mus-
cles, in order to estimate the degree of interrelationships
among different muscle fibre type characteristics.

The method of canonical discriminant analysis was applied
for the study of the relationships between the different tech-
niques. This method is a dimension-reduction technique
related to principal component analysis and canonical corre-
lation, in which linear combinations of the quantitative var-
iables are found which provide maximal separation between
the classes or groups, the five fibre types in our case. The pro-
cedure computes squared Mahalanobis distances between
class means. This analysis describes collectively the relation-
ship among all variables, and compares individual muscle
fibres by simultaneously considering all the quantified vari-
ables. Plotting pairs of canonical variables for all the observa-
tions, fibres in our case, provided an overall view of the
coordination of contractile, metabolic and morphological
features of the fibre types.

Results

Immunohistochemistry. Fibre typing

The fibre types were identified by visual inspection of sec-
tions stained with the anti-MyHCs MAbs. Three of them
were pure fibre types expressing a unique MyHC isoform,
either I, TIA or IIX, and two others were hybrid types co-
expressing two MyHC isoforms, I plus IIA (I+IIA), and ITA
plus IIX (IIAX). Type 1 fibres reacted with all MAbs except
SC71 (e.g. fibre 1 in Figure 1A-D). Type IIA reacted with
MAbs SC71 and BF35 but not with the remaining MAbs (e.g.
fibre 3 in Figure 1A-D). Type IIX fibres were negative for
MADbs BAF8 and BF35, and positive for S58H2 and SC71
MADs (e.g. fibre 5 in Figure 1A-D). Hybrid I+IIA fibres
reacted with all four MAbs (e.g. fibre 2 in Figure 1A-D),
while ITAX fibres were labelled with all MAbs, except BAF8
(e.g. fibre 4 in Figure 1A-D). The fibre immunostaining with
the specific anti-MyHC MAbs showed a wide range of reac-
tions, not just positive or negative. In the hybrid types, the
staining showed a continuous variation, possibly due to the
differential contents of the MyHCs they are co-expressing.

Table 2 shows fibre composition for the FD and the PM
muscles. On average, the FD muscle was mainly com-
posed of type I and IIA fibres. The remaining fibres were
the hybrid types, I+IIA and IIAX, but pure IIX fibres were
not found in any of the FD muscle specimens examined.
PM muscle had on average a balanced proportion among
the three main pure fibre types, and a reduced number of
hybrid fibres. The amount of hybrid fibres changed
according to the muscle, there being more I+IIA in FD
than in PM, while the opposite was true for the IIAX type.

Quantitative differences in the immunostaining of MyHC
observed among fibre types were significant for all MAbs.
The BAF8 MAD allowed the discrimination amongst type
I and I+IIA fibres while the SC71 MADb labelled type II
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fibres (Figure 2A). The BF35 MADb labelled all fibre types
except IIX fibres, while S58H2 stained positively all fibre
types but IIA (Figure 2B).

Myofibrillar ATPase activity

Based on the visual examination of acid and alkaline mAT-
Pase reactions, bovine skeletal muscle fibre types could be
assigned to three main categories, corresponding to the
three main staining intensities (Figure 1E-F). Type I fibres
were acid-stable and alkaline-labile (see fibre 1 in Figure
1E-F) whereas type IIA ones were acid-labile and alkaline-
stable (see fibre 3 in Figure 1E-F), and type IIX ones were
partially acid- and alkaline-stable (see fibre 5 in Figure 1E-
F). Hybrid I+IIA and IIAX fibre types showed mATPase
activities between their respective pure MyHC fibre types.

Quantitative differences in the staining of both mATPase
assays, related to the previously established fibre types, are
shown in Figure 3A. Significant differences among fibre
types were detected for both acid and alkaline mATPase
activities. Pure fibre types could be clearly distinguished
on serial sections stained with these two techniques while
hybrid fibres overlapped with their respective pure types.
Hybrid I+IIA fibres were closer to I than to IIA, and ITAX
were closer to IIX than to IIA (Figure 3A).

The degree of correlation between the mATPase histo-
chemistry and the MyHC expressed in a given fibre can be
examined by plotting OD values of either acid or alkaline
mATPase against specific anti-MyHC MAbs. As the data
did not follow a monotonically increasing function across
classes, the relationships between the mATPase stainings
and the different MyHC types could only be calculated in
the hybrid fibre populations (Figure 3B-C). The hybrid
fibres showed a continuous variation in the staining
intensity as a function of their different MyHC contents. A
positive and significant correlation was observed between
the acid mATPase and the BAF8 MADb stainings of the
hybrid I+IIA fibres in the FD muscle (Figure 3B). This cor-
relation clearly indicated an increase of the acid mATPase
stability of I+IIA fibres as the MyHC proportion changed
from mainly type I to mainly type IIA. Similarly, a signifi-
cant positive correlation was observed between the alka-
line mATPase and the SC71 MAD stainings of the hybrid
IIAX fibres in the PM muscle (Figure 3C). Once again,
alkaline mATPase in those fibres varied as the MyHC pro-
portion changed from mainly IIA to mainly I1X.

Taking into account the correlations between OD values
of specific anti-MyHC MAbs and OD values of mATPase,
hybrid fibres appeared to have a continuous and linear
transition between their corresponding pure types. There-
fore, hybrid fibres represented a heterogeneous popula-
tion between pure fibres, in which the association
between contractile, metabolic and histological attributes
can be fruitfully investigated.
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2 = Type I+lIA
3 = Type IIA
4 = Type lIAX
5 =Type lIX

Figure |

Serial sections of the PM muscle stained for immunohistochemistry, enzyme histochemistry and histology. A-
D: Sections were stained with a battery of MAbs against specific MyHC isoforms: BAF8 anti MyHC | (A), SC71 anti MyHC IIA
and IIX (B), BF35 anti MyHC | and IIA (C), and S58H2 anti MyHC | and IIX (D). E-F: Sections assayed for mATPase activity after
acid (pH 4.42, E) and alkaline (pH 10.35, F) preincubations. G-I: Sections assayed for SDH (G), GPDH (H), and PAS for selec-

tive staining of glycogen (I). J-K: Histological staining with PAS after digestion with a-amylase to reveal capillaries (J) and haema-
toxylin-eosin to show total nuclei (K).

Metabolic properties GPDH histochemical activities (Figure 4). On average,
The visual examination of SDH and GPDH histochemical =~ SDH mean activities tended to decrease significantly from
reactions revealed a continuous variation in the staining  type I to type IIX fibres, whereas GPDH mean activities
intensities of all fibre types (Figure 1G-1H). Significant =~ showed the reverse tendency (Figure 4A). Hybrid I+IIA
differences were detected among fibre types for SDH and  fibres were slightly closer to IIA than to I, and IIAX were
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Table 2: Different fibre types in each of the two studied muscles

MyHC Muscle Fibre Types

Muscle I I+IIA 1A 1IAX I1IX Total

FD n 194 23 131 Il 0 359
n/total 054 006 036 0.03 0.00

PM n 132 20 94 48 161 455

n/total 029 004 021 0.10 035

Number (n) and proportion (n/total)! of the different fibre types
pooled from five animals in each of the two studied muscles.
IPercentages of the different fibre types were not calculated because
data came from five pooled animals.

closer to IIA than to IIX (Figure 4A). Therefore, the ratio
SDH:GPDH, which is commonly used as an indicator of
the rate between oxidative and glycolytic metabolisms of
myofibres, decreased consistently, as shown in Figure 4B.
SDH activity was higher than GPDH activity in all fibre
types but IIX, which showed higher GPDH than SDH
activities. A negative correlation (r = -0.49) was found
between SDH and GPDH activities.

In order to ascertain the degree of coordination between
metabolic enzymes and contractile proteins, SDH and
GPDH reactions were plotted against anti-MyHC MAbs
stainings of hybrid fibres I+IIA (Figure 4C) and I1AX (Fig-
ure 4D). As the data did not follow a monotonically
increasing function across classes, these relationships
were only calculated for the hybrid fibre populations. In
both cases, the magnitude of the correlations (Figures 4C
and 4D) between SDH activity and MyHC isoforms was
larger than that with GPDH activity. As expected, hybrid
[+IIA fibres which contained more IIA than I MyHC,
showed lower values of SDH and larger values of GPDH.
Similarly, hybrid ITAX fibres containing more 11X than I1A
MyHC had lower SDH and higher GPDH values than
fibres containing more IIA than IIX.

The PAS staining (Figure 11) showed that the glycogen
content of each individual fibre decreased significantly
from I to IIX fibre types, contrary to other results [18].
More severe stress-induced glycogen depletion was
observed in all fibre types of the FD muscle than in the
corresponding fibre types of the PM muscle.

Histology

The staining for CSA and nuclei determinations is shown
in Figure 1] and for capillaries in Figure 1K. Mean values
of CSA and absolute and relative numbers of total nuclei
and capillaries are summarised in Table 3. Mean compar-
isons among fibre types and muscles for each of these fea-
tures are also shown. In general terms, CSA were larger in
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Figure 2

Normalised mean OD of MyHC-based fibre types
stained with four anti-MyHC Mabs. BAF8 (anti MyHC I)
and SC71 (anti MyHC llA and 1IX) (A), BF35 (anti MyHC |
and IlA) and S58H2 (anti MyHC | and 1IX) (B). Values are
pooled means of the 814 fibres analysed in the two skeletal
muscles (PM and FD). Vertical bars represent the 0.95 confi-
dence intervals.

FD than in PM. The absolute numbers of nuclei and cap-
illaries tended to be larger in FD than in PM, but this pat-
tern changed when relative values were considered. The
relative values of nuclei were quite similar between mus-
cles and the relative values of capillaries were larger in PM
than in FD (Table 3).

Differences among fibre types became more evident when
the relative values of both nuclei and capillaries were con-
sidered. The relative values of capillaries and nuclei in
type I fibres tended to be higher than in the most glycolitic
ones. A positive relationship (r = 0.64) was detected
between relative numbers of capillaries and nuclei.
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Figure 3

Normalised mean OD of mATPase activities and
their relationships to the fibre types. A: Mean OD
standardised to Z scores of mATPase activity after acid (pH
4.42, acATPase) and alkaline (pH 10.35, alATPase) preincuba-
tions of the MyHC-based fibre types. Values are pooled
means of the 814 fibres analysed in the two skeletal muscles
(PM and FD). Vertical bars represent the 0.95 confidence
intervals. B, C: Fibre-to-fibre relationship between OD of the
immunostaining and mATPase activities in different subsets of
hybrid fibres. Relationship between the BAF8 MAb (anti
MyHC I) and acATPase staining of all I+IIA hybrid fibres ana-
lysed in the FD (n = 23 fibres) (B). Relationship between the
SC71 MADb (anti MyHC IIA and 11X) and alATPase staining of
all HAX hybrid fibres identified in the PM (n = 48 fibres) (C).
r: Pearson coefficient of correlation; #: p < 0.001 level of sig-
nificance.
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When analyzing the possible relationship between histo-
logical and metabolic properties, a negative correlation (r
=-0.58) was detected between CSA and SDH activity on a
fibre to fibre comparison in all PM fibres. The value of the
r coefficient was influenced by the behaviour of the 11X
fibres, as they showed a wide CSA range which was not
associated with a large variation in SDH activity.

Multivariate analysis

The dataset coming from both muscles was subjected to
multivariate analyses to summarise fibre type features
according to their MyHC content (Figure 5). The ability of
these features to discriminate fibre types was examined by
canonical discriminant analyses (Figure 5A). Almost 75%
of the data variance was explained by the first two factors.
The first factor 1 in Figure 5A included the most relevant
variables for the distinction between type I and type II
fibres: mATPase activities, and BAF8, S58H2 and SC71
MADbs, while the relevance of SDH and GPDH activities
was smaller. The second factor which delineated fibre II
subtypes was mostly explained by CSA and the BF35 MAb.
As before, metabolic activities were also less important.
These two major components allowed fibre type discrim-
ination as shown in Figure 5B. Collectively, three major
fibre type populations (I, IIA and IIX) were clearly dis-
criminated amongst, whereas hybrid fibre types appeared
in between the neighbouring major classes (Figure 5B).
Thus, type I+1IA fibres were located between I and 11A, and
tended to be closer to I than to IIA, while type IIAX fibres
appeared between IIA and IIX, but slightly closer to 11X
than to IIA fibre types. The same behaviour was observed
when Mahalanobis distances among all groups of fibres
were calculated (Table 4). Distances between fibre types
were all statistically significant.

Discussion

Immunohistochemistry. Fibre typing

The functional properties of muscles that qualify them for
locomotion, postural maintenance or respiration, among
others, can be elucidated from their fibre type composi-
tion. To the authors' knowledge, the FD muscle has not
been previously characterised in cattle. An interesting
result of the present study was the abundance of slow-
twitch type 1 fibres and the vestigial expression of the
MyHC IIX isoform in the FD, resulting in the absence of
IIX pure fibres and a very low proportion of hybrid ITAX
fibres (Table 2). Muscles composed mainly of type I could
play a major role in maintaining posture by stabilizing the
extended joints, while large muscles generating the strong
power needed for propulsive force contained a high pro-
portion of the IIX type [30], as did the PM. The fact that
the IIX pure type was not found in FD indicated the spe-
cialisation of this muscle towards a greater endurance,
corresponding to a muscle continuously used throughout
the day for walking, standing, etc.
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Normalized mean OD of SDH and GPDH activities and their relationships to the fibre types. A, B: OD standard-
ised to Z scores of SDH and GPDH activities of the MyHC-based fibre types. Mean OD for SDH and GPDH (A). SDH:GPDH
ratio (B). Values are pooled means of the 814 fibres analysed in the two skeletal muscles (PM and FD). Vertical bars represent
the 0.95 confidence intervals. C, D: Fibre-to-fibre relationships between OD of the immunostaining and SDH and GPDH histo-
chemical activities in various subsets of hybrid fibres. Relationship between the S58H2 MADb (anti MyHC | and 1IX) and both
SDH and GPDH staining of all I+1IA hybrid fibres identified in the present study (n = 42 fibres) (C). Relationship between the
BF35 MADb (anti MyHC | and lIA) and both SDH and GPDH staining of all IIAX hybrid fibres identified in the study (n = 59
fibres) (D). r: Pearson coefficient of correlation; #, *: p < 0.001 and p < 0.05 levels of significance, respectively.

Similar to the results shown by Picard et al. [3] in the
bovine species, the muscles studied here showed a small
proportion of hybrid fibres in comparison to other mam-
malian species such as horses [13,18], pigs [18] or dogs
[11]. The role of the hybrid fibres is not fully understood.
Some authors [31] assert that they indicate the dynamic
transition from one pure phenotype to the other, whereas
some others [32] claim that they are stable populations
that can behave differently depending on external stimuli.
In this context, we speculate that a low percentage of
hybrid fibres could not significantly change the behaviour
of the muscle in response to a external stimuli, whereas a

large population of hybrid fibres could. So, species with a
low proportion of hybrid fibres (cattle) would support the
"dynamic transition" hypothesis, and species having a
large percentage of them (dog) the "stable population”
one. As the MyHC isoform composition of a single fibre
can be used as a "physiological marker", then the extent of
hybridism may reveal the diversity of activity that a given
muscle or species requires.

The very fast MyHC IIB was not detected in our study, in
agreement with Tanabe et al., [5], Maccatrozzo et al., [6],
and Toniolo et al., [9]. Although large mammalian species
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Table 3: Mean % SE of the histological measurements in each of the two studied muscles

MyHC Muscle Fibre Types!

Variable | I+11A 1A IHAX 11X
CSA FD 3246 £ 79b 3172+ 241 b 3962 + 160 c 2422 £ 235a
(nm?)
PM 2086 + 102 a 1806 + 197 a 2157 £ 136a 2459 + 226 a 3692 + [54b
Capillaries FD 411 £0.11a 359+024a 398+0.13a 3.09+037a
(n)
PM 371 £0.14 ¢ 394+ 036¢ 324+ 0.17 be 274 £ 0.27 ab 260+0.132
Capillaries FD 1.37£0.04b 120 £ 0.10 ab .10 £0.04 a 1.56 £0.32 ab
(n 103/um?)
PM 236+0.15¢ 253+£030c 1.84+0.12b 1.58 £0.21 b 0.90 £ 0.06 a
Nuclei FD 11.32+035b 9.68 £0.82b I1.16 £0.62 b 970 £ 1.33b
(n)
PM 622+029a 584 +065a 579+035a 461 £040a 571+£030a
Nuclei FD 3.82+0.19ab 324 £ 0.26 ab 3.07£0.14ab 399+ 042ab
(n 103/um?)
PM 382+026b 401 £047 b 339+0.192ab 249+029a 193+0.13a

I See Table 2 for the number of fibre types analysed in each skeletal muscle

CSA (um?2), and absolute (n) and relative (n 103/um2) numbers of both capillaries and nuclei of the different fibre types in each of the two studied
muscles are shown. Relative values are obtained by dividing the absolute values by the CSA. Post hoc comparisons of means were provided by a
Fisher's least significance difference test. Means with different letters are statistically different.

were initially supposed not to have the very fast MyHC IIB
isoform, it has been found in some of them, such as pig
Longissimus muscle, [33] and llama Semitendinosus and
Vastus lateralis muscles [24,34]. This MyHC isoform was
functionally and morphologically compatible with the
MyHC IIB gene, commonly reported in eutherian species
of mammals [35]. Nevertheless, this third fast MyHC iso-
form, compatible with the IIB isoform of small rodents, is
not expressed in trunk and limb skeletal muscles of
humans, carnivores, ruminants or horses [5,36-39].

The fibre type composition of muscles in meat producing
breeds influences their meat quality features. A positive
relationship between the percentage of type I fibres and
the intramuscular fat (IMF) has been previously described
for bovine skeletal muscles [15]. It is noticeable that in the
present study a larger proportion of type I fibres was
found in the muscle which had a lower IMF content [20].
In relation to this finding, some results in human muscles
pointed out the absence of a relationship between the
expression of MHY7 (the gene coding for MyHC I) and
the expression of genes involved in adipogenesis such as

PPARa and PPARS [40]. The predominance of type II
fibres has been associated with a faster post-mortem age-
ing rate and, therefore, to a rapid rate of tenderisation
[41]. In our case, the PM showed a larger proportion of
both ITA and IIX types and was perceived as a more tender
muscle than the FD [20]. Both IMF and tenderness are rel-
evant traits in the cattle production context.

In a different study, we have performed a microarray
experiment to assess the differential gene expression
between PM and FD muscles in male Avilefia-Negra
Ibérica calves [42] A bovine fat and muscle cDNA micro-
array [43] was used and 20 microarray slides were hybrid-
ised following a loop design that directly compared both
muscles within and between individuals. MYH7 gene
(coding for type I isoform) was more expressed in FD,
which is in agreement with the higher proportion of type
I fibres found in this muscle (see Table 2). Furthermore,
the MYH1 gene (coding for type IIX isoform) was more
expressed in PM, in agreement with the larger proportion
of IIX fibres found in this muscle. However, the MYH2
gene (coding for type IIA isoform) did not show a signifi-
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Table 4: Squared Mahalanobis Distances and F-values by discriminant analysis

Fibre types Discriminant analysis MyHC Muscle Fibre Types
I+11A 1A IHAX 11X
I SMD 15 120 64 70
F-values 41 983 223 411
I+IA SMD 65 25 36
F-values 166 45 82
A SMD I5 35
F-values 50 188
IHAX SMD 9
F-values 26

Squared Mahalanobis Distances (SMD) and F-values for overall differences between fibre types by discriminant analysis on all muscle features and
fibres of the two bovine skeletal muscles (n = 814 fibres). All distances among fibre types are significant p < 0.001.

cant difference in expression in the FD muscle, which had
a higher proportion of type IIA fibres in the current exper-
iment. This last observation has also been described in
swine [14,44]. The most common explanation is that
mRNA coming from different MyHC genes could hybrid-
ise together in the same spots because of their sequence
similarity. If this was the case, results would show random

0.5 _ o
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' ;‘J é)u‘clei

M o
~.CSAJ Capillaries |

-0.5 0.0 0.5 1.0
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Figure 5

patterns in both muscles, but what we have in reality is a
particular pattern for MYH7, MYH1 and MYH2 genes spe-
cific to the different muscle types. A larger amount of the
MYH?2 transcript was systematically observed in the PM
muscle, which contains less IIA fibres. Different post-tran-
scriptional mechanisms of gene expression, such as
siRNA, antisense RNA, RNA interaction with silencing fac-
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Multivariate analysis of MyHC fibre types' features. Spatial distribution of fibre types' features according to results of

the canonical discriminant analysis (A) (see Fig. 2 to 4 for abbreviations). Spatial distribution of all fibres (n = 814) according to
the first two canonical factors (B). Factor | indicates the position of muscle features in relation to their ability to discriminate
type | (right) and type Il (left) fibres. Factor 2 indicates the position of muscle features in relation to their ability to discriminate

type IIA (top) and type 11X (bottom) fibres.
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tors, etc., could mediate the relation between MYH2 tran-
scripts and IIA fibres.

Myofibrillar ATPase activity

Muscle studies in cattle have traditionally relied on this
method to classify fibre types [15,30,45,46], although in
this study the staining for the acid or alkaline stabilities of
the mATPase activity was use to determine fibre proper-
ties. The immunohistochemistry overcame one of the lim-
itations of the mATPase technique, which could not
photometrically distinguish hybrid types with dominance
of one isoform from their respective pure phenotypes
[11].

Different mATPase profiles have been reported in bovine
skeletal muscles. Our results, in agreement with Totland et
al. [30], showed that the acid stability of mATPase activity
at pH 4.42 was lower for I1A than for IIX fibres (Figures 1E
and 3B), whereas the reverse was true for the alkaline sta-
bility after preincubation at pH 10.35 (Figures 1F and
3C). However, Picard et al., [3], and Gotoh, [15], found
that IIA and [IX (named IIB in their studies) fibres had the
same acid stability after preincubation at pH 4.2 and the
mATPase stability after alkaline preincubations at pH
10.48 or 10.5 was opposite to ours. This discrepancy was
probably related to the different mATPase histochemical
methods applied in the different studies, or to slightly dif-
ferent technical procedures. We found significant correla-
tions between mATPase activities and MyHC isoform
(Figure 3B-C), which agreed with similar results in a
number of other mammalian species [11].

Metabolic properties

SDH and GPDH activities have been determined in sev-
eral species, such as goats [39], dogs [11] and swine [18],
but, to the best of our knowledge, this is the first study in
which they were histochemically quantified in bovine
skeletal muscle fibre types. The oxidative and glycolitic
capacities differed among fibre types, and showed a nega-
tive correlation whose value indicates that the MyHC iso-
form is not the only factor influencing the metabolic
profile of the fibres. This was also reflected in the variation
of SDH:GPDH ratios across fibres that, rather, showed
quite a remarkable stepwise decline from slow to fast
types. The SDH:GPDH ratio expresses the capacity of
myofibres for synthesizing ATP from oxidative (SDH) and
glycolitic (GPDH) pathways, showing the ability of
myofibres to produce energy in aerobic or anaerobic
form.

Biological systems have acquired effective adaptive strate-
gies to cope with physiological challenges and to maxim-
ise biochemical processes under imposed constraints
[19]. Contractile and metabolic properties appeared
related in our study (Figure 4D and 4E). Although corre-

http://www.biomedcentral.com/1471-2121/9/67

lations among MyHC types and metabolic properties were
different from zero, the magnitude of such correlations
indicated that fibre types did not necessarily exhibit a pre-
cise metabolic specialisation. The hybrid fibres had inter-
mediate properties between their respective pure types.
However, the metabolic pattern, represented by the SDH
and GPDH activities, of hybrid fibres was different to the
one described for the contractile properties, in this case
indirectly measured by the mATPase activities, as previ-
ously described in the Results section (Figures 3A and 4A).
In order to assess the effect of both, mATPase and meta-
bolic properties, on the position of hybrid fibres in rela-
tion to their pure types, Mahalanobis distances among all
groups of fibres were calculated removing mATPase infor-
mation: the Mahalanobis distances (results not shown)
indicated a pattern similar to the one observed in Fig 4a.
When metabolic attributes dominated the analysis,
hybrid fibres tended to have an intermediate position
closer to type IIA in both hybrid fibre populations. How-
ever, when the metabolic information was removed, a
pattern similar to the one shown in Fig 3A was found.
Mahalanobis distances among all groups of fibres were
also similar to the ones shown in Table 4. Thus, our results
suggest that metabolic and contractile properties appear
to position hybrid fibres differently, although they are
always between their pure types. Striated muscle tissue
demonstrates a remarkable malleability and can adjust its
metabolic and contractile makeup in response to altera-
tions in functional demands [19], which could explain the
discrepancies between metabolic and contractile patterns.

The fact that the correlation value between the SDH activ-
ity and MyHC type was higher than the one between the
GPDH and MyHC type indicated that the oxidative spe-
cialisation was more preserved among fibre types than the
glycolitc one in these muscles and species. Our results,
together with previous studies [11,18,39] indicate that the
magnitude of the correlations between contractile and
metabolic properties differs across species, and such dif-
ferences could be related to differences in the SDH:GPDH
ratio within fibre types among them.

Histology

The significant differences regarding histological features
of the distinct fibre types might have a functional reason,
as reported in similar studies [11].

Although the reasons for the difference in the number of
nuclei among fibre types are not fully understood, it has
been related to different activity patterns among fibre
types [47,48]. More active muscle fibres usually have
higher levels of both protein synthesis and turnover than
those scarcely recruited [11]. Fibres in FD are expected to
be more active than fibres in PM, as the number of nuclei
were significantly higher in FD than in PM (Table 3). The
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over-expression of genes related to protein synthesis and
turnover observed in FD [42] corroborated this idea.

A small fibre size is an advantage for the diffusion of oxy-
gen and nutrients for oxidative metabolism [49] and is
related to more fatigue resistance as well. The mean CSA
of the fibre types decreased in the order
IXSITAXSIIASISIHITIA in PM and TASISI+ITIASTIAX in FD,
in agreement with a similar study in goats [39] but con-
trary to a study in dogs, in which the CSA was [IX>I>11A
[11]. An inverse relationship between fibre diameter and
oxidative capacity of muscle fibres has been reported [41],
which is in accordance with our results.

Capillarisation has been associated with the transport of
oxygen and lipids (among other nutrients), and conse-
quently with a large oxidative capacity [41]. In this con-
text, the oxidative capacity of a muscle is related to MyHC
isoform distribution, as well as to histological features
[40]. Although our study was not designed to compare
metabolic activities of the muscles, we observed that all
fibre types tended to have a higher oxidative activity in PM
than in FD. Therefore, the smaller amount of MyHC I in
PM may be compensated for by their large oxidative abil-
ity, which could then be more related to capillarisation
than to fibre type.

Provided that different motor units are recruited at pos-
tural and phasic activities, their constituent muscle fibres
might have different sizes and capillary supply [50,51].
Features such as small size and high capillarisation, typi-
cal of I and IIA fibre types, mean these motor units are
more frequently activated and have a higher oxidative
metabolism than the fast I[IX motor units. This relation-
ship is also related to the fatigue resistance of the motor
units.

Carbohydrates are imported from the capillary supply
lines to the myofibres, where they may be stored as either
intramuscular triglycerides or glycogen, for later combus-
tion. Fatty acid metabolism is an aerobic process that
takes place in the mitochondria [19]. When compared to
FD, PM showed a larger relative capillarisation and a
smaller cell size, a high expression of mitochondrial genes
[42] and a larger IMF content [20]. All these features
account for the great oxidative ability of PM in cattle, even
when compared to a muscle mainly composed of type |
fibres, such as FD.

Conclusion

Immunohistochemistry allows for the precise identifica-
tion of three major fibre types containing a single MyHC:
I, 1A and 11X, and two hybrid fibre populations, I+1IA and
IIAX, in two bovine skeletal muscles (FD and PM). FD was
a slow oxidative muscle consisting mainly of I and IIA

http://www.biomedcentral.com/1471-2121/9/67

pure types, which showed a predominant oxidative activ-
ity, and without pure IIX fibres. On the other hand, PM
was a mixed muscle showing large amounts of I, IIA and
IIX pure types, especially IIX. Both muscles had small pop-
ulations of hybrid fibres, which behaved differently in
relation to their corresponding pure types when contrac-
tile or metabolic features were considered. To our knowl-
edge, this is the first study in which an accurate and
objective classification system is applied to bovine mus-
cles, along with a photometric assessment of relevant con-
tractile, metabolic and histological properties.
Coordination between the contractile, metabolic and his-
tological properties of fibres confirmed that the particular
expression of a MyHC isoform in a fibre, as well as the
quantity of its expression, is related to these properties.
The association among them was partial, suggesting that
the properties of muscles are not fully explained by varia-
tions in the MyHC content.
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