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Abstract
Neonatal exposures to organophosphates that are not acutely symptomatic or that produce little or
no cholinesterase inhibition can nevertheless compromise the development and later function of
critical neural pathways, including serotonin (5HT) systems that regulate emotional behaviors. We
administered parathion to newborn rats on postnatal days (PN) 1-4 at doses spanning the threshold
for detectable cholinesterase inhibition (0.1 mg/kg/day) and the first signs of loss of viability (0.2
mg/kg/day). In adolescence (PN30), young adulthood (PN60) and full adulthood (PN100), we
measured radioligand binding to 5HT1A and 5HT2 receptors, and to the 5HT transporter in the brain
regions comprising all the major 5HT projections and 5HT cell bodies. Parathion caused a biphasic
effect over later development with initial, widespread upregulation of 5HT1A receptors that peaked
in the frontal/parietal cortex by PN60, followed by a diminution of that effect in most regions and
emergence of deficits at PN100. There were smaller, but statistically significant changes in 5HT2
receptors and the 5HT transporter. These findings stand in strong contrast to previous results with
neonatal exposure to a different organophosphate, chlorpyrifos, which evoked parallel upregulation
of all three 5HT synaptic proteins that persisted from adolescence through full adulthood and that
targeted males much more than females. Our results support the view that the various
organophosphates have disparate effects on 5HT systems, distinct from their shared property as
cholinesterase inhibitors, and the targeting of 5HT function points toward the importance of studying
the impact of these agents on 5HT-linked behaviors.
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INTRODUCTION
It is increasingly evident that organophosphate pesticides damage the developing brain at
exposures below the threshold for overt signs of intoxication and even below that required for
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cholinesterase inhibition, the biomarker used for risk assessment [12,14,22,23,30,36-38,
46-48,63]. Numerous studies have detailed how organophosphates disrupt the basic patterns
of neural cell replication and differentiation, alter axonogenesis and synaptogenesis, and
discoordinate the development of neural circuits, ultimately producing widespread behavioral
deficits [7,9,10,12,18,38-40,46-48,56,65]. Because of the initial focus on cholinergic actions,
many reports of the effects of organophosphate exposure have concerned the targeting of
acetylcholine systems and cognitive/learning deficits related to these pathways [15,16,19,21,
22,26,27,41,46-48,63]. However, recent research indicates that organophosphates target
serotonin (5HT) systems to an even greater extent, contributing to adverse outcomes related
to emotional and social behaviors [1-5,33,42,43,51,53-55,57,58,62]. Indeed, evidence is now
accumulating that relate organophosphate exposures to depression and suicide [8,20,25,28].

Because organophosphates cause developmental neurotoxicity through mechanisms beyond
their shared property as cholinesterase inhibitors, the various members of this pesticide class
could differ in their impact on 5HT systems. In recent studies, we showed that exposures of
neonatal rats on postnatal days (PN) 1-4 to three different organophosphates, chlorpyrifos,
diazinon and parathion, at doses spanning the threshold for detectable but nonsymptomatic
cholinesterase inhibition, produced dissimilar initial effects on 5HT systems, as monitored on
PN5 [4,52,58]. Notably, parathion was entirely distinct, eliciting deficits in 5HT1A receptor
expression, whereas the other two organophosphates produced increases. In subsequent work,
we showed some basic similarities in the long-term effects of chlorpyrifos and diazinon on
5HT systems, but also some significant disparities that emerged between adolescence and
adulthood [3,5,51,55], contributing to divergent effects on emotional behaviors [1,45].
Accordingly, in the present study, we evaluated the long-term effects of neonatal parathion
exposure, again conducting studies from adolescent through adult stages. We gave parathion
on PN1-4, an exposure window identified in our earlier work with chlorpyrifos as a peak of
sensitivity for disrupting 5HT systems [2,4,5,54]. We focused on two parathion treatments
spanning the maximum tolerated dose, 0.1 mg/kg/day, which produces 10% cholinesterase
inhibition [58], well below the 70% inhibition required for the symptoms of cholinergic
hyperstimulation [13], and 0.2 mg/kg/day, just past the threshold for the first signs of systemic
toxicity in neonates [50]. Our measurements focused on three 5HT synaptic proteins known
to be highly affected by developmental exposure to chlorpyrifos [3-5,55] or diazinon [51,58],
the 5HT1A and 5HT2 receptors, and the presynaptic 5HT transporter (5HTT). The two receptors
play major roles in 5HT-related mental disorders, particularly depression [6,17,66,67], and the
transporter, which regulates the synaptic concentration of 5HT, is the primary target for
antidepressant drugs [29,34,35]. We evaluated effects in all the brain regions comprising the
major 5HT projections (frontal/parietal cortex, temporal/occipital cortex, hippocampus,
striatum) as well as those containing 5HT cell bodies (midbrain, brainstem). The study design
and assays were all identical to those in our previous work on chlorpyrifos and diazinon [1,5,
51,55,58], so as to foster comparison of the outcomes of exposure to the three different
organophosphates.

METHODS
Animal treatments

All experiments were carried out humanely and with regard for alleviation of suffering, with
protocols approved by the Duke University Institutional Animal Care and Use Committee and
in accordance with all federal and state guidelines. Timed-pregnant Sprague–Dawley rats were
housed in breeding cages, with a 12 h light–dark cycle and free access to food and water. On
the day after birth, all pups were randomized and redistributed to the dams with a litter size of
10 (5 males, 5 females) to maintain a standard nutritional status. Because of its poor water
solubility, parathion was dissolved in dimethylsulfoxide to provide consistent absorption
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[50,58,64] and was injected subcutaneously in a volume of 1 ml/kg once daily on postnatal
days (PN) 1-4; control animals received equivalent injections of the dimethylsulfoxide vehicle,
which does not itself produce developmental neurotoxicity [64]. Doses of 0.1 and 0.2 mg/kg/
day were chosen because they straddle the threshold for detectable cholinesterase inhibition
and the first signs of impaired viability [50,58]: the low dose produces 5-10% inhibition without
mortality, whereas the higher dose elicits 5-10% mortality. The PN1-4 regimen was chosen
because it represents a peak period for sensitivity of 5HT systems to the developmental
neurotoxicity of chlorpyrifos [46-48] and because the systemic toxicity and cholinesterase
inhibition in response to parathion have already been characterized for this treatment window
[50,58]. Accordingly, both the toxicodynamic effects and treatment window parallel those used
in our prior studies with chlorpyrifos and diazinon [1,5,51,55,58]. Randomization of pup litter
assignments within treatment groups was repeated at intervals of several days up until weaning,
coordinated with weighing of the animals and changes of cage bedding, and in addition, dams
were rotated among litters to distribute any maternal caretaking differences randomly across
litters and treatment groups. Each treatment group comprised 12 litters and all pups within a
reconstituted litter belonged to the same treatment group to ensure that dams did not
discriminate between control and treated pups in the maternal caretaking or nursing behaviors.
Offspring were weaned on PN21.

On PN30, 60 and 100, one male and one female were selected from each litter of origin and
were decapitated. The cerebellum (including flocculi) was removed and the midbrain/
brainstem was separated from the forebrain by a cut rostral to the thalamus. The striatum and
hippocampus were then dissected from these larger divisions and the midbrain and brainstem
were divided from each other. The cerebral cortex was divided down the midline and then
further sectioned into anterior and posterior regions (frontal/parietal cortex and temporal/
occipital cortex, respectively). The cerebellum, which is sparse in 5HT projections, was
reserved for future studies; also, the midbrain, hippocampus and striatum were not evaluated
on PN30 because these regions were utilized in another study of acetylcholine biomarkers
[49]. Tissues were frozen with liquid nitrogen and stored at -45° C.

Assays
All of the assay methodologies used in this study have appeared in previous papers [5,50,53,
55], so only brief descriptions will be provided here. Tissues were thawed and homogenized
(Polytron, Brinkmann Instruments, Westbury, NY) in ice-cold 50 mM Tris (pH 7.4), and the
homogenates were sedimented at 40,000 × g for 15 min. The pellets were washed by
resuspension (Polytron) in homogenization buffer followed by resedimentation, and were then
dispersed with a homogenizer (smooth glass fitted with Teflon pestle) in the same buffer. An
aliquot was assayed for measurement of membrane protein [59].

Two radioligands were used to determine 5HT receptor binding: 1 nM [3H]8-hydroxy-2-(di-
n-propylamino)tetralin for 5HT1A receptors, and 0.4 nM [3H]ketanserin for 5HT2 receptors.
Binding to the presynaptic 5HT transporter was evaluated with 85 pM [3H]paroxetine. For
5HT1A receptors and the 5HT transporter, specific binding was displaced by addition of 100
μM 5HT; for 5HT2 receptors, we used 10 μM methylsergide for displacement. The overall
strategy was to examine binding at a single ligand concentration in preparations from all regions
in every animal, focusing on a concentration above the Kd but below full saturation. We can
thus detect changes that originate either in altered Kd or Bmax but can not distinguish between
the two possible mechanisms, albeit that a change in Kd would seem highly unlikely. This
strategy was necessitated by the amount of tissue available for each determination and technical
limitations engendered by the requirement to measure binding in three treatment groups at
three different ages in multiple brain regions, with at least six animals for each sex. Thus, there
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were hundreds of separate membrane preparations, each of which had to be evaluated for
binding of three different ligands.

Data analysis
Data were compiled as means and standard errors. Because we evaluated binding parameters
for multiple proteins all related to 5HT synapses, the initial comparisons were conducted by a
global ANOVA (data log-transformed because of heterogeneous variance among ages, regions
and the different protein measures) incorporating all the variables and measurements so as to
avoid an increased probability of type 1 errors that might otherwise result from multiple tests
of the same data set. Where we identified interactions of treatment with the other variables,
data were then subdivided for lower-order ANOVAs to evaluate treatments that differed from
the corresponding control. Where permitted by the interaction terms, individual groups that
differed from control in a given region at a given age were identified with Fisher’s Protected
Least Significant Difference Test; however, where only main treatment effects were present
(without interactions), we present the main effect without subsequent lower-order tests of
individual values. Significance was assumed at the level of p < 0.05. For interactions at p <
0.1, we also examined whether lower-order main effects were detectable after subdivision of
the interactive variables [60]. The p < 0.1 criterion for interaction terms was not used to assign
significance to the effects but rather to identify interactive variables requiring subdivision for
lower-order tests of the main effects of parathion, the variable of chief interest [60].

For convenience, the results are presented as the percent change from control values but
statistical comparisons were conducted only on the original data. Although not shown here,
the control values for each variable were quite similar to those published in our previous reports
[5,51,53,55].

Materials
Animals were obtained from Charles River (Raleigh, NC) and parathion was purchased from
Chem Service (West Chester, PA). PerkinElmer Life Sciences (Boston, MA) was the source
for [3H]8-hydroxy-2-(di-n-propylamino)tetralin (specific activity, 135 Ci/mmol), [3H]
ketanserin (63 Ci/mmol) and [3H]paroxetine (19.4 Ci/mmol). Methylsergide was obtained
from Sandoz Pharmaceuticals (E. Hanover, NJ) and all other chemicals came from Sigma
Chemical Co. (St. Louis, MO).

RESULTS
Because only three of the six regions were analyzed at all three ages, there were two global
ANOVAs conducted on the data set. The first evaluated all measurements at all ages for the
frontal/parietal cortex, temporal/occipital cortex and brainstem and the second evaluated the
two ages (PN 60, PN100) for which we had all six regions. The ANOVAs indicated interactions
of treatment × region (p < 0.006), treatment × protein measure (p < 0.003), treatment × age ×
sex (p < 0.003), treatment × age × region (p < 0.0001), treatment × sex × region (p < 0.003),
treatment × region × measure (p < 0.0001), treatment × age × sex × region (p < 0.04), treatment
× age × region × measure (p < 0.0001), treatment × sex × region × measure (p < 0.0001), and
treatment × age × sex × region × measure (p < 0.05). We subdivided the data by age and sex,
and evaluated treatment effects and interactions of treatment with region and measure in lower-
order tests so as to facilitate comparison of the present results with our prior, parallel studies
of chlorpyrifos and diazinon [1,5,51,55,58].

We similarly conducted global ANOVAs for effects on brain region weight and body weight,
both of which showed no significant differences (data not shown). However, in the preweaning
period, across the entire cohort of animals (a greater number than those used for the
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neurochemical studies presented here), we did find a significant reduction in body weight (p
< 0.005 for treatment, p < 0.003 for treatment × age), with the main effect confined to the group
receiving 0.2 mg/kg (p < 0.0001), representing approximately a 5% decrease from control
values. We also evaluated large numbers of animals through 22 weeks postpartum, well beyond
the period studied here, and found small, later-emerging body weight deficits at either dose in
females, again amounting to about 5% (data not shown). These weight data were compiled
from cohorts of animals utilized in this and two other studies [24,49].

On PN30, there were significant elevations in 5HT1A receptors in both males (Figure 1A) and
females (Figure 1B). With each sex considered separately, significant effects were seen only
at the higher parathion dose; however, the higher-order test (treatment, region, sex) indicated
a main effect of both doses of parathion, without a significant interaction with either region or
sex. The effects on 5HT2 receptors were distinctly smaller and in the opposite direction.
Females showed a significant decrement in the temporal/occipital cortex in the groups
receiving either the low or high dose of parathion but again, the higher-order ANOVA indicated
a main treatment effect (p < 0.02) across both sexes (no treatment × sex interaction), with
regional distinctions (treatment × region, p < 0.03) and with significant reductions in both the
frontal/parietal cortex (p < 0.05) and the temporal/occipital cortex (p < 0.02). In contrast to the
receptor measurements, there were no significant treatment-related differences for 5HTT
binding.

A different pattern emerged by PN60, in young adulthood. In males (Figure 2A), we still saw
a large increase in 5HT1A receptors in the frontal/parietal cortex but the increases were no
longer evident in the temporal/occipital cortex and brainstem. Indeed, the brainstem, as well
as the hippocampus, displayed significant decrements, with an especially large loss of receptors
in the latter region. In the striatum, we saw a small but statistically significant increase in
5HT1A receptors. Again, the effects on 5HT2 receptors and the 5HTT site were much less
notable, with small decrements (brainstem 5HT2 receptors and 5HTT, hippocampus 5HTT) or
increments (hippocampus 5HT2 receptors, frontal/parietal cortex 5HTT). In young adult
females (Figure 2B), we likewise still saw a significant elevation in 5HT1A receptors in the
frontal/parietal cortex, of even greater magnitude than had been seen on PN30. However, again
the earlier increase was lost in the temporal/occipital cortex and brainstem, and indeed, the
brainstem, midbrain, hippocampus and striatum all showed uniform deficits of 20-40%. We
also saw a small increase in 5HT2 receptors and the 5HTT site in the striatum.

By PN100, the promotional effect of neonatal parathion exposure on 5HT1A receptors in the
frontal/parietal cortex disappeared entirely, and instead, both males (Figure 3A) and females
(Figure 3B) displayed significant reductions that extended also to the temporal/occipital cortex.
Males showed significant increases in 5HT1A receptors in the striatum and smaller elevations
for 5HT2 receptors in the frontal/parietal cortex and for the 5HTT site overall. Females showed
more extensively distributed deficits, including 5HT1A receptors (brainstem, striatum),
5HT2 receptors (frontal/parietal cortex, temporal/occipital cortex) and the 5HTT (frontal/
parietal cortex, temporal/occipital cortex, brainstem); hippocampal 5HT1A receptors were also
slightly but significantly increased in females.

DISCUSSION
In our earlier work with neonatal chlorpyrifos exposure, we noted immediate upregulation of
forebrain and brainstem 5HT receptors in association with the initial neural cell damage [4,
11]. Afterwards, there was a period of transition in which different regional patterns and sex-
selectivity emerged [2,5,55], indicating that the net effect on 5HT systems represents not only
the primary injury but also the adaptive changes and plasticity in response to that damage.
Accordingly, although both sexes share similar initial effects [4,11] the inherently greater
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neural plasticity of the female brain [31,32,61] results in smaller persistent effects than those
seen in males [5,55]. The maximum tolerated dose for neonatal parathion exposure is an order
of magnitude lower than for chlorpyrifos [50] and consequently, this organophosphate results
in much less initial neural injury, since effects on brain development are unrelated to systemic
toxicity [50]. Accordingly, parathion does not show the immediate, global upregulation of 5HT
receptors and the 5HTT site as seen with chlorpyrifos; indeed, there are selective changes in
the opposite direction, notably a decrease in 5HT1A receptors in both males and females
[58].

Based on the major differences in the initial effects of neonatal chlorpyrifos or parathion
exposure on 5HT systems, it is therefore not surprising that the long-term alterations seen here
for parathion were entirely distinct from those of chlorpyrifos, differing not only in temporal
sequence but also in sex-selectivity and in targeting of specific receptors and brain regions.
With chlorpyrifos exposure, there is global upregulation of all three 5HT synaptic proteins
evident by young adulthood and persisting for many months later, with a strong selectivity for
males [5,55]. In contrast, as seen here, parathion evoked upregulation of 5HT1A receptors in
adolescence, but with the transition to young adulthood (PN60), the effect persisted in only
two regions in males (frontal/parietal cortex, striatum) and one region in females (frontal/
parietal cortex), whereas most of the other regions displayed deficits. Further, parathion
showed slight 5HT2 downregulation and no effect on 5HTT binding. By later stages of
adulthood (PN100), the 5HT1A receptor upregulation caused by neonatal parathion treatment
disappeared even in the region that had shown the greatest initial increases (frontal/parietal
cortex), replaced by significant deficits. Whereas upregulation was still seen in the male
striatum, and an increase also emerged in the female hippocampus, all the other regions showed
either no significant change or downregulation. Again, the greatest effects were confined to
5HT1A receptors, with smaller effects on 5HT2 receptors and the 5HTT site.

In the larger sense, then, the long-term consequences of neonatal parathion exposure on 5HT
synaptic markers are not only distinctly different from those of chlorpyrifos [5,55] but are far
smaller in magnitude and less persistent, as well as being more restricted in terms of receptor
subtypes and sex-selectivity. In that regard, parathion’s effects bear greater similarity to those
of diazinon, which similarly has a smaller effect than that of chlorpyrifos and primarily targets
5HT1A receptors in males [51]. However, diazinon evokes persistent downregulation of this
subtype, rather than showing the time-dependent shifts seen here for parathion, so the main
point again is that each of the organophosphates produces unique changes in the development
of 5HT synaptic parameters. If these neurochemical findings correspond to functional deficits
in 5HT circuits, we would expect to find disparities in the effects of parathion directed toward
emotional behaviors, just as identified previously in studies comparing chlorpyrifos to diazinon
[1,45]; comparable studies with parathion are underway.

Our results thus reinforce two important concepts for the developmental neurotoxicity of
organophosphates. First, exposures that are at or below the threshold for detectable
cholinesterase inhibition or signs of systemic toxicity [50,58], and certainly well below the
70% cholinesterase inhibition required for observable intoxication [13], nevertheless
compromise the development of 5HT systems that are critical to emotion, appetite and sleep
patterns [1,34,35,44], expanding the scope of synaptic and behavioral targets that need to be
considered in evaluating the outcomes and safety of early-life organophosphate exposure.
Second, the longstanding assumption that all organophosphates produce the same effects is
clearly incorrect, and accordingly, each agent needs to be evaluated separately, incorporating
relevant neurochemical and functional endpoints in addition to their impact on cholinesterase
activity.
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Figure 1.
Effects of neonatal parathion exposure on 5HT synaptic proteins on PN30 in males (A) and
females (B). Data represent means and standard errors obtained from at least 6 animals in each
treatment group for each sex. Global ANOVA (treatment, region, sex, protein measure)
indicates a significant main treatment effect (p < 0.005 for all treatments, p < 0.05 for 0.1 mg/
kg vs. control, p < 0.0001 for 0.2 mg/kg vs. control) and an interaction of treatment × measure
(p < 0.0001). Lower-order ANOVAs for each subdivision appear within the panels. Where
there was no interaction of treatment × region, only main treatment effects are reported; where
there was an interaction of treatment × region, asterisks denote individual values that differ
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from the corresponding control. Abbreviations: f/p cx = frontal/parietal cortex; t/o cx =
temporal/occipital cortex; bs = brainstem.
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Figure 2.
Effects of neonatal parathion exposure on 5HT synaptic proteins on PN60 in males (A) and
females (B). Data represent means and standard errors obtained from at least 6 animals in each
treatment group for each sex. Global ANOVA (treatment, region, sex, protein measure)
indicates interactions of treatment × sex (p < 0.05), treatment × measure (p < 0.06), treatment
× sex × region (p < 0.005), treatment × region × measure (p < 0.0001) and treatment × sex ×
region × measure (p < 0.0001). Lower-order ANOVAs for each subdivision appear within the
panels. Asterisks denote individual values that differ from the corresponding control.
Abbreviations: f/p cx = frontal/parietal cortex; t/o cx = temporal/occipital cortex; bs =
brainstem; mb = midbrain; hp = hippocampus; st = striatum.
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Figure 3.
Effects of neonatal parathion exposure on 5HT synaptic proteins on PN100 in males (A) and
females (B). Data represent means and standard errors obtained from at least 6 animals in each
treatment group for each sex. Global ANOVA (treatment, region, sex, protein measure)
indicates interactions of treatment × sex (p < 0.01), treatment × region (p < 0.03), treatment ×
sex × region (p < 0.07), treatment × region × measure (p < 0.003) and treatment × sex × region
× measure (p < 0.004). Lower-order ANOVAs for each subdivision appear within the panels.
Where there was no interaction of treatment × region, only main treatment effects are reported;
where there was an interaction of treatment × region, asterisks denote individual values that
differ from the corresponding control. Abbreviations: f/p cx = frontal/parietal cortex; t/o cx =
temporal/occipital cortex; bs = brainstem; mb = midbrain; hp = hippocampus; st = striatum.
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