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Abstract
Drug-associated memories are a hallmark of addiction and a contributing factor in the continued use
and relapse to drugs of abuse. Repeated association of drugs of abuse with conditioned stimuli leads
to long-lasting behavioral responses that reflect reward-controlled learning and participate in the
establishment of addiction. A greater understanding of the mechanisms underlying the formation and
retrieval of drug-associated memories may shed light on potential therapeutic approaches to
effectively intervene with drug use-associated memory. There is evidence to support the involvement
of serotonin (5-HT) neurotransmission in learning and memory formation through the families of
the 5-HT1 receptor (5-HT1R) and 5-HT2R which have also been shown to play a modulatory role in
the behavioral effects induced by many psychostimulants. While there is a paucity of studies
examining the effects of selective 5-HT1AR ligands, the available dataset suggests that 5-HT1BR
agonists may inhibit retrieval of cocaine-associated memories. The 5-HT2AR and 5-HT2CR appear
to be integral in the strong conditioned associations made between cocaine and environmental cues
with 5-HT2AR antagonists and 5-HT2CR agonists possessing potency in blocking retrieval of
cocaine-associated memories following cocaine self-administration procedures. The complex
anatomical connectivity between 5-HT neurons and other neuronal phenotypes in limbic-
corticostriatal brain structures, the heterogeneity of 5-HT receptors (5-HTXR) and the conflicting
results of behavioral experiments which employ non-specific 5-HTXR ligands contribute to the
complexity of interpreting the involvement of 5-HT systems in addictive-related memory processes.
This review briefly traces the history of 5-HT involvement in retrieval of drug-cue associations and
future targets of serotonergic manipulation that may reduce the impact that drug cues have on
addictive behavior and relapse.
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Introduction
The abuse of alcohol, nicotine and illicit drugs comprises a global dilemma, marked by
considerable morbidity and mortality [320]. Initial drug use typically occurs as a component
of exploration, novelty or pleasure-seeking during adolescence [159,180], with a subpopulation
of drug users exhibiting vulnerability to the transition from abuse to “addiction” [330].
Addiction is defined here as a chronic disorder characterized by persistent drug-seeking, which
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has been modeled extensively in animals in self-administration studies (Fig. 1) [169,335]. The
incentive-motivational state focused on drug use seen in addiction appears to be fuelled by
impaired neurobiology and reorganization of brain circuits. Affected brain circuits include
motivational systems in the hypothalamus and brainstem and their reciprocal links with higher
order limbic-corticostriatal structures involved in the complex cognitive, emotional and
associative abilities of the brain [307]. Cortical regions, such as the prefrontal cortex and their
associated circuits appear to be particularly sensitive to plasticity incurred due to repeated
pairing of environmental stimuli (e.g., drug paraphernalia, people and places associated with
drug use, etc). with exposure to abused drugs [14,116]. These associations between
environmental cues and the drug-taking experience become well consolidated into memory
[118,182] and imaging studies have verified that re-exposure to drug-related stimuli activate
attention and memory circuits [69,116,236,326]. Drug-associated memories can trigger
conditioned emotional responses in addicts [238] and “craving” (desire for drug) [22,109,
121,162] which is often cited by individuals to explain their relapse [127,269].

The process of association between the drug and experiential aspects of drug abuse is driven
by Pavlovian (classical) learning [238] and there is a growing recognition and interest in
understanding the biological and behavioral mechanisms underlying the encoding of drug-
related memories. This interest is sensibly rooted in the fact that recovery is punctuated with
remissions and relapses [205,237,300], and efficacious means to extend abstinence are needed.
If addiction is a “disease of learning and memory” as recently proposed [138,326], then
therapeutic gains may be achievable with a more complete understanding of the neurobiology
of drug-related memories. The potential success of such approaches is suggested by
observations that pharmacological manipulations can impair responsivity to drug-associated
conditioned cues in humans [250,263,299] and animals [61,181,292].

Learning occurs during the three general phases of acquisition (initial learning), consolidation
(molecular stabilization of long-term memory) and retrieval (recall of initial learning) [32,
80,142,178]. The formation of memory is dependent upon dynamic changes in synaptic
plasticity, an important neurochemical process through which protein modifications and/or
synthesis result in altered synaptic strength (for comprehensive review, [141,148,176,202]).
Two cellular models of the molecular mechanisms that underlie synaptic changes during
learning and memory are long-term potentiation (LTP) and long-term depression (LTD) (for
reviews, [175,196,199]). Activity-dependent modifications of N-methyl-D-aspartate receptors
(NMDAR) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors (AMPAR) in
the postsynaptic neuron are well described mechanisms of these forms of neuroplasticity (for
reviews, [59,77,179]). The most extensively studied mammalian form of synaptic plasticity is
NMDAR–dependent LTP in hippocampal neurons [18]. In this situation, strong synaptic
stimuli lead to a transient activation of NMDAR in dendritic spines and increased calcium
released from endoplasmic reticulum resulting in the activation of multiple signaling cascades.
Two key protein kinases within this pathway are calcium/calmodulin-dependent kinase type
II (CaMKII) and cAMP-dependent protein kinase A (PKA) [21,90,193,333], both of which
catalyze the phosphorylation and synaptic insertion of AMPARs into the PSD [52,65,129,
192,195,251,295]. A strengthening of synaptic plasticity is subsequently achieved by
stimulation of gene transcription and protein synthesis via the activation of several other
downstream effectors including protein kinase C (PKC), Ras-guanosine triphosphatase
activating protein (Ras-GTPase), extracellular signal-regulated protein kinase (ERK), p38
mitogen-activated protein kinase (p38 MAPK) and numerous PSD proteins [24,89,113,122,
163,173,308,332,336]. The molecular mechanisms underlying LTP and hence synaptic
plasticity are now viewed to be mechanistically important in the plasticity underlying the
maladaptive reward learning which occurs following stimulant administration [146,153,319,
334].
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Glutamatergic systems critical to synaptic plasticity are under important modulatory control
afforded by other neurotransmitter systems including monoaminergic neurotransmission [93,
191,265,293]. Dopamine (DA) through actions at the D1R, in particular, facilitates LTP via
alterations in AMPAR trafficking [108,143,334] and continues to be an important candidate
in reward learning and long-term plasticity in addiction [59,139,146,153,155]. Serotonin also
clearly modulates glutamatergic-encoded neuroplasticity [297,324], an observation which was
made at the dawn of Kandel’s studies of synaptic plasticity underlying the simple classical
conditioning of the gill-withdrawal reflex in Aplysia [33]. Receptors linked to adenylyl cyclase
(AC) signaling are important mediators of this plasticity observed in Aplysia [11,60,125]. Of
the 16 subtypes of 5-HT receptors (5-HTXRs), several couple to AC (5-HT1R, 5-HT4R, 5-
HT6R and 5-HT7R), the 5-HT2R family couples to inositol phosphate signaling whereas the
5-HT3R is a ligand gated ion channel [20,96,134,164,235,262].

Serotonin signaling through several of these receptors may contribute to neural plasticity that
underlies the encoding of drug associated memories. As a component of the complex processes
that underlie the neurobiology of addiction, a greater understanding of serotonergic
mechanisms in this aspect of addictive processes (Fig. 1) may open new doors to enhance
recovery. Therapeutic gains have been reported in the treatment of alcoholism, smoking and
illicit drug addictions with selective serotonin reuptake inhibitors (SSRIs) under certain
conditions (e.g., [2,87,137,185,270,289,309,325]). Serotonergic manipulations may also prove
therapeutic in psychostimulant addiction, which poses a particularly difficult public health
problem due to the limited treatment options and extenuating ramifications for the individual
user and society [133,165,220,296]. In the present review, we focus on the body of knowledge
developed to suggest that 5-HT plays a role in stimulant-associated memories and the
underlying synaptic plasticity. As the most complete information is available for the
Erythroxylum coca alkaloid cocaine, we focus on this abused psychostimulant. A greater
understanding of serotonergic mechanisms underlying the conditioned association between the
cocaine exposure and environmental stimuli will provide new ideas for innovative approaches
to treatment in addiction.

Cocaine
Cocaine use remains a significant public health problem across the globe [320]. Upwards of
15% of cocaine users are ultimately diagnosed with addiction [303,330], and recovery success
is limited with a high degree of recidivism [91,303]. While behavioral and cognitive therapies
can provide alternative treatment approaches, no proven effective and accessible medications
for the treatment of this detrimental form of abuse and addiction have been validated despite
an intense focus on their development [28,144,145,174,230,257,301].

Cocaine potently binds to the 5-HT transporter (SERT) to inhibit reuptake of 5-HT and increase
efflux into the synapse [166] in addition to its extensively characterized ability to inhibit
catecholamine reuptake [5,101,264]. Serotonergic manipulations (e.g., 5-HT precursors,
neurotoxins, 5-HT agonists and antagonists) interfere with expression of the behavioral effects
of cocaine (for review, [34,131,222,223,331]) while the neurochemical consequences of
repeated cocaine exposure include altered expression of 5-HT transporters and receptor
subtypes in both animals [10,67,240] and humans [189,245]. To date, much of the research
which has examined the effects of serotonergic ligands on the behavioral effects of cocaine in
animals has centered on the 5-HT1R and 5-HT2R subtypes [34,222], thus the role of these
receptors in cocaine-associated memories will be the main focal objective for discussion in
this review.

The 5-HT1R family forms the largest class of 5-HTXR subtypes and is comprised of the 5-
HT1AR, 5-HT1BR, 5-HT1DR, 5-HT1ER and 5-HT1FR subtypes [177]. This receptor family
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couples to Gi/o proteins to preferentially inhibit cyclic adenosine monophosphate (cAMP)
formation, although linkage to other signaling effectors has also been demonstrated (e.g.,
phosphatidylinositol pathway and PKC [20,262]). The 5-HT1AR and 5-HT1BR have received
considerable attention in preclinical studies. For example, the stimulation of the 5-HT1AR
[employing 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and/or buspirone] reduced
cocaine-evoked hyperactivity [48,258] (although see, [222]) and lever responding for cocaine
in the rat self-administration model (see, Models for the Study of Cocaine-Associated
Memories) [132,222,248]. Conversely, 5-HT1BR agonists enhanced cocaine-induced
hyperactivity [260] and the reinforcing effects of cocaine inferred from an increase in lever
responding for cocaine as measured in the self-administration paradigm [243,244,259].
However, studies with 5-HT1BR knockout (KO) mice found an increased propensity to self-
administer cocaine, an effect which may indicate a decrease in the reinforcing effects of the
psychostimulant [53,268]. A possible rationale for such differences comes from the increasing
evidence that KO mice undergo important compensatory changes in other 5-HTXR subtypes
and/or neurotransmitter systems during development [111,294] which may be implicated in
observed behavioral effects in KO mouse models.

The 5-HT2R family (5-HT2AR, 5-HT2BR and 5-HT2CR) is linked preferentially to Gq/11 and
activation of these receptors increases the hydrolysis of inositol phosphates and elevates
cytosolic calcium [134,164,186,262]. Due to the limited distribution of the 5-HT2BR subtype
in brain and lack of availability of selective 5-HT2BR ligands [83], the 5-HT2AR and 5-
HT2CR are the most extensively researched subtypes of this family in addiction and memory
formation processes [34,209]. Pretreatment with selective 5-HT2AR or 5-HT2CR ligands
presents a relatively consistent pattern of effects on cocaine-induced behaviors in rodents (for
review, [34]). An acute systemic injection of selective 5-HT2AR antagonists or 5-HT2CR
agonists blocked, while 5-HT2AR agonists or 5-HT2CR antagonists enhanced, the hypermotive
effects of cocaine at doses of the ligands that did not modify basal behavior [98,200,203].
Additionally, rates of responding for cocaine in a self-administration task is suppressed by a
selective 5-HT2CR agonist and enhanced by a selective 5-HT2CR antagonist [98,99,120]
suggesting an important role for the 5-HT2CR in control of the overt reinforcing effects of
cocaine. In contrast, selective 5-HT2AR antagonists have no effects on rates of responding for
cocaine in a self-administration task [97,98,233]. Based upon this partial dataset, once the 5-
HT1R and 5-HT2R subtypes can be distinguished pharmacologically from one another, their
influences include an excitatory role for the 5-HT1BR and 5-HT2AR and an inhibitory role for
the 5-HT1AR and 5-HT2CR in the control of cocaine-induced behaviors.

Models for the Study of Cocaine-Associated Memories
The impact of cocaine on 5-HT systems coupled with the influence of 5-HT in the molecular
cascade of events in the encoding of memories (see, Serotonin Mechanisms in Memory
Formation) [148] supports a role for 5-HT neurotransmission in the processes through which
cocaine-associated memories evolve [140,153,172,267]. These assessments of drug-associated
memories have employed several different animal models [88,103,112,190,215,276,278,
316]. The assay with the greatest construct validity, but also the most complex to dissect with
regard to memory processes, is the drug self-administration procedure [15,88,110,124,266].
Cocaine self-administration models in animals have been adapted to explore drug-associated
memories and the long-term consequences of cocaine intake in the laboratory. In one of its
common variant in rodents, intravenous catheters are surgically implanted and subjects are
allowed to complete an operant response (e.g., lever press, nose poke) to deliver a bolus
injection of cocaine [110,147,291]. During the acquisition of a cocaine self-administration
(Fig. 2), the learning paradigm promotes the establishment of a linkage between the cocaine-
taking contextual (diffuse) cues, experimenter-delivered salient (discrete) environmental cues
paired with the cocaine delivery, and the reinforcing and interoceptive effects of cocaine. In
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the language of classical conditioning, the effects of cocaine can be considered as an
unconditioned stimulus (US). Repeated pairing of the US with the environmental context
(e.g., the physical characteristics of the environment in which the drug is consumed including
the presence of the houselights, levers, etc.) and discrete cues simultaneously delivered with
cocaine (e.g., stimulus lights, tones, sound of drug delivery apparatus), a learned association
between the conditioned stimuli (CS) and US (CS-US) is acquired. Thus, the CS complex is
comprised of contextual and discrete cues. Following the training phase, the animals are
subjected to an imposed withdrawal period (forced abstinence; [107,119,242]) or undergo
extinction to the contingencies of the paradigm [99,152,286,288,291,292]. Following
acquisition and either forced abstinence or extinction, retrieval of the conditioned association
is assessed upon re-exposure to the CS complex and is implied by the behavioral output
(e.g., lever press) in the absence of actual cocaine delivery (“drug-seeking”) [75,291]. The
magnitude of operant responses on the previously drug-paired operandum can then be
quantified as a measure of drug-seeking behavior supported by the CS complex [288]. Termed
“cue-evoked reinstatement”, the behavioral output upon re-exposure to cocaine-associated
cues shares aspects of construct and predictive validity to the human experience of relapse in
the face of environmental triggers such as handling drug paraphernalia [58,68,238,327].

The cue-elicited reinstatement paradigm employed as a component of self-administration
studies normally involves extensive extinction training. This procedure typically involves
repeated presentation of the diffuse contextual cues, but not the discrete CS cues, in the absence
of the US (cocaine infusions) [66,94,287,288,291] to weaken the association between the
behavior (e.g., lever press, nose poke) and the delivery of the primary reinforcer (drug) but
maintain the incentive motivational value of the discrete cues [88,152,246,286,288,291,292].
Occasionally, the ability of the diffuse cues to elicit reinstatement has been examined, wherein
extinction occurs in a different context (Context B) to that of the self-administration and cue-
elicited reinstatement phases (Context A; [23,66,99,154,201]). In these paradigms, extinction
is not a case of “forgetting,” but rather an active learning process that occludes, but does not
“erase,” previously learned behaviors [26,86,247,261,306]. Thus, the previously established
CS-US association is not eliminated but rather suppressed by new learning, which has been
described as a “CS-no US” association [25,246]. Upon re-exposure to the discrete CS complex
following extinction training, retrieval of the original memory (CS-US) or retrieval of the newly
formed extinction memory (CS-no US) may result [44,160,224]. Reduction of lever responding
in the presence of the CS complex via pharmacological manipulation is viewed as a disruption
of the retrieval of cocaine-associated memories for cocaine-paired stimuli.

The remainder of the present assessment will elucidate the probable role for 5-HT actions at
its receptors in the mechanisms underlying the retrieval of cocaine-associated memories (drug-
seeking behavior) and suggest how 5-HT manipulations might prove useful in therapeutic
approaches to suppress relapse in human cocaine addicts.

Serotonin Mechanisms in Memory Formation
The involvement of 5-HT in memory processing is not surprising given the fact that
serotonergic pathways provide significant innervation to cortical and subcortical structures
known to be involved in cognition from their parent neurons of origin in theraphe nuclei [7].
However, results from human and animal studies have yielded inconsistent findings concerning
the directionality of its role. This situation reflects the complex nature of serotonergic
processing of information in brain, the lack of available selective molecular and
pharmacological tools as well as the need to evaluate the question at multiple levels of memory
systems [211,318]. Some protocols have evaluated the impact of 5-HT1R and 5-HT2R ligands
administered either before the learning session or after the learning session to tap into the
acquisition and consolidation phases of memory, respectively [207,208], while only a handful
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of studies have specifically examined the role of these 5-HTXR in memory retrieval tasks. As
return to cocaine use is often linked with retrieval of drug-associated memories (see
Introduction), we will only review data employing tasks that tap into this aspect of memory-
related behavior as most analogous to models employed to study cocaine-associated memories
(see Models for the Study of Cocaine-Associated Memories).

There is experimental evidence that 5-HT1AR and 5-HT1BR signaling are involved in
acquisition and retrieval of learning while the specific involvement of this receptor in
consolidation of learning has not been extensively addressed. Pre-training administration of a
5-HT1AR agonist [e.g., flesinoxan, buspirone or 8-OH-DPAT] enhanced acquisition of new
learning [35,63,208] in behavioral tasks associated with appetitive motivation, such as the
delayed-matching-to-position or delayed nonmatch-to-sample tasks, whereas administration
of the agonist impaired retention of new learning in spatial memory tasks [16,167]. In addition,
administration of 8-OH-DPAT following the acquisition session (2hr) hindered consolidation
of the new learning [167]. Interestingly, pretreatment with a 5-HT1AR agonist impaired
retrieval of spatial and contextual cues in passive avoidance paradigms and the Morris water
maze [6,49,51,150,188,188,218,221,253,284,311], an effect linked to stimulation of the
postsynaptic, as opposed to the presynaptic, 5-HT1AR [49,241]. Contradictorily, one study
reported an improvement in memory retrieval after pretreatment with a 5-HT1AR antagonist
in the object recognition task [252], however, this observation has not been replicated in other
paradigms of memory retrieval [210,212]. The 5-HT1AR may act in consort with glutamate
systems to regulate memory processes as a 5-HT1AR antagonist reversed impairment of
retrieval evoked by the NMDAR antagonist MK 801 in object recognition and radial arm maze
tasks [19,50,252]. Pretraining administration of a 5-HT1BR antagonist enhanced acquisition
of learning in an autoshaping task [213] while post-training administration of a preferential 5-
HT1BR agonist impaired consolidation of learning in this same task [212]. Thus, while difficult
to tease apart based upon the incomplete dataset, there is experimental evidence to suggest that
the 5-HT1AR and 5-HT1BR play differential roles in phases of memory.

The 5-HT2R signaling pathway [186,262] is a serotonergic target of interest in understanding
the acquisition and consolidation of learned behaviors and, to a lesser extent, the retrieval of
memories engendered in associative-learning memory models (e.g., autoshaping tasks [206,
207,256]). To date, only non-selective ligands have been employed to investigate the role of
the 5-HT2AR and 5-HT2CR subtype in memory retrieval paradigms with predictably
conflicting results (see Cocaine). The 5-HT2A/2CR antagonists (e.g., such as methysergide and
mesulergine) investigated to date have been reported to interfere with memory retrieval in tasks
involving recall of visual cues in a delayed non-match to sample task [197], although opposite
effects have been reported in auditory and radial arm maze memory tasks [13,274,275].

The interpretation of these discrepant data must take into account the nature and degree of
difficulty of the paradigms employed, the selectivity of the ligands and doses used (e.g., 8-OH-
DPAT possesses affinity for both the 5-HT1AR and 5-HT7R [126]), the neural circuit involved
(e.g., hippocampus versus prefrontal cortex), the synaptic localization (e.g., whether pre-
versus postsynaptic 5-HTXR are manipulated), the developmental stage and age of animals at
time of testing (e.g., adolescent versus adult), the extent of training (e.g., one trial versus
multiple trials) and the timing of the administration of the ligands (i.e., injection before or after
training session or retrieval test, etc.). These factors taken in conjunction with a comparative
assessment of selective 5-HTXR ligands and doses across several behavioral tasks are required
to clarify the role of 5-HT1R and 5-HT2R in memory retrieval processes. However, from a
general consideration of the present collection of studies, the stimulation of postsynaptic 5-
HT1AR and blockade of 5-HT2A/2CR may interfere with memory retrieval processes, and thus
serve as potential candidates in altering recall of cocaine-associated memories.
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Serotonin and Cocaine-Associated Memories
The involvement of individual 5-HTXR and transduction systems in mediating cocaine-
associated memories requires further exploration with a goal to uncover which serotonergic
manipulations might promise translation to the clinic as effective adjuncts to therapy in cocaine
addiction. The clinical human psychopharmacology research with selective 5-HTXR ligands
is truly limited due to the paucity of selective pharmacological compounds available for use
in humans [74,117,272,280]. Of the pharmacological manipulations assessed in humans to
date, increases in serotonergic tone via administration of the 5-HT transporter substrate
fenfluramine were shown to reduce cocaine craving in human cocaine-dependent subjects
[39–41,255]. Preclinical studies have also illustrated that the re-exposure to cocaine-associated
cues [29,47] or even to other reward-associated cues [214] results in significant alterations of
5-HT efflux in the prefrontal cortex suggesting that retrieval of cocaine-associated memories
involves cortical 5-HT function. Paradoxically, pharmacological manipulations that either
decrease (e.g., administration of the neurotoxin 5,7-dihydroxytryptamine) or increase
extracellular 5-HT (e.g., administration of a SSRI) prior to exposure to the CS complex in a
reinstatement session reduced behavioral responding elicited by cues previously associated
with cocaine in rats [9,38,312,313]. In the remainder of this article, we will review the handful
of published observations in support of the role of 5-HT substrates in the processes involved
in the retrieval of cocaine-associated memories.

Cocaine-Associated Memories and 5-HT1R
The 5-HT1AR agonist impairs the memory retrieval of spatial and contextual cues (see
Serotonin Mechanisms in Memory Formation) thus the prediction is that 5-HT1AR agonist
would also block retrieval of cocaine-associated memories. To date, a selective 5-HT1AR
agonist at doses that act at either pre- or postsynaptic 5-HT1AR has not been assessed in
reinstatement sessions. However, following acquisition of cocaine self-administration and
subsequent extinction of the operant response, acute administration of the 5-HT1AR antagonist
WAY 100635 30 min prior to test did not alter cue-induced reinstatement [37]. Thus with only
a limited amount of data the role of 5-HT1AR in retrieval of cocaine-associated memories
remains unclear.

There is a paucity of studies determining the role of the 5-HT1BR in memory retrieval as noted,
however, 5-HT1BR agonists are reported to potentiate the reinforcing effects of cocaine. Thus,
one might expect a 5-HT1BR agonist to enhance retrieval of cocaine-associated memories.
However, acute administration of the 5-HT1B/1AR agonist RU24969 15 min prior to test
reduced retrieval of cocaine-associated memories following extinction [1]. The effects of
RU24969 were deemed to be mediated by 5-HT1BR stimulation as administration of the
selective 5-HT1BR antagonist GR127935 reversed the effects of RU24969 on cocaine-
associated memories; the antagonist alone had no effect [1]. The differential control afforded
by 5-HT1BR agonists over the behavioral consequences of exposure to cocaine-associated cues
versus the reinforcing effects of cocaine may be consistent with dissociable neural mechanisms
suggested to underlie the reinforcing effects of a psychoactive drug versus conditioned effects
of the drug [54,92,204]. Similar to the effects observed with cocaine-associated cues, the 5-
HT1BR agonist also reduced the level of responding elicited with sucrose-associated cues [1].
As the administration of this ligand at the chosen doses did not affect spontaneous locomotor
behavior (and assuming that RU24969 did not alter perceptual processes significantly), the
authors concluded that RU24969 elicited a general decrease in motivation for appetitive stimuli
(see below for further discussion) [1]. While further studies are required to delineate the exact
role of 5-HT1AR and 5-HT1BR in retrieval of cocaine-associated memories, the limited dataset
presented so far indicate that manipulation of either receptor subtype shows little promise in
selectively suppressing the retrieval of cocaine-associated memories.
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Cocaine- Associated Memories and 5-HT2AR/5-HT2CR
The 5-HT2R family is an important serotonergic target of interest in understanding the cellular
and behavioral effects of cocaine (see Cocaine [34,222,223]). The results of studies that
employed non-selective 5-HT2A/2CR antagonists in a handful of memory retrieval studies
published to date are conflicting (see Serotonin Mechanisms in Memory Formation). However,
a consistent pattern of effects of 5-HT2AR and 5-HT2CR ligands over cocaine-related behaviors
as observed (see Cocaine [34]). Based on this research, selective 5-HT2AR antagonists and
selective 5-HT2CR agonists might be expected to block the retrieval of cocaine-associated
memories.

Early studies that employed less selective 5-HT2A/2CR antagonists did not observe changes in
retrieval of cocaine-associated memories following extinction training [37,282]. More recent
studies indicate that pretreatment with selective 5-HT2AR antagonists potently blocked
retrieval of cocaine-associated memories following extinction of operant responding in the
absence of discrete cues [97,233]. The administration of M100907, the most selective 5-
HT2AR antagonist available to date (volinanserin; [228,233]), effectively reduced retrieval of
cocaine-associated memories observed under conditions that minimize the potential for
confounds associated with the operant pretraining and the stress of food deprivation [55,123,
323]. This effect does not appear to be related to general behavioral disruption as the same
doses of the antagonist did not alter locomotor activity nor retrieval of sucrose-associated
memories upon re-exposure to cues previously linked to sucrose self-administration [233].
Pretreatment with either a selective (RO 60-0175) or non-selective (mCPP, MK-212) 5-
HT2CR agonist suppressed rates of lever responding on re-exposure to cues previously
associated with cocaine self-administration after extinction training [36,99,231; Nic
Dhonnchadha and Cunningham, unpublished data]. These suppressive effects were reversed
by co-administration of 5-HT2CR antagonists, which alone failed to alter retrieval of cocaine-
associated memories, indicating that the inhibition of lever responding upon re-exposure to
cues linked to cocaine self-administration are mediated by the 5-HT2CR [36,99,231].
Additionally, the same doses of RO 60-0175 did not alter retrieval of cue-evoked memories in
the sucrose self-administration paradigm [36]. In summary, these results point to ligands with
selective 5-HT2AR antagonist or 5-HT2CR agonist properties as viable candidates to promote
the disruption of retrieval of cocaine-associated memories.

Many studies examining the effects of serotonergic agonists in cue-elicited drug-seeking
behavior employed antagonists to primarily verify the selectivity of the agonist. Only one dose
of the antagonist is employed in most instances with the dose typically based upon previous
experiments indicating a blockade/reversal of an effect of the chosen agonist (e.g., 5-
HT1A/1BR) [36]. If one were to conduct a complete dose-response curve for the effects of the
antagonist alone, a completely different story might be uncovered, e.g., inverse agonist effects.
This is an important (as yet unanswered) question with respect to the involvement of the 5-
HT2AR and 5-HT2CR in drug-seeking behavior, as a myriad of articles report inverse agonist
activity in vitro and in vivo for the compounds employed as antagonists of these receptor
subtypes [207,229,322]. Additionally, there is a growing literature about the tonic vs. phasic
nature of 5-HT2AR and 5-HT2CR control in the brain. The 5-HT2AR does not appear to exert
tonic influence upon DA neuronal firing or DA release (at least in the regions thus far studied),
but stimulation of the 5-HT2AR with an exogenous agonist reveals an enhancement of DA
neuronal output which is physiologically significant. The 5-HT2CR, on the other hand, appears
to provide both tonic and phasic modulation of DA neurotransmission which is region
dependent [34]. With the exception of the 5-HT2AR antagonist M100907 [233], further studies
encompassing a wider range of doses of selective 5-HT1AR, 5-HT1BR and 5-HT2CR
antagonists (as well as agonists and inverse agonists) are required to determine the involvement
of these receptor subtypes in the retrieval of cocaine-related memories.
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The ability of a 5-HT2AR antagonist or 5-HT2CR agonist to reduce the impact of drug-, but
not food-associated, stimuli [36,233] may be related to the fact that neuronal substrates respond
differently to drugs versus natural rewards and their associated stimuli. Cocaine has been
described as “hijacking” the natural learning substrates [157,158,328] and resulting in
maladaptive responses to cues previously associated with cocaine self-administration.
Repeated exposure to cocaine or other drugs of abuse leads to persistent neural adaptations,
such as changes in neuronal morphology as well as protein and gene expression in higher order
limbic-corticostriatal structures involved in the complex cognitive, emotional and associative
abilities of the brain [307]. These adaptations are thought to render this circuit hypersensitive
to drugs and drug-associated stimuli and to play a prominent role in attributing incentive
salience to stimuli, that is, the manner in which stimuli are perceived as attractive, causing
drugs and drug-associated stimuli to become excessively ‘wanted’ [78,232,267,322]. Further
studies examining the effects of selective serotonergic ligands in animal models of memory
formation may aid in deciphering the impact of cocaine administration on normal processing
stages [206].

The timing of injections of 5-HT ligands relative to experimental assessment of acquisition,
consolidation and retrieval is very important. In the case of most published studies, ligand
administration preceded the test for memory retrieval. In this case, several important controls
must be considered to allow linkage of observed effects of treatment to disruption of memory
recall. To assess the possibilities of performance deficits due to behavioral disruption
consequent to the doses of a ligand, simple motility and exploratory patterns are frequently
assessed. To measure the specificity of the ligand to affect memories for contextual and discrete
cues associated with cocaine versus memories for contextual and discrete cues associated with
other appetitive reinforcers, the 5-HTXR ligand manipulation may also be analyzed in a food
or sucrose self-administration protocol and reward-seeking assessed in response to cues
previously associated with food or sucrose self-administration, respectively. These control
experiments for the observed effects of a certain ligand on retrieval of cocaine-associated
memory are not ideal and need to be refined. For example, in addition to these performance
and reward specificity considerations, a serotonergic pretreatment before memory retrieval
tests could result in perceptual deficits that impair recognition of either the contextual or
discrete cues of the CS complex. The examination of these ligands in parallel paradigms that
do not involve appetitive-linked responses (e.g., spatial cue tasks) may help clarify this issue
and refine the ability to interpret observations about retrieval of drug-associated memory in
reinstatement self-administration models.

Possible Molecular Mechanisms Underlying the Role of 5-HT in Cocaine-associated
Memories

Despite the undeniable support for 5-HTXR participation in learning and memory processes
and evidence to indicate participation in cocaine-associated memories, the potential manner in
which 5-HT contributes to the molecular basis for plasticity has been largely absent from
discussion of memory formation in mammals. To date, our knowledge is derived from the
elegant studies which examined memory storage underlying the gill-withdrawal reflex of
Aplysia [148]. These studies indicate that memory formation underlying this reflex in
Aplysia involves presynaptic mechanisms of LTP. In Aplysia, 5-HT release subsequent to tail
stimulation leads to the activation of AC and a resultant rise in cAMP levels. In turn, cAMP
activates PKA, closure of K+ channels and increased intracellular calcium release, mechanisms
believed to contribute to classical conditioning of the gill-withdrawal reflex [11,60,125]. The
exact 5-HTXR involved in the activation of AC involved in memory storage underlying the
gill-withdrawal reflex of Aplysia by 5-HT remains unclear, but may involve 5-HT1R, 5-
HT4R, 5-HT6R or 5-HT7R [62,82] similar to that observed at CA3 pyramidal neurons,
cerebellar synapses and the amygdala [136,196,234].
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The ability of postsynaptic 5-HT1AR stimulation to interfere with memory retrieval may
involve the inhibition of AC activity and consequent impairment of the activity of PKA.
Additionally 5-HT1AR stimulation can inhibit CaMKII activity [221] and the corresponding
phosphorylation and increased functionality of AMPAR [42,283] which is necessary for LTP
[12].

A role is suggested for the 5-HT2R family in establishing LTP in the cortex [56,84,85,302]
possibly via the alteration of the phosphorylation state of AMPAR. Thus, 5-HT2A/2CR ligands
may regulate the plasticity of memory retrieval, as ligand-receptor binding would result in
increased calcium release from intracellular stores and activation of signaling cascades,
resulting in the phosphorylation and synaptic insertion of AMPARs into the PSD [297].
Alternatively, 5-HT2A/2CR-induced impairment of memory retrieval may be achieved by
inhibiting activation of a PKC-dependent tyrosine kinase signal cascade and a concomitant
phosphoryaltion and upregulation of NMDAR as has been recently demonstrated in the
basolateral amygdala (BLA) [56,194].

While data on the role of 5-HT in regulating key signaling cascades in many neuronal processes
has been documented (e.g., ERK, p38MAPK, PKA/PKC; [31,135,187,315]), the manner in
which these signaling cascades that involve these molecular events contribute to the influence
of 5-HT systems over processes underlying the storage and retrieval of cocaine-associated
memory formation requires further investigation and is an area ripe for exploration.

Serotonergic Manipulations of Cocaine-Associated Memories
The knowledge of neural mechanisms underlying addiction-associated memories is advancing
rapidly and the serotonergic signaling pathway signifies a target for exploration of memory
processes involved in learning that occurs in the self-administration paradigm. Importantly,
the self-administration paradigm must be dissected and explored in the context of other relevant
memory tasks. A more detailed understanding of the role of 5-HTXR manipulations at each
stage as well as the molecular and cellular changes involved in memory formation during the
various stages of formation of cocaine-associated memories is discussed here (see Fig. 2).

The self-administration assay provides an interesting, but complex, behavioral paradigm for
the study of cocaine-associated memories. Chronic cocaine self-administration involves
multiple exposures to the drug, the drug-taking context (e.g., self-administration chamber) and
all of the discrete stimuli (e.g., stimulus lights, tone) associated with the drug-taking experience
for periods of days to weeks. The strength of the associations made between cocaine and the
contextual and discrete cues in the self-administration assay are dependent upon several phases
of memory processing. To date, there has been limited focus on the processes underlying the
specific memory phases of cocaine self-administration learning (i.e., acquisition, extinction,
memory retrieval).

The first stage of acquisition (learning) involves the initial linkage of the new experience of
cocaine with the contextual and discrete environmental cues. A short-term memory (STM) of
this newly acquired experience is formed. This transient and labile memory trace becomes
stabilized through a process of consolidation, dependent upon new protein synthesis through
which STM traces are transformed into stable long-term memories (LTM) [70,81,81,114,
149,202,225,271,281]. This process is associated with long-lasting modifications of synaptic
plasticity that are mediated by structural remodeling of existing synapses and addition of new
synaptic contacts [46,128]. The self-administration paradigm is perfectly amenable to
pharmacological manipulation at the time of learning (during acquisition and consolidation)
with the assessment of the effects of such manipulations on cocaine-associated memories
accessed during retrieval sessions.
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The consolidation of the CS–US associations that are in the process of being formed, for
example, might be modified by a specific serotonergic intervention during each cocaine self-
administration session when consolidation of STM to LTM is believed to occur. Candidate
regions within the brain that may be involved include the BLA, the dorsal hippocampus and
subdivisions of the subiculum as recent studies indicate these brain areas as important nuclei
involved in the acquisition and consolidation of cocaine-associated memories that maintain
cocaine-seeking behavior [17,95,105,106,198,329]. Additional research indicates that new
protein synthesis is necessary for the learning and consolidation of cocaine self-administration
[216]. An essential role for the cAMP-PKA-CREB pathway has been established for the
consolidation process [3,149,254,310]. The knowledge that 5-HT can regulate this pathway
(seeSerotonergic Mechanisms in Memory Formation; [8,317]) encourages the design of
specific experiments to decipher the role of the serotonergic system in the consolidation and
LTM formation of cocaine-associated memories. A possible confound in these experiments is
the potential alteration in the reinforcing effects of cocaine induced by the 5-HTXR
manipulation. A potential means to dissociate the effects of serotonergic ligands on the
reinforcing effects of cocaine versus alterations in learning would be to assess the effects of
these ligands during the acquisition versus maintenance stages of self-administration. In most
cases, the ability of serotonergic ligands to alter the reinforcing effects of cocaine are measured
during the maintenance phase, when levels of responding are stable. During the acquisition
phase when the animals are learning the association between operant responding, cocaine
delivery and CS presentation, both pre- and post-trial administration of the ligands could be
used to temporally dissociate encoding (or acquisition) of information versus the consolidation
of this information [30,207–209].

An experimental strategy to establish the serotonergic circuitry underlying phases of memory
for cocaine-associated memories would involve intracranial microinjection of selective 5-
HT1BR, 5-HT2AR or 5-HT2CR ligands into candidate brain nuclei. Pretraining administration
of specific 5-HTXR ligands into the discrete brain region would allow analysis of involvement
in the acquisition of the CS-US pairing upon testing in a subsequent retrieval session. Post-
training manipulation of 5-HTXR at variable intervals (1 – 6 hours) after each training session
would specifically answer the query as to whether a specific 5-HTXR manipulation can disrupt
the consolidation of the CS-US memory in the cocaine self-administration paradigm.

A typical experimental paradigm involves completion of the acquisition phase to achieve stable
performance in a cocaine self-administration followed by extinction training. As yet another
(now novel) learning process, extinction training may reverse neuroadaptations normally
observed during cocaine withdrawal and/or evoke new adaptations due to the novel extinction
learning [79,285,290,304]. For example, while levels of tyrosine hydroxylase (TH), the rate-
limiting enzyme for DA synthesis, were decreased in the nucleus accumbens (an area
implicated in conditioned reward [156,277]) during withdrawal from cocaine self-
administration, extinction training reversed this deficit, restoring/normalizing TH levels to
those observed in untreated controls [285]. These results demonstrate that extinction-
experienced animals differ from a neurobiological standpoint when compared with animals in
cocaine withdrawal alone and also suggests that strategies that incorporate extinction training
offer treatment strategies that could produce substantial long-term benefits.

Extinction sessions (or exposure-based therapies) are successfully employed to weaken
pathogenic memories that are responsible for various anxiety disorders [72,100], however,
extinction procedures have had limited therapeutic success in reducing relapse among drug-
dependent patients [57,64,73,102,130,151,239]. There is a pervasive thought that if optimal
parameters for cue exposure could be discovered (e.g., the right cues chosen, the appropriate
number of sessions conducted), treatment strategies that incorporate extinction training
behavior in conjunction with pharmacological treatment might increase treatment efficacy
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[64]. Similar to CS-US training that occurs during acquisition, extinction training incorporates
acquisition and consolidation processes. Administration of 5-HTXR ligands that facilitate
learning and memory before each extinction session may enhance extinction learning while 5-
HTXR ligand administration after each extinction session might enhance consolidation, leading
to improved effectiveness and/or shortening of the duration of extinction learning [71].

Consolidated memories appear to become labile again after “reactivation,” that is, soon after
the memory is retrieved by reminder stimuli that apparently reactivate the original memory
trace [219], as is the case in the cue-reinstatement model. In the case of cocaine self-
administration [182], re-exposure to the CS (“reactivation”) might trigger the retrieval of CS–
US associations and induce two competing processes known as “reconsolidation” and
“extinction,” which are dependent on the duration and offset of the CS re-exposure event
[76,81,247,249]. The so-called reconsolidation upon brief exposure to the conditioned stimuli
requires de novo protein synthesis for the maintenance of the memory [226,227].
Reconsolidation is believed to ensure that the fragile memory returns to a stable state [225,
279] and may provide a window in which to manipulate long-lasting drug-associated
memories.

While much debate exists as to the similarities and/or differences between the original
consolidation process and the reconsolidation phase, the predominant thinking is that the two
processes engage distinct brain areas and molecular pathways [3,4,183]. The involvement of
specific intracellular pathways in the molecular mechanisms underlying reconsolidation of
cocaine-associated memories have been partially described and include activation of PKA,
ERK, CREB and zif268 [27,161,168,184,217] and release of 5-HT [45]. The recent study by
Canal and colleagues [45] reported that intra-amygdala injections of the protein synthesis
inhibitor anisomycin resulted in the release of 5-HT near the site of injection. The authors
suggest that 5-HT (along with other neurotransmitters) may be involved in the mechanisms
through which anisomycin inhibits de novo protein synthesis and disrupts reconsolidation of
a previously formed memory [45,115,273].

During the reconsolidation process, memory traces become labile and can be altered by various
pharmacological manipulations [321]. To date, evidence from various studies suggests that
administration of non-specific protein synthesis inhibitors (e.g., anisomycin), if applied
immediately after memory retrieval, blocks subsequent expression of a previously acquired
conditioned response [81,225]. As protein synthesis inhibitors do not easily cross the blood-
brain barrier and can be toxic, they are unlikely to be used in studies in humans. Thus, future
experiments with more benign compounds, such as selective 5-HTXR ligands, administered to
animals acutely following a CS-retrieval session to reduce later memory expression (possibly
through inhibiting reconsolidation mechanisms) are necessary to further delineate the role of
serotonergic systems in reconsolidation of cocaine-associated memories. If 5-HT release is an
early trigger in the cascade of events that control new protein synthesis required for memory
reconsolidation processes [45], then inhibition of 5-HT release following the re-activation
session might be expected to increase protein synthesis and facilitate the reconsolidation of the
predominant memory that was retrieved during the session (see below). If the session is of long
duration then facilitation and stabilization of the extinction memory would be expected.

Prolonged re-exposure to the CS in the absence of the US triggers the formation of a new
memory trace that encodes the dissociation between the CS and the US (CS–no US; extinction
memory), therefore competing with the original memory (CS–US) [305]. Thus, a drug that
enhances the retrieval of the extinction memory (i.e., the consolidation of the CS–no US
association) may also reduce the impact of cocaine-associated memories. Research indicates
that the competing processes of reconsolidation and extinction require different molecular
components [314] and inhibition of protein synthesis at this stage blocks the formation of this
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new extinction memory, leaving expression of the original memory unchanged [305]. To date,
most studies which examined the effects of serotonergic ligands on retrieval of cocaine-
associated stimuli employed an extinction phase within the self-administration protocol.
Specific experiments have not yet addressed the question as to whether the 5-HTXR ligand
altered retrieval of the original memory (CS-US) or the novel extinction memory (CS-no US).
Studies to determine whether the impairment in cocaine-associated memories in subsequent
reactivation tests involves disruption of reconsolidation or a potentiation of extinction would
require regulating the re-exposure sessions and perhaps a comparison to a “forced abstinence”
period. Re-exposure sessions of short duration (15 min) would ensure reconsolidation
processes whereas longer sessions (1–3 hrs) would involve consolidation of CS-no US
memories [261].

Knowledge of the mechanisms through which 5-HTXR manipulations may disrupt cocaine-
associated memories after a period of forced abstinence versus extinction is also critical for
understanding of cocaine-associated memories. Humans rarely undergo extinction per se, but
rather, cease using drugs for other reasons, [88] and as noted, extinction procedures to date
have been of limited therapeutic success in reducing relapse among drug-dependent patients
[57,64,73,102,130,151,239]. It has also been suggested that animal models of cocaine-seeking
assessed after forced abstinence may have stronger face validity for cue-induced relapse in
humans relative to cocaine-seeking measured after explicit extinction training [104]. A
relatively unexplored area is the effect of repeated ligand administration on the impact of
cocaine-associated cues in the retrieval test. This is an important area of research as a
medication with efficacy as an abstinence enhancer would be administered to cocaine-
dependent patients beginning at termination of cocaine use and continuing for a period of time.
For example, in a 12-week, double-blind placebo-controlled trial [220], the SSRI citalopram
(Celexa®) in conjunction with contingency management significantly increased treatment
retention and reduced craving and cocaine-positive urines in outpatient studies of cocaine-
using subjects.

Understanding the role of 5-HT in the neural systems underlying consolidation,
reconsolidation, reactivation and extinction and their special properties vis à vis drug-
associated cues will open the door to selectively minimizing the strong stimulus properties of
cocaine-associated memories [92,182,184]. Armed with this knowledge, we can then hope to
develop serotonergic pharmacotherapies to specifically target processes underlying cocaine-
associated memories.

Conclusion
One of the most challenging endeavors in neuroscience is to identify the molecular mechanisms
that underlie drug-associated memory formation. While the role of specific serotonergic
receptors in learning and memory processes underlying cue-evoked drug-seeking behavior is
still under-examined, this is an area ripe for further investigation. The acquisition of cocaine-
associated memories involves storage and encoding of cue-reward associations, and the
expression of cue-induced drug-seeking behavior involves the retrieval of memories of such
cue-reward associations (Fig. 2). While to date the attenuation of the incentive motivational
effects of cocaine-associated cues has been proposed as the mechanism by which serotonergic
regulation modulates drug-seeking behavior [36,38,98,99,231,233], serotonergic ligands may
inhibit cue-induced drug-seeking behavior by interfering with aspects of memory encoding
and retrieval [104,184,298], either by blocking retrieval of the original CS-US memory or
facilitating the retrieval of the CS-no US association. These processes may involve
modifications of the functional status of the targets within the serotonergic system (e.g.,
transporter, 5-HTXR or linked downstream signaling partners [43,149,209]) which contribute
to the ability of serotonergic ligands to disrupt retention of a conditioned association between
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cocaine and environmental stimuli. Further research efforts to explore the manner in which 5-
HT manipulations, in particular those involving 5-HT1BR, 5-HT2AR and 5-HT2CR, regulate
consolidation, retrieval or reconsolidation of memory at molecular, cellular and behavioral
levels, may clarify these potential mechanisms in reducing cue-elicited drug-seeking behavior
and open new avenues to therapeutically enhance abstinence.
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Fig. 1. Cocaine Addiction and Animal Models
Addiction to cocaine or other abused substances is a chronic relapsing disorder characterized
by persistent and compulsive drug-seeking and -craving that endures even after years of
abstinence (adapted from [170,171]). The right side of the figure illustrates the component of
the addictive cycle which is associated with the use of cocaine (“Cocaine on Board”). With
initial use of cocaine, the intoxication (euphoria) and other subjective effects reinforce the
behavioral output needed to continue drug use (reinforcing effects); these reinforcing
effects increase the probability that drug-taking behavior will reoccur. The animal model of
self-administration is useful to analyze the acquisition and consolidation of the learning of
drug-taking behavior. A pleasurable subjective experience forms the basis of the rewarding
effects of the drug, which play an essential role in its ability to serve as a reinforcer. The
maintenance phase of self-administration is described by stable performance of the operant for
delivery of cocaine and provides a window to investigate manipulations that alter expression
of the behavior. The left side of the figure illustrates the component of the addictive cycle
which is associated with the cessation of cocaine use (“No Cocaine”). The decision to cease
using cocaine may be made voluntarily by the addict or under circumstances of duress, for
example, under court-mandated treatment. Upon withdrawal from long-term use of this
psychostimulant, abusers exhibit psychiatric symptoms characterized by both psychological
(e.g., depression, anxiety, anhedonia, craving) and physiological symptoms (e.g., fatigue,
hyperphagia, anergia). Once the ramifications of detoxification and withdrawal are handled,
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the addict enters a period of abstinence from cocaine use which may last from days to years.
In self-administration models, behavioral components and neural mechanisms underlying
abstinence may be investigated after a period of extinction or forced abstinence. However,
abstinence is challenged by the potential for relapse to renewed use of cocaine. The
reinstatement model of self-administration is useful for analysis of this phase of the addictive
cycle as modeled by an animal homologue. Three major factors that may initiate drug-seeking
behavior and relapse to drug use include exposure to drug-associated environmental stimuli,
a “priming” or non-contingent dose of the drug itself or stress.
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Fig. 2. Memory Processes Underlying Cocaine-Associated Memories in the Self-Administration
Paradigm
A typical cocaine self-administration paradigm involves completion of acquisition, extinction,
and reinstatement phases. For illustrative purposes, the data are represented as mean (±SEM)
lever presses per session during each stage of cocaine self-administration. The learned linkage
between the cocaine-taking contextual (diffuse) cues, the salient (discrete) environmental cues
[conditioned stimulus (CS) complex] previously paired with cocaine delivery (e.g., tone,
stimulus, light), and the effects of cocaine (US) occurs during the acquisition phase (CS-US
association). In most studies of reinstatement of drug-seeking, extinction of the behavior is
established in the absence of the drug (no US) and the CS complex (no CS) resulting in the
weakening of the association between the behavior (lever press, nose poke) and delivery of the
primary reinforcer (cocaine). The previously established CS-US association is not eliminated
but rather suppressed by new learning during extinction (no CS-no US association). Both
acquisition of original (CS-US) and extinction (no CS-no US) learning are subject to
consolidation processes requiring protein syntheses in which the STM of these associations
are converted into LTM. Once lever press responding has achieved a low, stable baseline level
(“Base”), the effectiveness of cue-induced reinstatement can be assessed (“CS”). The
magnitude of operant responses on the previously drug-paired operandum upon re-exposure
to the CS complex in the absence of actual cocaine delivery can then be quantified as a measure
of drug-seeking behavior supported by the CS complex. The cue re-exposure session upon re-
introduction of the CS complex may lead to retrieval and subsequent reconsolidation of the
original self-administration memory (CS-US) or retrieval and consolidation of the newly
formed extinction memory (no CS-no US) depending on the session duration.
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