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Abstract
Accurate vessel segmentation is the first step in analysis of microvascular networks for reliable
feature extraction and quantitative characterization. Segmentation of epifluorescent imagery of
microvasculature presents a unique set of challenges and opportunities compared to traditional
angiogram-based vessel imagery. This paper presents a novel system that combines methods from
mathematical morphology, differential geometry, and active contours to reliably detect and segment
microvasculature under varying background fluorescence conditions. The system consists of three
main modules: vessel enhancement, shape-based initialization, and level-set based segmentation.
Vessel enhancement deals with image noise and uneven background fluorescence using anisotropic
diffusion and mathematical morphology techniques. Shape-based initialization uses features from
the second-order derivatives of the enhanced vessel image and produces a coarse ridge (vessel) mask.
Geodesic level-set based active contours refine the coarse ridge map and fix possible discontinuities
or leakage of the level set contours that may arise from complex topology or high background
fluorescence. The proposed system is tested on epifluorescence-based high resolution images of
porcine dura mater microvasculature. Preliminary experiments show promising results.

I. Introduction
Analysis of vessel characteristics is useful in many medical applications i.e. in quantifying
effects of certain drugs or in determining the state of various diseases that cause measurable
structural changes in blood vessels such as stenoses and aneurysms [1]. Vessel segmentation
is the first step in extraction of features such as diameter, wall profile, volume, surface area,
permeability, extrinsic curvature and tortuosity [2], and any further analysis on microvascular
networks i.e. registration, bifurcations and crossovers analysis [3], [4]. Given the importance,
many recent works focus on vessel segmentation [5]. Most of these work concentrate on
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angiogram imaging to characterize retinal, brain, or heart blood vessels. In the proposed system,
we focus on segmentation of epifluorescence-based high resolution images of dura mater
microvasculature. These images pose unique challenges due to broad range of vessel diameters
in close neighborhood (from large arteries and veins to venules and capillaries), leakage of the
epifluorescent dye out of the vessels, and non-homogeneous distribution of epifluorescence
within the vessels. Leakage makes the segmentation particularly challenging since it smooths
the vessel edges and causes nonuniform background fluorescence making intensity based
methods difficult to use. This paper presents a novel system that combines methods from
mathematical morphology, differential geometry, and active contours to reliably detect and
segment microvasculature under varying background fluorescence conditions. The system
consists of three main modules: (1) vessel enhancement, (2) shape-based initialization, and (3)
level-set based segmentation explored in the following sections.

II. Vessel Enhancement
Vessel enhancement is used to improve vessel segmentation, increasing the separability of
vessel and background classes by adjusting nonuniform background fluorescence and by
decreasing image noise. The preprocessing step improves the overall performance, but is less
crucial for our shape-based initialization and geodesic contour evolution compared to intensity
based segmentation approaches, particularly those using intensity thresholding. Three main
aspects addressed by vessel enhancement include: (1) sharp intensity changes within the blood
vessel caused by localized concentration of epifluorescent dye, (2) smoothly varying
nonuniform background fluorescence caused by leakage, and (3) spatially varying image noise.
To equalize the background, we use the morphological top-hat operation and adaptive
histogram equalization. The top-hat operation (Eq. 1) returns the original image minus its
morphological opening.

(1)

Opening with a structuring element (se) larger than the widest vessel provides an estimation
of the background fluorescence distribution. Subtracting the opened image from the original
image tends to equalize the background. Unlike background subtraction with local mean or
median, top-hat operation does not blend vessel intensity into background model and
approximates epifluorescent dye leakage better than homomorphic filter that assumes an input
signal with multiplicative components. To smooth the localized concentration of
epifluorescence within the vessels, we use a second top-hat operation, this time with a
structuring element smaller than the narrowest vessel. Image noise and localized concentration
of epifluorescent dye along the vessels result in sharp intensity changes and locally jagged
intensity ridges. Both shape-based initialization (section III) and geodesic active contours
(section IV) involve differentiation and are sensitive to noise. Particularly curvature
computation in section III is affected by noise because of the second-order derivatives involved.
We use anisotropic diffusion [6] to smooth out noise without blurring the vessel edges. Further
information on anisotropic diffusion can be found in [7].

III. Shape-based Initialization
Shape-based initialization produces a coarse vessel mask that is used to initialize the active
contour vessel segmentation described in Section IV. Active contour methods are initialization
sensitive since evolution of PDEs converge to a local minimum of the energy function. For the
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coarse segmentation, shape-based properties are chosen because of their robustness to image
contrast and intensity variations. Since vessels produce ridges/creases in the intensity map, we
explore ridge-based vessel detection. Various definitions and associated detection methods for
ridges/creases can be found in [8]. These methods can be roughly classified as: curvature-based
[8], [9], directional derivative-based [8]–[11], and (3) height definitions or Hessian-based
[12]–[17]. In this work, ridge detection approaches based on curvatures and Hessian matrix
have been used. Principal curvature and directions of a surface L correspond to the eigenvalues
κ1 ≥ … ≥ κn−1 and eigenvectors ξ1 ≥ … ≥ ξn−1 of the shape operator matrix on the tangent
space W defined as Eq. 2 where I and II are the first and second fundamental forms and

 [8].

(2)

Ridges can be defined as local extrema of principal curvatures, where the differentiation is
taken in the principal directions [8]. Since computation of eigenvalues, thus individual principal
curvatures is expensive, mean curvature H (Eq. 3) is often used to classify a surface patch as
as ridge, flat, or valley [8], [9].

(3)

Height definition [8] is a generalization of local extrema for real-valued functions of a vector
variable. A point x0 is classified as maximum if ∇L(x0) = 0 (critical point) and ℋ(L(x0)) is
negative definite (all eigenvalues λi are negative). Hessian matrix ℋ (Eq. 4) describes the
second order structure of local intensity variations around each point of the image L(x, y):

(4)

Table I shows possible orientation patterns based on the value of the eigenvalues λ1,2 (Eq.5)
of the Hessian matrix ℋ.

(5)

When the height condition holds (critical points, ∇L = 0), according to the Taylor series
expansion and curvature definitions, eigenvalues λi and eigenvectors vi of the Hessian matrix
correspond to principal curvatures κi and principal directions ξi respectively [18]. Eigenvalues
and eigenvectors of the Hessian matrix have been used in many medical image processing
applications as a ridgeness measure for linear/tubular structure enhancement and detection
[12]–[17]. Laplacian, (Δ(L) = trace(ℋ) = λ1 + λ2), is a good approximation of the sign of the
eigenvalues of the Hessian matrix without the expensive eigenvalue decomposition
(particularly for high dimensions). Because of this property, Laplacian or its regularized
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version Laplacian of Gaussian have been used in many recent vessel detection papers such as
[19]–[21]. In this work, we produce a coarse vessel mask by thresholding trace(ℋ) as below:

(6)

IV. Segmentation Using Geodesic Level-sets with Spatially Adaptive Force
Intensity ridges are good initializations for vessel networks, but because of their local nature,
obtained ridge maps may have spurious results or discontinuities, particularly for cases of
complex topology (bifurcations, crossings etc.), nonuniform leakage of the fluorescent
material), irregular vessel diameters. To refine the ridge-based vessel mask, we propose a
spatially adaptive geodesic active contour segmentation, tuned to image differential geometric
information (i.e. ridges) as well as edge information.

In level set-based active contour methods, a curve  is represented implicitly via a Lipschitz
function ϕ by  = {(x, y)|ϕ(x, y) = 0}, and the evolution of the curve is given by the zero-level
curve of the function ϕ(t, x, y) [22]. We use geodesic active contours [23] where the level set
function ϕ is evolved using the speed function,

(7)

where Fc is a constant,  is the curvature term Eq. 8, and g(∇I) is the edge stopping function,
a decreasing function of the image gradient, defined as Eq. 9 in this application.

(8)

(9)

The constant velocity Fc pushes the curve inwards or outwards depending on its sign. The
regularization term  ensures boundary smoothness. g(∇I) is used to stop the curve evolution
at vessel boundaries. The geodesic active contours are more robust against nonuniform
background fluorescence compared to intensity based approaches such as intensity
thresholding or Chan-Vese type minimal variance models [22]. However, since they are
designed to evolve until edges, they suffer from early stopping on background edges, and
contour leaking across weak boundaries. We overcome the first problem by starting the contour
close to the vessels using ridge-based initialization. To reduce the effects of the second problem,
we propose a spatially adaptive geodesic active contour approach, where the constant force
Fc in Eq. 7 is replaced by the proposed adaptive differential geometric force FA:

(10)

trace(ℋ(I)) returns positive values for intensity valleys, negative values for intensity ridges,
and small absolute values in homogeneous regions with small noise. To obtain FA, trace(ℋ
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(I)) is normalized into the [−1 : +1] range, a constant force c2 (0 < c2 < 1) is added to ensure
expansion in homogeneous regions, and the sum is multiplied with a coefficient c1 (c1 > 0)
that tunes the speed of expansion. In our tests c1 and c2 are set to 1 and 0.5 respectively. Using
this differential geometric adaptive force FA instead of a constant balloon force increases the
convergence speed on homogeneous regions and decreases contour leaks around weak
boundaries. The overall vessel segmentation approach is summarized in Algorithm 1.

V. Results and Analysis
The biological motivaton is to study the influence of hormone treatments on angiogenesis and
vasculature remodeling. In an ex vivo process, brain dura mater endothelial cells are stained
by infusing fluorescently labeled lectin SBA. The epifluorescence images were then acquired
with a 10x lens, at 0.56 μ/pixel resolution using Laborlux 8 microscope and QICAM digital
CCD camera. 100 images from 6 female porcine specimens, three with intact ovary, three with
excised ovary were used for characterizing normal microvasculature and OVX case
respectively. Figure 1 shows intermediate results for vessel enhancement described in section
II and ridgeness measures explored in section III. Top-hat and anisotropic filters are quite
effective in correcting the non-uniform background caused by epifluorescent dye leakage and
smoothing the jagged edges caused by localized concentration of epifluorescent dye
respectively. Compared to Laplacian and λ1, mean curvature H produces noisier results. As
expected, λ1 and Laplacian produces comparable results, with smoother ridges and less blobs
in λ1. λ2 shows blob/corner like features. Figure 2 shows results for three cases including
original epifluorescence imagery, comparison to the Chan and Vese level-set segmentation
results initialized with uniformly distributed disks, and the vessel segmentation mask from our
method which is accurate and clearly provides a superior vessel mask. Once an accurate
segmentation of the microvasculature is obtained a number of quantitative parameters can be
extracted to characterize the morphological and architectural features of terminal
microvasulature networks.

VI. Conclusion
The focus of this paper is the novel biomedical application of microvasculature segmentation
using epifluorescence imagery of ex vivo brain dura mater (outermost lining of the brain
surface) at very high half-micron per pixel spatial resolution. Previous studies on blood vessel
segmentation have typically used angiogram imaging modalities to characterize retinal as well
as brain and heart blood vessels. This paper is novel in both the medical imaging
epifluorescence modality as well as the tissue vasculature studied. Current approaches to vessel
segmentation lead to poor results with epifluorescence imagery. We showed that our new
approach using morphology-based background fluorescence correction, differential geometry-
based ridge and curvature detection, combined with adaptive geodesic level sets leads to
extremely good results for the automatic segmentation of the vasculature regions. The approach
is robust to a variety of challenging image conditions including non-uniform spatially varying
background fluorescence, leakage of flourescent material outside the vasculature walls, non-
homogeneous interior regions of the vessel lumen, with random spatial accumulation of
fluorescent material. The proposed segmentation system will be used in characterization of
OVX (ovary removed) versus normal cases for studying systemic influence of hormone
therapy.

Acknowledgements
Filiz Bunyak and Kannappan Palaniappan partially supported by NIH NIBIB award R33-EB00573, Olga Glinskii
supported by American Heart Association 0830287N grant, Vladislav V. Glinsky supported by Merit Review Award
from the VA Biomedical Laboratory Research and Development Service, and Virginia Huxley supported by NIH
5RO1 HL078816-03.

Bunyak et al. Page 5

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



References
1. Huang A, Farin GE, Baluch DP, Capco DG. Thin structure segmentation and visualization in three-

dimensional biomedical images: A shape-based approach. IEEE Trans on Vis and Comp Graphics
2006;12(1):93–102.

2. Bullitt E, Gerig G, Pizer SM, Lin W, Aylward SR. Measuring tortuosity of the intracerebral vasculature.
IEEE Trans Med Imaging 2003;22(9):1163–1171. [PubMed: 12956271]

3. Tsai CL, Stewart CV, Tanenbaum HL, Roysam B. Model-based method for improving the accuracy
and repeatability of estimating vascular bifurcations and crossovers from retinal fundus images. IEEE
Trans on Inf Tech in Biomed 2004;8(2):122–130.

4. Choe, TE.; Cohen, I. Registration of multimodal fluorescein images sequence of the retina. Proc. IEEE
Int. Conf. on Comp. Vision (ICCV’05) Vol. 1; Washington, DC, USA. 2005. p. 106-113.

5. Kirbas C, Quek F. A review of vessel extraction techniques and algorithms. ACM Comput Surv
2004;36(2):81–121.

6. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans on Patt
Anal and Mach Intell July;1990 12(7):629–639.

7. Weickert, J. Anisotropic Diffusion in Image Processing. Stuttgart, Germany: ECMI Series, Teubner-
Verlag; 1998.

8. Eberly D, Gardner R, Morse B, Pizer S, Scharlach C. Ridges for image analysis. J Math Img Vis 1994;4
(4):353–373.

9. Lopez AM, Lumbreras F, Serrat J, Villanueva JJ. Evaluation of methods for ridge and valley detection.
IEEE Trans Pattern Anal Mach Intell 1999;21(4):327–335.

10. Maintz JBA, van den Elsen PA, Viergever MA. Evaluation of ridge seeking operators for
multimodality medical image matching. IEEE Trans on Patt Anal and Mach Intell 1996;18(4):353–
365.

11. Lindeberg T. Feature detection with automatic scale selection. Int J Comp Vision 1998;30(2):77–
116.

12. Sato Y, Nakajima S, Atsumi H, Koller T, Gerig G, Yoshida S, Kikinis R. 3d multi-scale line filter
for segmentation and visualization of curvilinear structures in medical images. Medical Image
Analysis june;1998 2(2):143–168. [PubMed: 10646760]

13. Lorenz, C.; Carlsen, I-C.; Buzug, TM.; Fassnacht, C.; Weese, J. Proceedings of CVRMed-MRCAS
’97. London, UK: Springer-Verlag; 1997. Multi-scale line segmentation with automatic estimation
of width, contrast and tangential direction in 2d and 3d medical images; p. 233-242.

14. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering.
Lecture Notes in Computer Science - MICCAI98 1998;1496:130–137.

15. Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y. Model-based detection of tubular
structures in 3d images. Computer Vision Image Understanding 2000;80(2):130–171.

16. Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel
segmentation in color images of the retina. IEEE Trans Med Imaging 2004;23(4):501–509. [PubMed:
15084075]

17. Zhou, J.; Chang, S.; Metaxas, D.; Axel, L. Vessel boundary extraction using ridge scan-conversion
deformable model. IEEE Int. Symp. Biomed. Img.: Macro to Nano; Apr. 2006; p. 189-192.

18. Bronshtein, IN.; Semendyayev, KA. Handbook of mathematics. 3. London, UK: Springer-Verlag;
1997. ch. Chapter 4.3.

19. Zana F, Klein JC. Segmentation of vessel-like patterns using mathematical morphology and curvature
evaluation. IEEE Trans on Image Proces 2001;10(7):1010–1019.

20. Fang B, Hsu W, Lee M. Reconstruction of vascular structures in retinal images. ICIP03 2003(II):
157–160.

21. Vermeer KA, Vos FM, Lemij HG, Vossepoel AM. A model based method for retinal blood vessel
detection. Computers in Biology and Medicine 2004;34(3):209–219. [PubMed: 15047433]

22. Chan T, Vese L. Active contours without edges. IEEE Trans Image Process Feb;2001 10(2):266–
277. [PubMed: 18249617]

Bunyak et al. Page 6

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Caselles V, Kimmel R, Sapiro G. Geodesic active contours. Int Journal of Computer Vision 1997;22
(1):61–79.

Bunyak et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Row 1:Vessel enhancement(a) Original intensity map, (b) background estimation (opening),
(c) background adjusted image (top-hat filter), (d) smoothed image (anisotropic diffusion filter
+ sqrt transformation). Row 2: Ridgeness measures(a) Mean curvature H, (b) Laplacian, (c)
λ1, (d) λ2 (|λ1| ≥ |λ2|). Images in second row have been obtained by shifting the actual values.
Dark: negative values, bright: positive values.
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Fig. 2.
Comparison of the segmentation results. Column 1: original epifluorescence imagery for three
distinct cases; column 2: Chan and Vese level-set segmentation [22] initialized with uniformly
distributed disks; column 3: vessel mask from the proposed method.
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TABLE I
Possible orientation patterns based on the value of eigenvalues λ1, λ2 (H=high, L=low, |λ1| ≥ |λ2|) [14].

λ1 λ2 orientation pattern
L L Flat or Noise no preferred direction

H− L Bright tubular structure
H+ L Dark tubular structure
H− H− Bright blob-like structure
H+ H+ Dark blob-like structure
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Algorithm 1
Vessel Segmentation

Require: Enhanced epifluorescence-based vessel image I
Ensure: Background-Vessel mask MaskVessel (1:Vessel, 0:BG)
 1: ℋ(I)←Hessian(I)
 2: g(∇I) = exp(−|∇Gσ(x, y) * I(x, y)|) // Edge stopping function
 3: FA(x, y) = c1 × (trace(ℋ(I(x, y))) + c2) // Differential geometric adaptive force
 4: Maskridge(x, y)←Initialize ridge mask
 5: Maskridge(trace(ℋ) < ε)←1 // Set ridge (vessel) pixels to 1
 6: Maskridge = Maskridge ⊕ se // Dilate ridges
 7: ϕ = SignedDist( Maskridge) //Initialize ϕ using signed distance transform of Maskridge; Maskridge = = 0→ϕ > 0
 8: while stopping/convergence condition not met do
 9: Evolve ϕ using g(∇I) and spatially adaptive force FA.
10: end while
11: MaskVessel(x, y)←0; MaskVessel(ϕ < 0)←1 // 1: Vessel, 0:BG
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