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Abstract
Beta-barrel membrane proteins (MP) are found in Gram-negative bacteria, mitochondria and
chloroplasts. They play important roles in metabolism of bacteria, where they are involved in
transport of solutes in and out of the cell. Beta-barrel proteins may also act as proteases, lipases and
may be important for cell-cell adhesion. Currently, there are about 30 non-redundant solved structures
of β-barrels. Although the number of b-barrel folds is fairly small, it is possible to expand the amount
of available structural information by homology modeling using existing structures as templates. The
scope of structure prediction may be widened by finding remote homologues of the existing
structures. To improve the sensitivity of the database searches and the quality of sequence alignments,
we first study evolutionary history of transmembrane segments of 7 β-barrel membrane proteins by
estimating substitution rates with a Bayesian Monte Carlo approach. Next, we calculate amino acid
substitution matrices, beta-barrel Transmembrane scoring Matrices (bbTM), specifically tuned for
TM regions, which can be used to detect remote homologues. We then test bbTM matrices by
comparing their performance with membrane-protein derived scoring matrices PHAT and SLIM.
Our results demonstrate that bbTM matrices have higher selectivity towards transmembrane β-barrel
proteins and may be used with higher confidence in database searches for remote homologues of this
class of proteins.
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I. INTRODUCTION
Sequence analysis of homologous proteins showed that certain amino acid substitutions occur
more frequently than others due to physical, chemical or structural reasons, which prompted
the use of scoring matrices as a punctuation system. The classic PAM (Percentage of
Acceptable point Mutations) matrices [1] were based on robustly accurate alignments of closely
related proteins, from which target frequencies for any desired evolutionary distance were
extrapolated using a time-reversible Markov model [2,3]. BLOSUM (BLOcks of Amino Acid
SUbstitution Matrix) matrices [4] avoid such extrapolation by estimating target frequencies
directly from different evolutionary distances by using the ungapped segments of multiple
sequence alignments. BLOSUM62 is the default matrix for the popular database search
BLAST, while FASTA is usually used with BLOSUM50 matrix. An update of PAM matrices
based on the same counting approach that PAM and BLOSUM, using a much larger database
is the Jones-Taylor-Thornton (JTT) amino acid substitution matrix [5], widely used in
phylogenetic analysis [5-7].
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The quality of the results obtained with BLAST searches against protein databases depends
strongly on the choice of the scoring matrix and these commonly used matrices are not exempt
from problems. For example, the counting methods behind their calculations present two main
problems: the systematic underestimation of substitution in certain branches of a phylogeny,
and the inefficiency in using all the information contained in the amino acid residue sequences
[8].

Assuming that the counting methods would be sufficient, BLOSUM and PAM have been
derived from globular proteins that have a particular “standard” amino acid composition. The
compositional adjustment of amino acid scoring matrices has been proposed from different
approaches for other globular proteins with a non-conventional amino acid composition
[9-12]. The same adjustment is required for membrane proteins based on their different
structural features, different amino acid composition, and residue exchangeabilities [13], as a
consequence of a different environment in which they are found, e.g., the lipid bilayer.

Currently, two different types of membrane proteins based on their secondary structure can be
distinguished: alpha helical and β-barrel membrane proteins, which account for a significant
share of proteins in a typical genome of a respective organism [14]. These proteins play central
roles in many cellular processes, such as cell signaling and transport. In this study, we focus
on β-barrel membrane proteins, which are found in the outer membrane of Gram-negative
bacteria, as well as in mitochondria and chloroplasts [15]. There is only a handful of structures
of β-barrels currently solved. Finding remote homologues of the existing structures may widen
the scope of structure prediction and facilitate functional annotations of microbial genomes.
To this end, it is important to increase the ability of searching algorithms to detect related
membrane proteins with high confidence. One of the approaches is to develop a scoring matrix
specifically tailored for a given class of proteins. Several scoring matrices were developed for
α-helical membrane proteins, e.g., PHAT [16] and SLIM [17] scoring matrices. PHAT matrices
were built from predicted hydrophobic and transmembrane regions of the Block database
following the BLOSUM method. SLIM non-symmetric score matrices were derived from two
competing stochastic models for aligned amino acid pairs: an asymmetric null model and an
alternative model (following different strategies to estimate the parameters). There were no
attempts to develop matrices specific for β-barrel membrane proteins.

To fill this gap, we first studied evolutionary history of transmembrane segments of β-barrel
membrane proteins by estimating amino acid substitution rates with a Bayesian Monte Carlo
approach. This approach has advantages over counting methods and standard position specific
weight matrix generated by PSI-BLAST. First, it avoids the problem of systematic
underestimation of certain substitutions, as a phylogenetic tree is explicitly built for rate
estimation, whereas method such as PSI-BLAST treats every retrieved sequence with equal
weight. In addition, matrices such as PAM and BLOSUM have implicit parameters whose
values were determined from the precomputed analysis of large quantities of sequences, while
the information of β-barrel membrane proteins has limited or no influence. Markovian
evolutionary models are parametric models and do not have pre-specified parameter values.
Based on the estimated substitution rates, we next built a series of scoring matrices named
beta-barrel Transmembrane Matrices (bbTM) specific for transmembrane regions of β-
barrels. Finally, we tested bbTM matrices for detection of remote homologues of β-barrel MP
and compared their performance with scoring matrices PHAT and SLIM.

II. METHODS
We selected a dataset of 7 non-homologous β-barrel membrane proteins with available X-ray
structure (1A0S, 1BXW, 1FEP, 1I78, 1KMO, 1NQE, 1QJ8, 2OMF). For each protein
sequence, we performed a BLAST search against NCBI NR database and selected homologous
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sequences with 20-90% sequence identity (e-value <10−10) in such a way that the identity was
based on the sequence of transmembrane fragments, and not more than two gaps were allowed
in the alignment of every individual transmembrane fragment. We then built a phylogenetic
tree of the selected sequences using a maximum likelihood method [6]. Next, a Bayesian
Markov Monte Carlo simulation was carried out to estimate amino acid substitution rates in
the aligned sequences, following the approach developed by Tseng and Liang [18].

A. Calculation of amino acid substitution rates with Bayesian Markov Monte Carlo simulation
Given the sequence divergence (branch lengths) of a calculated phylogenetic tree using a
Maximum Likelihood method, and given a set of homologous sequences, the probability of
observing all residues in the given sequence is given by (1).

To estimate the Q matrix, a continuous time Markov

1

model for residue substitutions is implemented using a Bayesian approach, where the prior
distribution π(Q) is employed to encode the past knowledge of amino acid substitution rates
for proteins. The instantaneous substitution rate Q = {qij} is described by a posterior
distribution π(Q|S,T), which summarizes the information contained in the given sequences S
and in the optimal tree topology T. After integrating the prior information and the likelihood
function, the posterior distribution π(Q|S,T) can be estimated up to a constant. Therefore, our
goal is to estimate the posterior means of rates in Q as summarizing indices (2)

2

For this study, we used both uniform uninformative priors and the priors obtained from
BLOSUM62, which gave similar results. Next, a Markov chain was run to generate samples
drawn from the target distribution π(Q|S,T). Starting from a rate sample Qt at time t, a new rate
matrix Qt+1 using the proposal function T(Qt, Qt+1) was generated. The proposed new matrix
Qt+1 will be either accepted or rejected, depending on the outcome of the acceptance rule r
(Qt, Qt+1). This is achieved by using the Metropolis-Hastings acceptance ratio r(Qt, Qt+1) to
either accept or reject Qt+1 depending on whether the following inequalities hold:

3

where u is a random number drawn from the uniform distribution U[0,1]. With the assumption
that the underlying Markov process is ergodic, irreducible, and aperiodic [19], a Markov chain
will reach the stationary state.

B. Calculation of scoring matrices
We derived residue similarity scoring matrices from the estimated amino acid substitution rates
in each of the 7 protein sequences from the dataset described above. This was done by
calculating the similarity score bij(t) between residues i and j from the substitution rates at
different evolutionary times, te (e=1, 2… 300) obtained from the rate matrix Q. In this study,
we used the scoring matrix at time t=1 because it demonstrated the best performance in the
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database searches. Finally, the matrices obtained from the protein data set were averaged into
a beta-barrel Transmembrane Matrix (bbTM), which was further used for database
searches and analysis.

C. Blast searches and databases
We performed BLASTP searches with bbTM, PHAT and SLIM matrices using transmembrane
segments of a set of β-barrel membrane proteins with known structure as a query sequence
(1T16, 1THQ, 2F1C, 2F1T, 2O4V) in order to evaluate the performance of each matrix. Default
BLAST parameters were used for searching the following protein databases: (a) PROFtmb
[20] containing 2,150 protein sequences of predicted bacterial β-barrel membrane proteins; (b)
a randomized version of PROFtmb, where each sequence was randomly shuffled; (c) a parsed
version of SWISSPROT database consisting of 258,573 sequences of globular soluble proteins
from bacteria and eukaryota.

III. RESULTS
A. Amino acid substitution rates in bbTM, PHAT and SLIM matrices

We calculated amino acid substitution rates for PHAT and SLIM matrices and presented them
as bubble plots together with bbTM substitution rates (Fig. 1). Here, the higher the substitution
rate between two amino acids in the analyzed sequences, the bigger the corresponding bubble.
The substitution patterns are clearly different in all three matrices.

The highest rate of amino acid exchange in bbTM matrix is observed for pairs I↔V, N↔S,
I↔L, L↔M, M↔T, L↔V, and S↔T and represents an exchange of amino acid residues with
similar physico-chemical properties (Fig. 1a). PHAT matrix, on the other hand, contains a
larger number of fast exchanging pairs of polar amino acids such as D↔E, H↔N/Y, and H/
N↔Q together with aromatic pair F↔Y and hydrophobic pairs I↔V/M (Fig. 1b). SLIM matrix
contains a slightly different set of quickly exchanging pairs that includes F↔Y, I↔L/V, F↔W,
I/L↔M, C↔S, H↔N, and D↔E (Fig. 1c).

B. Performance of bbTM matrices in BLAST searches of databases
To assess the performance of bbTM matrix in BLAST searches, we compared in a cumulative
fashion the number of hits obtained from searches in different databases using bbTM, PHAT
and SLIM scoring matrices. The results of BLAST searches for retrieved sequences within
different ranges of e-values are summarized in Fig. 2. PHAT and SLIM matrices consistently
retrieved a larger number of hits in BLAST searches against the predicted membrane protein
database. The number of retrieved sequences was similar for all three matrices at lower e-
values, but differed significantly in the range of e-values between 0.1 and 1.0 (Fig. 2a), where
retrieved hits have no statistical significance.

The advantage of using bbTM and its high specificity for transmembrane β-barrel sequences
is best demonstrated by the results of searches against the databases containing only sequences
of globular proteins or shuffled (randomized) sequences of predicted β-barrels.

For example, when the BLAST searches with TM segments were performed against the
globular protein database, PHAT and SLIM matrices retrieved 5 and 37 sequences,
respectively, with e-values ranging from 10−2 to 1.0, while no sequences were retrieved by
bbTM scoring matrices at any range of e-values (Fig. 2c). Similarly, BLAST searches of
randomized database with PHAT and SLIM yielded 13 and 24 hits, respectively. Again,
searches with bbTM matrix found no hits at any range of e-values (Fig. 2b). As the reduction
of false positive becomes a critical issue when genome-wide search for β-barrel membrane
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protein is carried out, existing matrices such as PHAT and SLIM are not suitable for studying
β-barrel membrane proteins, as they will lead to a large number of proteins mislabeled as β-
barrel membrane proteins. Our results indicate that bbTM matrices have higher selectivity
towards transmembrane β-barrel proteins and may be used with confidence in database
searches for remote homologues of β-barrel membrane proteins.

IV. CONCLUSIONS
We have estimated amino acid substitution rates for the transmembrane segments of β-barrel
membrane proteins. We found that they are different from soluble proteins and α-helical
membrane proteins represented by other scoring matrices (Figure 1). Despite of the fact that
β-barrel membrane proteins share a low sequence identity, the substitution rates estimated from
very different β-barrel membrane proteins share a strong common pattern.

It is challenging to evaluate the specificity and sensitivity of a given matrix, as the hits retrieved
by a BLAST search cannot be guaranteed to be membrane proteins. A good indicator is the
use of a shuffled randomized database as a target database: the number of hits obtained from
this database can be considered as false positives, which provides a measure of the quality of
the scoring matrix. In addition, we selected a database of non-membrane proteins from the
SWISSPROT database, excluding every sequence with any reference to the word “membrane”.
A large number of hits against this database is a clear indicator of the loss of specificity of the
searches, which are the cases for PHAT and SLIM matrices. Our bbTM matrix generates no
hits, indicating an excellent specificity.

We expect that the scoring matrix bbTM derived from the estimated substitution rates can be
used for detection of remote homologues of known structures through BLAST searches. This
will allow the structures of a large number of β-barrel membrane proteins to be modeled.
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Fig. 1.
Amino acid substitution rates in a) bbTM, b) PHAT and c) SLIM matrices.

Jimenez-Morales et al. Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Results of BLAST searches with bbTM, PHAT and SLIM matrices: a) against a predicted
database of β-barrel membrane proteins; b) the same database but with every sequence
randomly shuffled; and c) a database of globular proteins from bacteria and eukaryota.

Jimenez-Morales et al. Page 8

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2009 January 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


