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Abstract
Semaphorins are a large family of secreted, transmembrane and GPI-linked proteins initially
characterized in the development of the nervous system and axonal guidance. Semaphorins are
expressed in many tissues where they regulate normal development, organ morphogenesis, immunity
and angiogenesis. They affect the cytoskeleton, actin filament organization, microtubules and cell
adhesion. Semaphorin signaling is transduced by plexins, which in the case of most class-3
semaphorins requires high affinity neuropilin receptors. The neuropilins also function as receptors
for VEGF and other growth factors, and their expression is often abnormal in tumors. In cancer,
semaphorins have both tumor suppressor and tumor promoting functions. We review here the current
status of semaphorins and their receptors in tumor development with a focus on lung cancer.
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1. Introduction
Shortly after semaphorins were identified as axon guidance molecules, their role in cancer
development began to be understood. Knowledge about their receptors, signal transduction
and functional roles has significantly evolved. Today, it is clear that several semaphorins and
their receptors (neuropilins and plexins) participate in vascular development, angiogenesis,
and cancer. Neuropilins, which are high-affinity receptors for class-3 semaphorins, also
function as co-receptors for VEGF and other growth factors, and their expression is often
abnormal in cancer. We review here the status of semaphorins and their receptors in signaling
and tumor development with a focus on lung cancer. Attention will be placed on semaphorin-
VEGF antagonism and semaphorin signaling as these molecular events likely account for the
ability of specific semaphorins to affect tumorigenesis. Lastly, we discuss the therapeutic
potential of this pathway in cancer.
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2. Lung cancer overview
Lung cancer ranks among the most common malignant diseases and currently is the leading
cause of cancer-related death worldwide. In the United States, lung cancer is the most common
cause of cancer-related deaths with an incidence approximating 70 per 100,000 individuals. In
2003, an estimated 171,900 Americans were diagnosed with lung cancer and approximately
152,200 succumbed to this disease. In the European Union, lung cancer accounts for one-third
of all cancer-related deaths. In addition, lung cancer is rapidly emerging as a major cause of
mortality in Asia and death rates are expected to substantially increase over the next decades.
Unfortunately, the overall 5-year survival of patients is less than 15 % [1].

The major risk factor for lung cancer is tobacco exposure (90% of cases diagnosed). Exposure
to other environmental respiratory carcinogens, such as asbestos, benzene, coal tar, and other
industrial chemicals may interact with tobacco smoke to increase risk. The effect of low-
energy-transfer radiation appears variable. Epidemiologic data suggest that lung cancer risk is
associated with urbanization, and vehicle density is an excellent predictor of cancer mortality.
It is assumed that 1% to 2% of lung cancers are directly attributable to air pollution. Although
considerable attention has been given to household radon gas exposure, the risk remains
controversial. In addition, several genetic and non-genetic defects are associated with this
disease and have identified familial clusters and populations at increased risk for lung cancer.

Lung cancers are divided into 2 main classes depending on their histologic appearance and
presumed cellular origin. Small Cell Lung Cancers (SCLCs) are of neuroendocrine origin,
while Non-Small Cell Lung Cancers (NSCLC) are predominantly epithelial. NSCLCs include
adenocarcinoma (now the dominant cell type), bronchioalveolar (BAC), squamous and large-
cell carcinoma (which has neuroendocrine features).

The distinction between SCLC and NSCLC has a major therapeutic implication. While surgical
resection remains the standard of care for localized NSCLC, with ongoing international
attempts to improve early diagnosis, SCLC is not routinely treated with surgery even when the
disease appears localized to the chest. This is because nearly all patients subsequently relapse
with metastatic disease. For patients with metastatic disease and either NSCLC or SCLC,
combination chemotherapy is the mainstay of treatment, with radiation used for local
problematic areas such as a brain lesion or bone metastasis that is painful or prone to fracture.
For SCLC, a platinum-based combination (doublet) such as cis-platinum plus etoposide would
be considered standard of care - see National Comprehensive Cancer Network
(http://www.nccn.org/professionals/physician_gls/f_guidelines.asp). For advanced NSCLC, a
platinum-based doublet is standard of care with bevacizumab suggested for patients without
squamous histology, brain metastasis or those on anti-coagulants, all of which are associated
with an unacceptable risk of fatal hemorrhage. Following disease progression, patients
generally receive either a taxane (e.g., Docetaxol, which acts by stabilizing microtubules),
Pemetrexed (an antifolate that specifically inhibits thymidylate synthase), or an EGFR inhibitor
(Erlotinib/Tarceva). Of potential interest, class-3 semaphorins impair microtubule assembly.
Whether there might be antagonism between the semaphorin and taxane effects has not been
investigated. The use of EGFR inhibitors is particularly relevant in adenocarcinomas and
bronchioloalveolar carcinomas, which have an increased frequency of EGFR activating
mutations or increased copy number [2,3].

A number of genetic and epigenetic molecular lesions are necessary to transform normal
bronchial epithelial cells to overt lung cancer. SCLCs and NSCLCs present distinct cytogenetic
or expression profiles, as depicted in Table 1, adapted from [4]. These include mutations in
oncogenes and tumor suppressor genes (TSG), aberrant DNA methylation, overexpression of
growth factors and growth factors receptors, association with metabolic phenotypes affecting
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P450 family genes, Glutathione S-transferase genes (GSTM1), Aryl hydrocarbon hydroxylase
(AHH), NAD(P)H:Quinone Oxidoreductase (NQO1), genetic variation in metabolism of
carcinogens, DNA damage or repair and genomic instability. Sequential events are depicted
in Figure 1 and 3p allele loss is currently the earliest known change, suggesting that either a
3p TSG may act as a “gatekeeper” for lung cancer or that 3p alterations are a particularly
sensitive marker of genomic instability. Interestingly, several genes involved as guidance cues
are localized in 3p (Table 2), i.e. semaphorins (SEMA3B [5], SEMA3F [6,7], SEMA3G),
plexin B1 (a semaphorin receptor), and Robo1 (a SLIT receptor) [8]. Because these guidance
molecules act in general to regulate cell migration, adhesion (and invasion of cancer cells), we
suspect they are involved in mechanisms of disease progression in lung cancer development.

3. The semaphorin family
Semaphorins, initially named collapsins, belong to a large family of about 30 proteins found
in multi-cellular organisms ranging from worms to flies, fish and mammals. They are not
present in unicellular eukaryotes or procaryotes, although do occur in a few viruses.
Semaphorins have been divided into eight classes based on structural features, with classes 3
to 7 representing the vertebrate proteins (Fig. 2; for recent reviews see [9,10]). The hallmark
of semaphorins is the sema domain, an approximately 500 amino acid, highly disulfide-linked,
segment. This domain is shared with receptors of the plexin and Met/Ron families [11]. Other
recurrent domains are the PSI domain (“plexin-semaphorin-integrin”) and an immunoglobulin-
type domain. In contrast, semaphorins diverge in their C termini, and can be either
transmembranous, anchored to the plasma membrane or exclusively secreted. Proteolytic
processing converts membrane-associated semaphorins to diffusible forms [12,13], and their
localization to the extracellular matrix might be additionally controlled by proteoglycan
binding [14,15]. Class-3 semaphorins (SEMA3s) can be further processed by furin-like
cleavage with large effects on biological activity. Sema3A cleavage is essential but not
sufficient for the acquisition of high repulsive activity for neuritis [16] and furin-dependent
cleavage of Sema3E promotes induction of invasive growth and lung metastasis in vivo, and
stimulates growth and motility in vitro [17]. This complexity has often been ignored in most
studies.

4. Semaphorin receptors and signaling
4.1 A multiple receptor-ligand system

Several receptors function to transduce semaphorin stimuli (Table 3). For brevity, atypical
receptors of the immune system are not presented (for reviews see [18–20]). Most semaphorins
directly bind to plexins which elicit intracellular signals [21]. However, secreted SEMA3s are
recruited to plexins by neuropilin (NRP) receptors [22,23] (Fig. 3). Two recent reviews describe
NRP structure and function [24,25]. Due to their short cytoplasmic segment, neuropilins
generally serve as binding subunits. However, their three C-terminal amino acids (SEA) are
essential for endothelial cell migration [26]. NRP1 preferentially binds SEMA3A, SEMA3B
and SEMA3E, whereas NRP2 has higher affinity for SEMA3F and SEMA3G [9]. The sema
domain of SEMA3s binds the NRP a1a2 domain, while the PSI/Ig/basic domains bind the NRP
b1b2 region [27]. Alternatively, some semaphorins and plexins may interact directly through
their sema domains [28] and SEMA7A has been reported to directly bind to beta-1 integrins
[29].

Neuropilins, plexins and semaphorins form complexes with other membrane-associated
proteins including receptors and cell adhesion molecules. Neuropilins are co-receptors for
vascular endothelial growth factor VEGF-A, VEGF-B, VEGF-C, VEGF-D and the viral
ORFV2-VEGF (Fig. 3) [30–34] as they form complexes with VEGFR1 (Flt1), VEGFR2
(KDR) and VEGFR3 [24,35]. Multimerization of NRPs and VEGFRs is probably mediated
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by VEGF binding to both receptors [33,36]. In this complex, NRPs may increase VEGF affinity
toward VEGFRs [30], although this issue is still under investigation [37].

Multiple VEGF-A isoforms are generated by alternative splicing with VEGF165 being the best
studied [35]. Originally, only the heparin binding forms (e.g. with exons 6–7) of VEGF-A were
believed to bind NRPs [30]. However, it was recently shown that VEGF121 that does not contain
exons 6–7, also binds NRPs, although it does not promote NRP-VEGFR interaction [36,38,
39]. VEGF-A binding to NRP might be due to the exon 8 C-terminus KPR motif, which inserts
into a negative cleft in the NRP b1 domain (Fig. 4A) [40,41]. Consistent with this, a variant
of VEGF lacking exon 8, VEGF165b, acts as an endogenous inhibitor of angiogenesis [42].
Because the carboxyl tip of SEMA3s is basic, it was suspected that it might also bind the NRP
b1 domain [43], which would support the hypothesis that SEMA3s are competitive inhibitors
of VEGF binding to NRPs [44]. Interestingly, among class-3 semaphorins, SEMA3F possesses
a KPR motif that overlaps a furin cleavage site (Fig. 4B). We can only speculate that this motif
might be involved in SEMA3F binding to NRP b1 groove and that furin cleavage would
regulate this binding. Although a recent structural report indicated that VEGF and SEMA3s
may have distinct binding sites on NRPs [45], this study did not address the proteolytically
processed forms of SEMA3s.

Other NRP ligands have been described including placenta growth factor 2 (PlGF-2) [46],
fibroblast growth factors (FGF) [47], galectin [48], hepatocyte growth factor (HGF) [49–51]
and TGF-β [52]. In addition, NRP1 interacts with c-Met [50]. There is further complexity in
semaphorin receptor complexes. For instance, SEMA3E binds D1-plexin independently of
NRPs [53]. More recent work indicates that NRP1 may participate in the SEMA3E-receptor
complex, but when so switches its effects from repulsion to attraction [54]. Similar switches
have been reported for Sema3A when the cell adhesion molecule L1-CAM is associated with
NRP1 [55], and for Sema3B and Sema3F when Nr-CAM associates with NRP2 [56]. Also,
CLCP1 (a NRP-related protein) is a receptor for the transmembrane SEMA4B [57]. It is thus
possible that NRPs are part of larger complexes containing multiple components such as
receptors and adhesion molecules. NRPs contribute to multiple relevant growth factor
receptors. Whether semaphorins and other growth factors compete or have distinct binding
sites is important from a potential therapeutic standpoint (see below). The interactions of
semaphorins with the HGF and EGF pathways are particularly interesting with regard to lung
cancer, given that both pathways are altered in this pathology.

4.2 Signaling from plexins
It is important to understand the molecular events mediated by plexins, the canonical
semaphorin receptors, since these are likely responsible for the role of semaphorins in tumor
development.

Sema3A and Sema3F inhibit cell attachment and cell migration (for review see [58,59]. At
least in part, this results from signaling changes that affect the activation or stabilization of
surface integrins. Depending on the semaphorin, plexin, and the cellular context, distinct
molecular cascades can be triggered with the recurrent participation of small GTPases.

One pathway, thought common to all plexins involves FARP2, R-Ras and talin in which
semaphorin binding leads to a conformational change in integrins (Fig. 5A) [60,61]. Indeed,
Sema3A and Sema3F cause downregulation of activated integrins due in part to inhibition of
R-Ras. Integrin inhibition by SEMA3A and 3F could explain both endothelial cell and tumor
cell migration blockade, leading to reduced tumor angiogenesis and metastasis.

The capacity of semaphorins to affect cell migration appears to extend beyond integrins. In the
Fer/CRMP2 (collapsin response mediator protein) pathway, activation of type A-plexins by
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SEMA3s induces phosphorylation of CRMP2 [62] which hinders its tubulin binding abilities
and interferes with cell migration (Fig. 5B). To our knowledge, this pathway has not been
studied in tumor cells.

Type B-plexins also regulate the cytoskeleton organization in a tumor context (Fig. 6). B-Plexin
stimulation by SEMA4D can inhibit cell migration in the presence of MET by deactivating
RhoA, while the presence of ErbB2 results in opposite effect [63]. Of note, p190RhoGAP can
also bind A-plexins [64]. Thus, semaphorins exhibit diverse roles in controlling cell migration
through the converging processes of regulating integrin activation and reshaping the
cytoskeleton. Therefore, the regulation of migration of endothelial cells and cancer cells by
semaphorins might be essential in tumor progression.

5. Semaphorins and Neuropilins at the heart of vascular development and
angiogenesis

As VEGF receptors, NRPs are essential elements in cardiovascular development and tumor
angiogenesis (for review see [24]). Both NRP1 and NRP2 are detected in human umbilical
vein endothelial cells (HUVECs). In mice, NRP2 is restricted to veins and lymphatic vessels,
while NRP1 is found in arteries and capillaries [65]. NRP1 overexpression in mice results in
disproportionate blood vessels and heart defects [66]. In contrast, deficiency of NRP1 induces
severe disorganization of vascular networks and agenesis [67], and absence of NRP2 leads to
reduction of lymphatic vessels [68]. Targeting both NRPs results in greater vascular defects
and death [69].

It was initially suspected that SEMA3s may control angiogenesis by competing for binding to
NRP with VEGF. During vascular development, SEMA3s repulse vessels between somites in
which they are expressed. In zebrafish, Sema3a1 and 2 function with D1-plexin [70,71].
However, increasing data indicate that the effects of semaphorins and VEGF may be
independent. For example, the use of a NRP1 engineered to bind solely VEGF, and not
SEMA3s, has revealed that SEMA3s have little effect on VEGF/NRP1-driven vascular
development [72]. Moreover, Sema3A and Sema3F-induced ERK1/2 inhibition are unrelated
to the ability of VEGF to induce VEGFR2 phosphorylation [73].Thus, a major consequence
of SEMA3s in angiogenesis may derive from their ability to inhibit integrin activation [74]. In
contrast, Sema3C enhances adhesion of endothelial cells (ECs) in vitro [75]. Thus, as often
occurs with semaphorins, regulation appears to be context-dependent.

The capacity of semaphorins to regulate vessel patterning is particularly relevant to cancer
since tumor neoangiogenesis is a requisite for tumor growth and metastasis. In in vitro and
xenograft experiments, Sema4D was shown to promote experimental angiogenesis by B1-
plexin-expressing endothelial cells, both in the presence or absence of Met [76]. The regulation
of angiogenesis by SEMA4D was subsequently confirmed in human head and neck cancer
tissues [77]. In tumor cells, Sema4D was shown to be a novel target of MT1-MMP matrix-
metalloproteinase, which processes and releases soluble Sema4D thereby inducing endothelial
cell chemotaxis in vitro and tumor-angiogenesis in vivo [76]. In contrast, the SEMA6A
extracellular domain inhibits VEGF165-mediated xenograft vascularization [78]. Similarly,
SEMA3F impairs angiogenesis in vivo in various xenograft tumor models [79–82].

6. Semaphorins and their receptors in normal lung
Like vessels and nerves, the lung develops by successive branching, generating a complex
architecture ending in bronchioles. Correct development requires cell migration and
proliferation, with high coordination between epithelial and mesenchymal cells. Notably, EGF
and FGF positively regulate proliferation. The lung is also highly vascularized, and
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semaphorins and their receptors have been detected in lung tissues. NRP1, NRP2 and A1-
plexin are temporally and spatially regulated during mouse lung development, together with
Sema3A, 3C and 3F [22,23,27,83,84]. In mouse lung explants grown ex vivo, Sema3A inhibits
branching whereas Sema3C and Sema3F promote it [83,84]. Localized in the mesenchyme,
Sema3A may maintain a low arborescence, allowing the principal branches to form. Later in
development, Sema3A expression decreases while NRP1 levels rise, suggesting a switch in
NRP1 function from Sema3A receptor to VEGF receptor. In the epithelium, Sema3C and
Sema3F might influence the formation of terminal buds. In adult human lungs, SEMA3F
mRNA is expressed [5–7] and the protein is found at the membrane of type-II pneumocytes
and in endothelial cells of large vessels [85]. In contrast, SEMA3B was barely detected by
northern-blot in adult normal lung [5].

7. Semaphorins in lung cancer
7.1 SEMA3B and SEMA3F

In lung cancer, one of the earliest and common genetic change is chromosome 3p deletion.
The first hypothesis implicating semaphorins in lung cancer came from the cloning of two
semaphorin genes, SEMA3B and SEMA3F, from a 3p21.3 homozygous deletion region in
SCLC cell lines (Table 1) [5–7]. In human lung and breast cancers, this region undergoes
frequent loss of heterozygosity (LOH) and both SEMA3F and SEMA3B transcripts are
underrepresented in squamous cell carcinomas [86].

It was shown that SEMA3B transfection reduces the growth of lung cancer cells in vitro and in
subcutaneous mouse models [87,88]. In vitro, SEMA3B induces apoptosis of lung and breast
cancer cells, while VEGF has opposite effects [89]. In addition, SEMA3B was lost in a
metastatic variant of the NSCLC cell line, NCI-H460, compared to the less metastatic parental
cell line [90]. No inactivating mutation has been detected, but a single nucleotide alteration
(T415I) leads to a reduced ability to suppress tumorigenesis in vitro [87]. Curiously, the T415I
substitution is associated with a reduced risk of lung cancer in latino-americans in the USA
[91]. Moreover, SEMA3B downregulation is sustained by gene hypermethylation in lung
cancer cell lines [87,92,93]. Also, SEMA3B is the target of the tumor suppressor, p53 [94],
suggesting it could be activated during DNA damage or other stress responses. However, Rolny
et al, [95] recently found in xenograft tumor models with MDA-MB435 melanoma and A549
lung cancer cells that SEMA3B inhibited tumor growth while simultaneously and unexpectedly
triggering metastasis by activating the p38 MAPK. Although p38 activated p21, a cell cycle
inhibitor, it also induced IL-8 cytokine secretion from tumor cells. The consequence was
macrophage infiltration which is thought to spur metastasis by producing soluble factors such
as VEGF.

The second semaphorin gene mapped in 3p21.3, SEMA3F (previously SEMAIV, [6,96] has
been studied for its in vivo tumor suppressor function. The first evidence came from transfection
of a mouse tumor cell line by a 80 Kb genomic clone containing SEMA3F (and additional
sequences) that suppressed tumor growth [97]. In human lung cancer, while SEMA3F is
expressed in normal lung, the protein is lost or delocalized in the cytoplasm of tumor cells
[85]. Moreover, its loss correlates inversely with the grade and stage of lung cancer, and also
with the tumor surface staining of VEGF165 [85,98]. Similarly in ovarian cancer, an elevated
VEGF/SEMA3 ratio is a poor prognostic feature [99].

SEMA3F potently inhibits tumorigenesis in several xenograft cancer models induced by
ovarian cancer [100], melanoma [79], lung cancer [81,82,101], murine fibrosarcoma [100] and
HEK293 cells [80]. One recurrent observation has been that tumors formed by SEMA3F-
expressing cells display reduced vascularization [79–82]. In vitro, SEMA3F secretion by
transfected tumor cells repels endothelial cells (ECs) [79]. SEMA3F also inhibits VEGF and
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FGF-induced ERK1/2 activation and EC proliferation [80]. Similarly, SEMA3F repels breast
cancer cells [102] and has an antagonistic effect on breast cancer cells spreading induced by
VEGF [103].

Consistent with the inhibition of integrin by plexin signaling, reduced beta-1 or beta-3 integrin
activation was found in both melanoma cells and H157 lung cancer cells, along with reduced
adhesion to fibronectin and vitronectin [79,82,101]. Additional signaling changes in H157 lung
cancer cells included loss of activated ERK1/2, AKT and STAT3 with downstream inhibition
of HIF1α translation and VEGF mRNA expression [82,101]. Mechanistically, SEMA3F
inhibited the activity of integrin-linked kinase (ILK) although this appeared to account only
for the loss of phospho-ERK1/2. Thus, SEMA3F has emerged as a potent tumor suppressor
and antagonist of VEGF-driven tumor neovascularization. Interestingly, reduction of VEGF
transcription was also observed after treatment of myeloma cells by Sema3A, suggesting that
this effect might not be restricted to SEMA3F [104].

To date, no inactivating mutation of SEMA3F has been reported, although its promoter is the
target of DNA hypermethylation in lung and breast cancer cell lines. Treatment with a histone
deacetylase inhibitor alone can restore SEMA3F expression [105]. SEMA3F can be turned off
by direct binding of the transcriptional repressor Zeb-1 (J. Clarhaut, personal communication),
a factor involved in the epithelial-mesenchymal transition in lung cancer cells and loss of E-
cadherin [106]. Like SEMA3B, SEMA3F is also a transcriptional target of p53 in lung cancer
cells [81].

7.2 SEMA6A
There are few data concerning SEMA6A in lung cancer, except that SEMA6A is located in
5q23.1 (Table 2), a region that can be deleted in lung cancer [107]. Interestingly, SEMA6A is
moderately expressed in the lung, but not expressed in the lung adenocarcinoma cell line A549
[78,108]. In kidney cancers, SEMA6A is more expressed in tumor tissues than in adjacent
normal tissues and might contribute to tumor angiogenesis. However, treatment of ECs with
the extracellular domain (ECD) of SEMA6A reduces VEGF-promoted migration in vitro, and
inhibited ERK1/2, Src and focal adhesion kinase (FAK) phosphorylation [78]. This was
independent of VEGFR2 phosphorylation status, and SEMA6A-ECD did not bind NRP1/2.
In vivo, the SEMA6A-ECD inhibited tumor formation induced by 786-0 kidney cancer cells
and VEGF-induced xenograft vascularization.

7.3 Other semaphorins
In lung adenocarcinoma, SEMA3C was reported to be upregulated in metastatic cells [109].
SEMA4B has been described as a migration and metastasis-promoting factor in the H460
NSCLC cell line [57] and can bind a homolog of NRPs, CLCP1, which was overexpressed in
a metastatic variant of H460 cells [110]. SEMA4D, and its receptor B1-plexin, are highly
expressed in head and neck tumors and lung carcinomas [77]. Although B1-plexin expression
was detected in non-malignant bronchial epithelium of adult lungs, SEMA4D was not [111].
When released from the tumor cell membrane by a protease, SEMA4D stimulates EC
chemotaxis and may therefore promote tumor angiogenesis [77]. Semaphorins implicated in
other cancers are listed in Table 4.

8. Neuropilins and other semaphorin-related proteins in lung cancer
The importance of NRPs in cancer has been presented in recent excellent reviews [24,25,35,
112–114]. In brief, NRPs are frequently overexpressed and often associated with poor
prognosis or advanced disease. In ECs, NRP1 and VEGFR2 stimulate PI3K activation [115].
Additionally, VEGF appears to be an autocrine survival factor for NRP-positive tumor cells
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[116,117]. In lung cancer, high levels of NRP1 were correlated with shorter disease-free and
overall survival [118]. In another study, co-expression of NRP1 and NRP2 were associated
with increased tumor vascularization and poor prognosis [119]. Compared to benign bronchial
hyperplasia and squamous metaplasia, progressive upregulation of NRP levels was observed
in pre-malignant lesions ranging from dysplasia to microinvasive carcinoma [98].

In lung cancer, loss of the semaphorin effector, CRMP1, has been associated with a more
aggressive phenotype [120]. Recent evidence indicates that plexins may participate in tumor
progression as well [77,121–123]. Another important molecule in cell migration and
oncogenesis is MET which functions with B-plexins in invasive growth [124] while its ligand
HGF binds NRPs [51].

9. The semaphorin pathway as a target for cancer treatment
Semaphorins and their receptors have now emerged as key components in tumor development
or progression. NRPs have been viewed as VEGF co-receptors and this has led to different
VEGF-inhibiting strategies, such as VEGF or NRP-blocking antibodies, NRP-blocking
peptides, and NRP soluble forms [24]. A signaling inhibitor of both VEGF and SEMA3A has
even been made [125].

In an animal model, injection of anti-NRP antibodies resulted in inhibition of tumor
angiogenesis, which showed increased activity when combined with an anti-VEGF antibody
[126,127]. In breast cancer cells, a peptide matching the VEGF binding site of NRPs induced
apoptosis [128]. Two other peptides that block VEGF-mediated NRP1 signaling have shown
tumor inhibitory properties [118]. A peptide (ATWLPPR) specifically blocking the VEGF
exon 8 binding to the NRP1 b1 domain has been tested with promising results [40,41,129,
130]. Peptides blocking NRP1 dimerization and function have also been used in the nervous
system [131].

Another strategy to block NRP1 is to induce its internalization. As recently shown [132],
sulfated polysaccharides like dextran sulfate and fucoidan reduce endothelial cell surface levels
of NRP1, NRP2 and, to a lesser extent, VEGFR-1 and VEGFR-2, and block the binding and
function of SEMA3A and VEGF165. These compounds appear to bridge the extracellular
domain of NRP1 to the scavenger receptor SREC-I and promote their internalization to
lysosomes.

Most therapeutic strategies have focused on NRP1 as less is known about the biological
properties of NRP2. Recently, it was reported that NRP2 plays a critical role in colorectal
cancer development and may represent a potential therapeutic target [133]. Indeed, NRP2
silencing rendered colon carcinoma cells less tumorigenic in nude mice. In the future,
semaphorin-based therapies could be used by themselves or in combination. In vitro, the
synchronized use of SEMA3A and SEMA3F demonstrated synergy in repelling and inducing
EC apoptosis [73]. A strategy employing the extracellular domain of SEMA6A has been
developed with success; injection of this protein fragment in mice reduced tumor and VEGF-
dependent vascularization [78].

10. Conclusion
Members of class-3 semaphorins, especially SEMA3F, have emerged as important factors in
the development/progression of lung cancer. While SEMA3F and SEMA3B are downregulated
in many tumors, their NRP receptors are conversely upregulated, most likely due to their role
as receptors for other growth factors. Recent data have suggested that SEMA3s might not
compete with VEGF for NRP binding thus strengthening the argument for a combined
semaphorin/anti-VEGF approach.
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Relatively little is known about which semaphorin signaling pathways significantly contribute
to preventing tumorigenesis, except that integrin regulation is recurrently observed. There is a
need in future studies to determine which signaling pathways or components predominate in
the semaphorin anti-tumor effects. This might allow small molecules to recapitulate the effects
of semaphorins, which are more cumbersome and expensive to produce. Recently, antibodies
targeting the VEGF-A/C binding sites on NRP1 and NRP2 have been engineered and show
promising results on blocking tumor angiogenesis, lymphangiogenesis and metastasis in
rodents [127,134]. It is likely that such strategies will see their ways to clinical trials in the near
future
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Fig. 1. Sequential events in lung cancer studied in squamous cell lung carcinoma
Not every change is necessary and the timing may be subjected to variation. Adapted from
[4].
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Fig. 2. The semaphorin family structure
Semaphorins are either secreted, membranous or associated to the membrane. GPI: glycosyl
phosphatidyl inositol. Ig: immunoglobulin-like domain. PSI: plexin-semaphorin-integrin.
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Fig. 3. Receptors of class-3 semaphorins and VEGF
Left: binding of SEMA3 to NRP and A-plexin. The sema domain of SEMA3 binds the a
domains (CUB) of NRP. The PSI/Ig/basic region binds the b1b2 domain. Right: binding of
VEGF165 to NRP and VEGFR2. The HB domain of VEGF165 binds the b1 domain of NRP
and the N terminus binds the 2d and 3rd Ig domains of VEGFR2. VEGFR2 has a tyrosine
kinase activity, but not plexins. CRIB: cdc42/rac interactive binding; GAP: GTPase activating
protein; HB: heparin binding; MAM: meprin/A5 antigen/tyrosine protein phosphatase μ; N
term: exons 1 to 5; TK: tyrosine kinase.
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Fig. 4. VEGF binding to neuropilins
(A) A model of VEGF binding to NRPs with involvement of heparin. The KPR motif interacts
with amino acids of the NRP b1 domain groove. (B) The amino acid composition of SEMA3s
basic C-ter domain. SEMA3s have different amino acids motifs in the basic domain: only
SEMA3F possesses the KPR (bold) that overlaps the RxxR furin cleavage motif (squared).
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Fig. 5. Intracellular signaling by A-plexin upon semaphorin stimulus
(A) The FARP2/R-Ras/talin pathway. When plexins are inactive, the Rac GEF FARP2 is bound
to a KRK motif on their cytoplasmic region. After semaphorin binding, FARP2 is released
from plexins and transiently activates Rac1. In turn, Rac1 activates plexins allowing the
interaction with Rnd1. Rnd1 recruits R-Ras which is inhibited by the GAP activity of plexins.
Also, free FARP2 binds and sequesters PIPKI (PIP Kinase Isoform) which is required in the
final step of integrin activation by talin binding. These mechanisms result in a lack of integrin
activation and stabilization in focal points. Note that this mechanism is thought to be common
to all types of plexins. Thus neuropilin participation might be variable (not represented). (B)
The Fes/CRMP2 pathway. When stimulated by a class-3 semaphorin, A-plexin interacting
kinases Fes and Fyn phosphorylate CDK5, which subsequently phosphorylates CRMP2.
CRMP2 priming phosphorylation enables an additional phosphorylation of CRMP2 by
GSK3β. This results in the inability of CRMP2 to interact with tubulin and to promote
microtubules assembly, suggesting a role in cell migration.
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Fig. 6. Regulation of actin dynamics by B-plexins
B-plexins have an additional domain at their cytoplasmic tip that is responsible for interaction
with PDZ domain-containing proteins. Stimulation by SEMA4D induces the Rnd1-dependent
interaction of Rho regulators such as the GEF LARG and PDZ-RhoGEF, or the GAP p190-
RhoGAP, with the PDZ domain of plexins. The association of the plexin with Met would inhibit
RhoA by using p190-RhoGAP, and the association of plexin with ErbB2 would promote RhoA
activity by using LARG and PDZ-RhoGEF. Asterisks: the domains of these proteins are not
detailed here. Note the presence of a sema-like domain in Met. PDZ: PSD-95, DLG, ZO-1.
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Table 1
Major genetic characteristics of small (SCLC) and non-small cell (NSCLC) lung cancers.

SCLC NSCLC

frequency in lung cancer patients 20% 80%
neuroendocrine properties 100% rare
FHIT deletion/mutations 80% 40%
p53 deletion/mutations 85% 50%
p16 deletion/mutations rare 60%
Rb deletion/mutations 90% 20%
LKB1 mutations rare 30%
PTEN mutations 15–20% infrequent
E-cadherin loss ? 10%
K-Ras activating mutations rare 20%
c-myc overexpression 20% rare
EGFR1 overexpression rare 60%
HER2/Neu overexpression rare 20%
Bcl-2 overexpression 85% 20%
autocrine loop GRP-GRP receptor, SCF-Kit HGF-Met, TGF-α
PI3K activation + +
microsatellite instability 35% 20%
telomerase activity 100% 80%
frequent allelic loss 4p, 4q, 5q, 8p, 10q, 13q, 17p, 22q 6q, 8p, 9p, 13p, 17p, 19q
3p deletion 100% 80%
3q amplification + +
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Table 3
Semaphorin receptor complexes. Semaphorins can interact with complexes that include NRPs, plexins, various
membrane proteins such as growth factor receptors and cell adhesion molecules (CAMs) which themselves interact.
Asterisk: Sema3E is an exception, it cand bind D1-plexin directly.

receptor complex

ligand transducing unit binding unit additional unit

SEMA3 * plexin A NRP L1/Nr-CAM, integrin
SEMA4 plexin B + Met/ErbB2 plexin B CLCP1
SEMA5 plexin B plexin B
SEMA6 plexin A plexin A VEGFR/Off-Track
SEMA7 plexin C, integrin plexin C, integrin

VEGF VEGFR VEGFR, NRP
HGF Met NRP, Met
Galectin ? NRP
TGFβ ? NRP
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