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Introduction
Diversity of Head and Neck Squamous Cell Carcinoma (HNSCC)

There is a remarkably diverse array of anatomy and tumor morphologies, with at least ten
anatomic subsites of the head and neck, challenging all members of the multidisciplinary team
to precisely define the extent of a patient’s disease. (Figure 1) While the majority of the
histopathology consists of squamous cell carcinoma (SCC), there are dozens of other
pathologic diagnoses. Accordingly, a broad spectrum of treatment modalities are offered,
frequently in combination, including chemotherapy, radiation including Intensity Modulated
Radiation Therapy (IMRT), and surgery with and without reconstruction. Historically, the
treating teams have labored to join the anatomic and morphologic considerations (as well as
patient preference and comorbidities) of a patient’s disease to select the appropriate range of
treatment options. Increasingly clinicians are also required to consider a new set of issues, the
so-called molecular determinants of head and neck cancer. In the sections below we will
attempt to highlight the spectrum of these targets most likely to impact clinicians and patients
in the coming years. We will touch briefly on inherited and somatic aberrations that predispose
to tumorigenesis, both genetic and epigenetic, as well as a number of specific cancer pathways
as targets of tumorigenesis and therapeutics. Finally, we will consider the role of new and
developing molecular diagnostics in the management of patient care.
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Molecular Basis of Risk Factors for Development of Head and Neck Cancer
The most well known risk factor for developing head and neck cancer is the deleterious effects
of tobacco. Indeed, HNSCC was one of the first carcinomas to be linked with p53 mutations
caused by tobacco usage [1]. Alcohol use is synergistic with tobacco in causing HNSCC. There
are other cultural habit-forming risk factors that have an association with HNSCC. Betel nut,
a fruit that is the basic ingredient of a stimulant chew, is used by an estimated 200 to 400 million
throughout Southeast Asia [2]. Betel nut is incorporated into Asian medicines to treat a variety
of complaints from headaches to rheumatism [3]. The odds ratio of developing leukoplakia
and submucous fibrosis from using betel nut is five compared to one in non-chewers [4]. The
addition of tobacco raises the risk 3-fold [4]. The duration and frequency of betel nut use
increase the risk of developing cancer, suggesting a dose-response relation [5].

Tobacco smoke is associated with structural changes in DNA, particularly those induced by
oxidative damage. Benzo[α]pyrene diol epoxide (BPDE), a known tobacco carcinogen,
induces genetic damage by forming covalently bound DNA adducts throughout the genome,
including p53 [6]. Damage induced by BDPE and other such carcinogens can be repaired
through the nucleotide excision repair (NER) system. Along with the NER the base excision
repair (BER) system is another set of multi-step enzymatic complexes involved in the repair
of nonspecific DNA damage, including gamma and ultraviolet radiation, cross linking, and
chemical intra-/interstrand adduct formation. The BER handles the largest number of cytotoxic
and mutagenic base lesions by specifically removing alterations of a single base pair that has
been methylated, oxidated, or reduced and corrects single strand interruptions in DNA [7].
Therefore, individual variations in NER/BER are one of the factors that may influence tobacco
smoking related cancer risks like HNSCC.

Interestingly, several studies have demonstrated that sequence variations in NER/BER genes
contribute to HNSCC susceptibility [8–11]. The ERCC1 gene product is a key enzyme in the
NER system, and one particular polymorphism at the ERCC1 gene (C8092A) may affect its
mRNA stability, resulting in impaired DNA repair capacity [12]. Two single nucleotide
polymorphisms (SNPs) in the XPD gene (Asp312Asn and Lys751Gln), also part of the NER
cascade have been associated with suboptimal DNA repair capacity [13]. There are conflicting
data regarding SNPs in the BER system and the predilection for developing HNSCC. Li et al,
in one of the largest case-control studies of 830 patients with HNSCC and 854 cancer-free
controls, evaluated the progression to HNSCC based on polymorphisms in 3 BER non-
synonymous SNPs [9]. The BER system enzyme XRCC1 (Arg399Gln), actually inconsistently
increases the risk of HNSCC in Caucasians [13–16]. On the other hand, Li et al conclude that
polymorphisms in the ADPRT enzyme of the BER system are associated with HNSCC and
they demonstrate that individuals with the ADPRT 762Ala/Ala and Ala/Ala1Val/Ala
genotypes were at lower risk of developing HNSCC compared with individuals who had the
Val/Val genotypes [9]. Further studies to elucidate the genetic predisposition of developing
HNSCC in the face of total tobacco burden may provide preventative health benefits to
individuals with susceptible polymorphisms in the future.

Marijuana is the most commonly used illegal drug in the United States and the second most
commonly smoked substance after tobacco [17]. Habitual marijuana smoking manifests with
similar signs and symptoms associated with chronic tobacco use [18,19]. Furthermore the
carcinogenic properties of marijuana smoke are similar to those of tobacco and numerous
studies parallel the use of cannabinoids to cancer development [20–22]. Marijuana has been
shown to induce cytogenic changes consisting of chromosomal breaks, deletions, and
translocations in mammalian cells in vivo [23]. Until recently, there was not enough evidence
to suggest a causative relation with oropharyngeal HNSCC, especially those caused by tobacco
use [24]. However, HNSCC caused by human papilloma virus (HPV) may be associated with
marijuana (see below).
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Clearly, normal variation in patient genotype for genes in DNA repair pathways appears to
modify baseline risk for cancer development, especially when impacted by environmental
toxins such as smoking. In parallel there are a range of germline variants that are much more
rare than SNP’s, and accordingly called mutations. These rare heritable events can be sporadic
or conserved in families and are frequently recognized due to the high penetrance of one of a
number of recognized familial cancer syndromes. Fanconi’s anemia, known for the risk of
developing lympho-reticular malignancies due to germline mutations in the care-taker genes
FAA, FAD, and FCC, carries a risk for developing second primary cancers in the tongue,
pyriform sinus and post cricoid region [25]. Patients with Bloom syndrome are characterized
to have mutations in the helicase genes and are predisposed to developing solid tumors in a
number of anatomical sites, 6–8% of which arise from the tongue and larynx, respectively
[26]. Homozygotes with ataxia telangiectasia who survive into their 20s and 30s are at increased
risk of developing chronic T-cell leukemia and solid malignancies of the oral cavity as well as
breast, stomach, pancreas, ovary and bladder [27]. Xeroderma pigmentosum, an autosomal
recessive disorder of one or more of the XP genes in the NER system, manifests second
primaries within the oral cavity in addition to the known risks of skin malignancies [26,28].
Other such syndromes (affected gene indicated in parentheses) with primary manifestations in
the head and neck include Cowden Syndrome (PTEN), Multiple endocrine neoplasia Type I
(MEN I), Multiple endocrine neoplasia Type II (MEN II), Neurofibromatosis Type II (NF-2),
Retinoblastoma (Rb).

Genetic cancer syndromes are generally recognized by the early age of onset of malignancies
in impacted individuals as well as specific or unusual patterns of tumors. Cancer syndrome
tumors are of scientific importance out of proportion to their incidence as they point clearly at
specific pathways and targets that are key to the development of malignancy, in contrast to
sporadic tumors where the causative lesion may be difficult to identify. The importance of this
is highlighted in the case of the RET where a number of drugs such as axitinib and vandetanib
have been developed, aimed at the mutation’s effect [29,30].

Viral Associations and New Epidemic of HNSCC caused by HPV
Recently, human papillomavirus (HPV) infection has been identified as an etiologic agent for
oropharyngeal carcinoma, a subset of squamous cell carcinomas, which comprises the tongue
base and tonsil. Patients with oropharyngeal squamous cell carcinomas that have the HPV
genes incorporated in their tumor genome are younger in age (by 3–5 years) and are less likely
to have a history of tobacco and alcohol use [31].

What is most disconcerting is that while the overall incidence of HNSCC (1973–2004) has
steadily declined according to the Surveillance Epidemiology and End Results (SEER) data
base, the incidence of oropharyngeal cancer is increasing among younger age groups [32–
35]. The unsettling implication is that the incidence of HPV-related HNSCC of the oropharynx
could overtake HPV-unrelated HNSCC, thought to be associated more with traditional risk
factors.

There is substantial evidence that infection with high-risk HPV subtypes, in particular HPV-16,
is a risk factor for the development of oropharyngeal cancers [36–47]. In fact, Gillison et al.
purport that HPV-positive and HPV-negative HNSCC of the oropharynx should be classified
as two distinct cancers based on the clinical and molecular risk factors and etiology [48].
According to their case-controlled study, patients at risk factors for HPV-16 positive
oropharyngeal squamous cell carcinoma were more likely to be white (p = 0.06), married (p <
0.001), college educated (p = 0.03) and have an annual income over $50,000 (p < 0.01); while
neither intensity or duration of tobacco smoking or alcohol consumption did not increase the
odds ratio of HPV-16 positive HNSCC [48]. Although case control studies have not linked
marijuana use to HPV-negative HNSCC, Gillison et al. demonstrate a strong association of
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marijuana use and HPV-16 positive HNSCC and further theorize plausible mechanisms of
cannibinoid modulation of the immune system [48].

High-risk HPV strains (16 and 18) associated with oropharyngeal squamous cell carcinoma
(as well as cervical cancer) manipulate cellular pathways within affected cells to activate cell
growth and suppress apoptosis. Malignant transformation begins with inactivation of the p53
tumor suppressor gene by E6, while a second HPV protein, E7, inactivates the retinoblastoma
tumor suppressor protein (Rb). The HPV E6 and E7 proteins, encoded in the HPV-16 genome,
functionally disrupt regulatory cell-cycle and DNA-repair pathways that drives genetic or
epigenetic changes during molecular progression of HNSCC [49]. E6 targets the cellular
ubiquitin-protein ligase E6-AP, which then targets p53 for ubiquitination and degradation,
leaving cell growth unregulated. E7 associates with Rb and p21 blocking the interaction of Rb
with E2F and initiating uncontrolled cell division [50].

Not only is the nascent HPV positive tumor subject to inactivation of tumor suppression genes
from the viral genome, but several genes involved in transcription and cell cycle regulation are
among the most prominent up-regulated in these tumors. One such cell cycle inhibitor is
CDKN2A, which encodes the p16INK4A tumor suppressor protein that functions as a cyclin-
dependent kinase inhibitor in the Rb tumor suppressor pathway. Increased expression of
p16INK4A may potentially reflect loss of a negative feedback loop associated with inactivation
of Rb by HPV E7 [51]. Overexpression of p16INK4A is strongly correlated with HPV infection
in head and neck carcinomas and has been used as a surrogate marker for HPV [52].

Detecting high-risk HPV using in situ hybridization (ISH) from ethanol-fixed and
Papanicolaou-stained smears after FNA has a 93% correlation to corresponding tissue sections
positive for HPV-16 with PCR [53]. Interestingly, HPV-positive tumors are associated with
nonkeratinizing cytomorphology [53]. A recent meta-analysis showed that 26% of HNSCCs
from all subsites contain HPV genomic DNA [54], and it is now estimated that over 50% of
oropharyngeal HNSCCs are related to HPV infection [55]. Although ISH and PCR techniques
are available, there are no standardized clinical tests approved by the FDA for HPV positive
HNSCC tumors.

Tumorigenesis/Carcinogenesis
Whereas in the case of HPV, a virus can usurp normal cellular processes, in the case of most
patients, the development of carcinoma is the result of a stepwise accumulation of genetic
alterations [56]. Three main steps include initiation, promotion, and progression. For this
multiple-step process to succeed, numerous cellular processes and derangements must occur.
The creation of an initial, critical, early genetic change helps set into motion the carcinogenic
process [57]. Exposure to carcinogenic factors may lead to the abnormal expression of tumor
suppressor genes and/or proto-oncogenes, which in turn, activate pathways that lead to the
malignant transformation of cells. Oftentimes, this abnormal expression may include a sporadic
mutation, deletion, loss of heterozygosity, overexpression, or epigenetic modification such as
hypermethylation. For example, telomerase, an enzyme involved in immortalization, has been
shown to be reactivated in roughly 90% of HNSCCs, while a deletion of 9p21 is found in 70–
80% of these cases. Various point mutations in TP53 and the loss of heterozygosity of 17p are
shown to exist in over 50% of HNSCC lesions [58]. Once this occurs, secondary genetic
changes create greater genetic instability, shifting the cell toward a more malignant phenotype
(Figure 2). Specifically, inactivation of tumor-suppressor genes allow for cellular proliferation
to continue with unregulated and autonomous, self-sufficient growth. Proto-oncogenes also
play a key role in tumorigenesis, helping the cell attain a malignant phenotype.

Six hallmarks of cancer cells, distinguishing them from their normal counterparts, have been
described: (i) self-sufficiency in growth signals, (ii) insensitivity to growth-inhibitory signals,
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(iii) evasion of programmed cell death, (iv) immortality or unlimited replicative potential, (v)
sustained angiogenesis, and (vi) tissue invasion and metastasis [59]. In the following sections
we will discuss major pathways, receptors, and proteins implicated in the initiation and/or
progression of HNSCC as they relate to aspects of all six of these hallmarks. It is the
accumulation of specific abnormalities such as those we describe, likely along with other
genetic events and alterations that account for the process of carcinogenesis in HNSCC.

Field Cancerization
While it is unclear exactly why HPV appears to target certain subsites in the head and neck,
the pattern is clear. In contrast, there appears to be a more general phenomenon seen in smokers
where broad regions of tissue appear to be damaged, giving rise to multiple premalignant and
frankly invasive tumors. In 1953, Slaughter et al. first hypothesized that primary tumors emerge
from a layer of pre-cancerous tissue and coined the term “field cancerization” after
demonstrating histopathologic changes consistent with genetic aberration from normal mucosa
[60]. Forty years after Slaughter proposed field cancerization, Califano et al. demonstrated the
molecular basis for histopathologic changes. Samples of dysplastic mucosa and benign
hyperplastic lesions displayed loss of heterozygosity at specific loci (9p21 (20%), 3p21 (16%),
17p13 (11%)) [49]. In particular, loss of 9p21 or 3p21 is one of the earliest detectable events
leading to the progression to dysplasia. From dysplasia, further genetic alteration in 11q, 13q,
14q creates carcinoma in situ. (Figure 2)

The high rate of recurrence in the location of the primary tumor is thought to be a result of the
fact that 30% of histopathologiclly benign squamous cell epithelium consists of a clonal
population with genetic alterations seen in HNSCC [61]. Studies using microsatellite analysis
and X chromosome inactivation have verified that metachronous and synchronous lesions from
distinct anatomic sites in HNSCC often originate from a common clone [62]. This evidence
confirms that genetically altered mucosa is difficult to cure in the HNSCC patient since it is
on the path to tumorigenesis. Indeed, second primaries are common in the patients with
HNSCC.

Epithelial-to-Mesenchymal Transition
There is evidence to suggest fundamental changes to the programming of cells, including stem
cells, may also be involved in tumorigenesis. One program that is particularly dangerous is the
Epithelial-to-Mesenchymal Transition (EMT), a phenotypic change in cells that provides them
with the ability to escape from constraints of surrounding tissue architecture. It has been
postulated that EMT is the means by which epithelial tumors invade and metastasize to other
tissues. As defined by Hugo et al, EMT is a culmination of protein modifications and
transcriptional events in response to extracellular stimuli. These changes lead to long term, yet
sometimes reversible, cellular changes [63]. Abnormalities in cadherins, tight junctions and
desmosomes lead to a decrease in cell-cell adherence and loss of polarity in the cells, increasing
the mobility of these cells. More specifically, epithelial cells disassemble their junctional
structures, undergo extracellular matrix remodeling, begin to express proteins of mesenchymal
origin, and subsequently become migratory [64]. This process has been postulated to be a part
of normal embryogenesis, as well as the inflammatory process and wound healing [63]. When
the process of EMT becomes pathological, it lacks the tight coordination and regulatory
checkpoints that are normally present. Specifically, in the carcinogenic process, EMT causes
changes in tumor cell properties that contribute to tumor invasion and metastasis, enabling
cancer cell dissemination and self-renewal capabilities [65]. In HNSCC, EMT has been found
to play a role, especially in high-risk tumor subtypes. Chung and colleagues showed that genes
involved in EMT and nuclear factor-KB (NF-KB) signaling deregulation are the most
prominent molecular characteristics of the high-risk tumors in the subset they examined [66].
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While it is clear that EMT plays a role in tumorigenesis in many cancers, the complete clinical
significance of this process is yet to be fully defined.

Epigenetic Modification
While many programs (such as those discussed in Figure 2) are the result of direct damage to
the genome, there are other mechanisms of heritable somatic changes in gene expression that
do not require direct alteration of the DNA sequence itself. The DNA molecule can be modified,
such as by the addition or subtraction of methyl groups without a change in the base
composition. Similarly, histones, the structural proteins found in close association with DNA,
can be modified such as by acetylation, methylation and ubiquitylation. These non-DNA
encoded modification can result in heritable changes in gene expression that are clinically
significant, including in the setting of cancer. Different cancers display varying behaviors,
likely due to the multiple epigenetic changes and genetic mutations that occur within a tumor
environment. Hypermethylation is one such type of epigenetic modification that is increasingly
well-characterized. Recently identified as a probable component in the development of
carcinoma, hypermethylation in certain promoter regions of a gene can lead to repression of
transcription [67]. Numerous studies have implicated this process of aberrant methylation in
many tumor suppressor genes, causing them to become inactive [67].

Molecular Pathways Involved in HNSCC
Increasingly, model systems and other research techniques have helped to decipher pathways
of importance for our patients (Figure 3). Knowledge of these pathways has led investigators
to interrogate key pathway components for tumor-specific gene mutations, and many have
been reported in head and neck tumors (Table 1). Initial clarity in the activated pathways and
mutated genes of head and neck tumors has resulted in clinical trials of host of targeted
therapies, such as those documented in table 2.. The most promising pathways and agents from
this inventories are discussed below.

Epidermal Growth Factor Receptor (EGFR)
Epidermal growth factor receptor (EGFR) signaling has been strongly implicated in
carcinogenesis, tumor progression, and response to therapy in HNSCC (reviewed in [68]). The
ErbB family of proteins, a family of four structurally-related receptor tyrosine kinases, is
comprised of four receptors (ErbB 1–4, also known as HER 1–4) and thirteen polypeptide
extracellular ligands [69]. In the literature, ErbB2 is synonymous with HER2/neu, while ErbB1
is commonly referred to as EGFR. When ligands bind to one of the ErbB receptors, a dimer
forms and the receptor’s intracellular tyrosine residues then undergo ATP-dependent
autophosphorylation. Currently, there are 12 different ligands that are known to activate four
known ErbB receptors.

Once phosphorylated, the receptor has the potential to trigger a number of different intracellular
downstream pathways that can eventually arrest apoptosis, promote cellular proliferation,
stimulate tumor-induced neovascularization, and activate carcinoma invasion and metastasis
[69]. The Ras/mitogen-activated protein kinase/extracellular signal-related kinase (Ras-
MAPK-ERK) pathway is known to control gene transcription, cell proliferation and cell-cycle
progression, while the phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) pathway has
been shown to stimulate numerous anti-apoptotic signals within the cell. The Janus kinase/
signal transducers and activators of transcription (JAK/STAT) and the phospholipase-Cγ/
protein kinase C (PLCγ/PKC) pathways are also activated in association with EGFR
phosphorylation [70]. Thus, EGFR plays a role in carcinoma growth and survival through a
multitude of oncogenic downstream signaling pathways.
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EGFR mRNA and protein are known to be preferentially expressed in HNSCC compared to
surrounding normal tissues, suggesting a significant role in carcinogenesis. Similarly, the vast
majority of epithelial carcinomas overexpress and possess functional activation of the EGFR
family of receptors [71]. In HNSCC, EGFR is overexpressed in up to 80–100% of tumors,
some of the highest rates of any human carcinoma [72,73]. Interestingly, there are regional
differences among tissues in the head and neck that express EGFR, with relatively lower levels
associated with laryngeal tumors as compared to those of the oral cavity and oropharynx
[74].

EGFR demonstrates increased overexpression in the more advanced-staged carcinomas as well
as in those carcinomas that were found to be poorly differentiated [70]. In addition, EGFR
overexpression is associated with decreased patient survival rates, and has been demonstrated
by some groups to confer resistance to various therapeutic modalities including targeted
therapy [70,75–79]. While the association with poor patient prognosis has not been as clearly
established, specific mutations of the EGFR receptor have also been studied. The most common
mutation of EGFR is likely EGFRvIII, occurring in up to 40% of HNSCC [80]. This mutant
receptor is only found in cancer cells and manifests from an in-frame deletion of exons 2–7,
which encodes the receptor’s extracellular domain, thus resulting in a constitutively active
receptor that is completely independent of any activation via ligand binding [80]. The fact that
EGFRvIII is not found in normal tissues makes this a very intriguing highly-specific target for
therapy, given that it would not interfere with the normal EGFR signaling in non-cancerous
tissues. (Table 1)

In addition to overexpression, other pathological manifestations of EGFR can be carried out
through mutational activation, amplification, and transactivation by other tyrosine kinases
[81]. The potential, constitutive activation of several different oncogenic pathways, via EGFR-
independent mechanisms, likely explains the lack of response that is commonly appreciated
in patients being treated with EGFR inhibitor therapy [70].

With the prominent role that EGFR is known to play in tumorigenesis, this family of proteins
was a logical choice in pursuing a new class of targeted cancer therapy. Currently, there are
several EGFR antagonists available for clinical utilization in the treatment of four metastatic
epithelial carcinomas, including non-small cell lung cancer, colorectal cancer, pancreatic
cancer, and HNSCC. The two classes of therapies that exist to date are monoclonal antibodies
to EGFR receptor subunits and small-molecule EGFR tyrosine kinase inhibitors (TKIs). In
simplest terms the monoclonal antibodies probably act by binding the conserved extracellular
domain of EGFR and then blocking the ligand-binding region by competitive inhibition. In
turn, this blocks ligand-induced autophosphorylation through the inability to stimulate tyrosine
kinase. The EGFR tyrosine kinase inhibitors function via a separate mechanism. They act by
reversibly competing with ATP in its binding site to the intracellular catalytic domain of
tyrosine kinase, therefore inhibiting autophosphorylation of EGFR and its subsequent
downstream signaling [71].

Akimoto et al. was the first to provide evidence that EGFR expression may have an effect on
radiation sensitivity [82], a result that has been validated clinically [75,83]. EGFR over-
expression in head and neck cancer cell lines were found to have greater radioresistence
compared to cell lines with relatively lower levels of EGFR expression. It was also found that
following radiation, EGFR becomes upregulated within the tumor, leading to increased
activation of its downstream signaling pathways [84,85]. This work culminated in the landmark
2006 publication of the randomized trial by Bonner et al. showing an overall and progression-
free survival advantage with the addition of cetuximab to standard radiation therapy (RT)
[86].
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There are currently at least 40 trials involving patients with HNSCC investigating various
“targeted agents” including tyrosine kinase inhibitors and antibody therapy [87]. More than
ten different EGFR-targeting agents are in development for the treatment of various
carcinomas. Although a great deal of effort has gone into the development and validation of
predictive biomarkers, it remains difficult to determine a priori who will benefit from these
therapies. In some studies, EGFR expression is an independent predictor of response while in
others no relationship is appreciated [75,88–91]. The search for molecular predictors of clinical
outcome that would potentially optimize patient selection and therapeutic efficacy continues
to be an area of intense ongoing investigation.

Insulin-Like Growth Factor-1 Receptor (IGF-1R)
An emerging potential target for directed, molecular-based cancer therapy is the Insulin-Like
Growth Factor (IGF) signaling axis. Numerous preclinical and clinical studies have implicated
the Insulin-Like Growth Factor-1 Receptor (IGF-1R) and its ligands, Insulin Growth Factor-1
(IGF-1) and Insulin Growth Factor-2 (IGF-2), in both the development and progression of a
number of human cancers [92–94]. IGF-1R is a transmembrane heterotetramer receptor that
consists of two α and two β subunits. Like the insulin receptor, IGF1-R possesses tyrosine
kinase (TK) activity. With activation of the receptor, downstream signaling events include
phosphorylation of insulin receptor substrate-1 (IRS-1), activation of mitogen-activated
protein kinases (MAPKs), and stimulation of the phosphatidylinositol-3 kinase(PI3K) pathway
[95]. This activation of both the Ras-MAPK-ERK and PI3K/Akt pathways is similar to the
downstream signaling seen with EGFR autophosphorylation and activation. Six IGF binding
proteins (IGFBPs) are known to exist in humans. These proteins have been shown to help
modulate the effects of IGF-1 via multiple unique mechanisms. In humans, IGF-1 is bound to
one of the IGFBPs over 95% of the time, with IGFBP-3 accounting for roughly 85% of this
binding [96].

IGF-1R has been shown, in both in vitro and in vivo studies, to encourage cellular growth, and
protect cells from apoptosis [97]. This phosphorylation cascade leads to the activation of
various transcription factors involved in both cellular proliferation and transformation [98–
102]. Constitutive activation and/or overexpression of IGF-1R has been associated with
malignant transformation, involving glioblastoma, melanoma, pancreatic, breast, colon, and
ovarian carcinoma models [103–105]. The receptor has been closely linked to the metastatic
properties of tumor cells, with studies showing the receptor to signal pathways linked to tumor
invasiveness and angiogenesis [106,107]. IGF-1R signaling has also been shown to influence
and promote focal adhesion stability, cell-to-cell contact, and cellular motility [108]. Numerous
studies have also shown that enhanced IGF-1R activation is associated with resistance to certain
cytotoxic chemotherapy regimens, hormonal agents and biological anticancer therapies, as well
as radiation therapy [109–117].

While Ouban et al showed only 13% immunostaining positivity for IGF-1R in 31 different
human HNSCC tissue samples, other studies have shown much higher levels of expression
[118]. IGF-1R is ubiquitously expressed at varying levels in cancerous tissues, and plays an
intricate role in the regulation of cellular proliferation and differentiation even at very low
levels of expression [95,118].

As mentioned previously, the IGF-R1 and the EGFR signaling pathways are intricately
associated with one another, regulating overlapping downstream signaling pathways.
Interestingly, increased IGF-1R expression has been reported to mediate resistance to anti-
EGFR-based therapies in certain solid tumors, including glioblastoma, pancreatic, and breast
carcinoma [119–122]. It has been found that the use of the combination of both antibodies was
more effective than either single agent alone at reducing cancer cell growth [123]. There may
be a potential benefit in the use of combined anti-tyrosine kinase receptor directed therapies
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to treat HNSCC. Slomiany et al also demonstrated the potential for the co-targeting of both
IGF-1R and EGFR signaling pathways in HNSCC [124].

Design of IGF-1R inhibitors has proven to be somewhat problematic, due to the close homology
(60–70% amino acid homology) with the insulin receptor [125]. However, specific inhibitors
have recently been developed. Several approaches at tumor growth inhibition have been
undertaken, including IGF-1R dominant mutants, IGF-1R blocking antibodies, and
oligonucleotides aimed at downregulating IGF-1R expression, little success has been achieved
in terms of improved clinical outcomes. However, the first IGF-1R tyrosine kinase inhibitor
showing in vivo therapeutic potential, NVP-AEW541 (Novartis), has been shown to enhance
tumor cell chemosensitivity and inhibit tumor growth in human fibrosarcoma, myeloma, and
Ewing’s sarcoma models [125,126]. Studies with the inhibitor have yet to be undertaken in a
HNSCC model.

Phosphatidylinositol-3-kinase/protein kinase B pathway (PI3-K/Akt)
The phosphatidylinositol-3-kinase/protein kinase B (PI3-K/Akt) signal transduction pathway
has been shown to regulate numerous cellular processes, including apoptosis, proliferation,
cell cycle progression, cytoskeletal stability and motility, as well as energy metabolism [127,
128]. Activated Akt induces increased expression of numerous proliferative and anti-apoptotic
proteins, including Bcl-2, Bcl-x and NF-kB [127]. The pathway has been shown to be activated
in up to 50–80% of HNSCCs [78]. The PI3-K/Akt pathway is one of the main downstream
signaling pathways activated by the ErbB/tyrosine kinase receptor family of receptors. Upon
ligand binding, the cytoplasmic domain of the EGFR undergoes tyrosine phosphorylation and
subsequently activates PI3-K [129]. However, activation of the PI3-K/Akt pathway is not
entirely dependent on the tyrosine kinase family of receptors. In certain carcinoma models, it
has been shown to be activated through direct mutation or amplification of PI3-K, amplification
of Akt, activation of the RAS oncogene, and/or decreased expression of the tumor-suppressor
protein, phosphatase and tensin homolog (PTEN), a known inhibitor of the PI3-K/Akt pathway
[129]. Loss of PTEN expression, along with Akt activation, correlates with worse clinical
outcomes in patients with SCC of the tongue [130,131]. This pathway has also been found to
be overexpressed and activated in a number of different carcinomas, including HNSCC. In a
study conducted by Massarelli et al, it was shown that disease-free survival was significantly
decreased in cases of SCC of the tongue that stained positive for activated Akt (p-Akt) [132].
The comparatively poor outcome that was associated with p-Akt expression was also found to
be independent of cancer stage and nodal status. Akt activation has also been correlated with
the squamous cell progression and transformation: from normal epithelial tissue, to dysplasia,
and then even to invasive squamous cell carcinoma [133].

Following radiation therapy, the PI3kK/Akt pathway has also been shown to be upregulated.
Bussink et al described how the pathway is intricately involved with resistance to radiation
therapy via multiple mechanisms [129]. The RAS oncogene is a well-known contributor to the
intrinsic radioresistance of tumor cells, mediated at least partially, through its downstream
signaling through the PI3-K/Akt pathway [129]. Additionally, this pathway is involved in DNA
repair via EGFR signaling, with multiple studies showing that with EGFR blockade, the PI3-
K/Akt pathway–mediated DNA repair process is altered. When combined with radiation
therapy, this decreased DNA repair leads to greater levels of tumor cell apoptosis and
subsequent improved locoregional control when compared to radiation therapy alone [129].

While this pathway is most often activated through EGFR, EGFR-independent activation is
quite common and of clinical relevance as well [129]. Molino et al showed, utilizing tissue
microarray technology, that the PI3-K/Akt/mTOR pathway was frequently activated in
HNSCC samples and that this was often independent of any associated EGFR activation
[134]. There has also been a strong and independent correlation between expression of activated
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Akt (pAkt) and treatment outcome in laryngeal and oropharyngeal HNSCC [132,135].
Similarly, enhanced Akt activity has been independently associated with more advanced tumor
stage and progression in a number of different malignancies [136]. Knowing this information,
further study of this pathway, independent of EGFR, is needed so that it can be utilized in
regards to treatment as well as prognostic markers for HNSCC.

A recent phase II trial conducted by Argiris and colleagues involved the use of an Akt
phosphorylation/activation inhibitor, perifosine, in a small group of patients with incurable
recurrent and/or metastatic HNSCC [137]. While the inhibitor had some preclinical anti-tumor
activity in vivo, no objective clinical responses were appreciated, with 18/19 patients having
disease that progressed at 8 weeks follow-up [137]. However, Akt activation has also been
associated with resistance to EGFR inhibition in a non-small cell lung cancer model [138], and
therefore, benefits from combined targeted molecular therapy are still of potential interest. The
potential clinical usefulness and of the PI3-K/Akt pathway as a therapeutic target and/or
prognostic marker in HNSCC is promising.

Mammalian Target of Rapamycin (mTOR)
One of the downstream cell-growth regulators associated with the PI3-K/Akt pathway is an
atypical serine/threonine kinase named mammalian target of rapamycin (mTOR). While Akt
helps control cellular proliferation and growth through the coordination of mitogenic signaling
with energy and nutrient-sensing pathways that control protein synthesis, it requires mTOR to
fully exert these effects [139]. mTOR is involved in modulation of the cell cycle and ribosomal
function to subsequently participate in both cell growth and apoptosis [140]. When activated
through Akt, mTOR then phosphorylates the translation regulator p70-S6 kinase, which in turn
activates the ribosomal S6 protein, a protein involved in translation and one of the most
downstream targets of the PI3-K/Akt/mTOR pathway. This activation of S6 ribosomal protein
thus adds to the control of cell growth through increased manipulation of mRNA translation
[141].

Amornphimoltham et al found that in clinical specimens from patients with HNSCC, as well
as in HNSCC-derived cell lines, aberrant accumulation of activated S6 (p-S6) was a frequent
occurrence in both early dsyplastic lesions and carcinomas [139]. They also showed that the
activated ribosomal protein was decreased when HNSCC cell lines were treated with
rapamycin, a macrolide antibiotic and a known inhibitor of mTOR [139]. Similar findings were
seen when rapamycin was used in a HNSCC xenograft model. In vivo, rapamycin’s effects
included induction of apoptosis and inhibition of cellular growth of the HNSCC cells with
subsequent tumor regression [139]. It has also been shown that rapamycin sensitivity of tumor
cells is at least partially dependent on the dysregulation of the tumor suppressor gene, PTEN,
the well-known inhibitor of the PI3-K/Akt pathway [142,143]. Interestingly, in some of the
HNSCC cell lines, EGFR inhibition had no effect on the activity of the mTOR pathway,
indicating a potential clinical and therapeutic benefit if both EGFR inhibitors and mTOR
inhibitors were used in combination [139]. The study did reveal the Akt/mTOR pathway to be
a potential therapeutic target for the treatment of HNSCC, particularly in terms of development
of analogues to rapamycin.

Nathan et al showed that one of the main downstream effectors of the Akt/mTOR pathway,
eIF4E, was overexpressed in histologically “tumor-free” surgical margins of resected HNSCC
samples, and was also an independent predictor of tumor recurrence [144]. In a later study, the
same group utilized an eIF4E-overexpressing, PTEN-mutant HNSCC cell line, FaDu, in a
minimal residual disease murine model, and showed that the rapamycin analog, Temsirolimus
(CCI-779), was effective in prolonging survival, including improved tumor-free survival
[145]. It was concluded that CCI-779 represented a new potential targeted therapy for the
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treatment of HNSCC, since overexpression and activation of mTOR occurs in many of these
tumors [139,146].

Nuclear factor - kappa B (NF-kB)
Nuclear factor–kB (NF-kB) transcription factors are the final downstream mediators of many
of the above-mentioned pathways and therefore play a key role in head and neck cancers. It
has become clear that NF-kB–mediated inflammatory signaling is overexpressed in many
HNSCCs. Expression has also been shown to be associated with tumorigenesis and metastasis
[147,148]. Constitutive NF-kB activation has been shown to be common when induced by
carcinogen exposure or stimulation with oncogenic viruses, with induced levels of activation
being seen in tissue specimens of HNSCC [149–151]. Increases in nuclear localization of NF-
kB has been detected in roughly 85% of patients with HNSCC, with increased immunostaining
correlating with worse prognosis of the disease [151].

NF-kB is known to be an important factor in regulating the expression of genes associated with
angiogenesis (IL-8), apoptosis (Bcl-xL), cellular proliferation (cyclin D1), and
proinflammatory cytokine cascades (IL-6, IL-1α) [148,150,152–156]. In terms of cell survival
and apoptosis, NF-kB, in close association with STAT3 and p53, has been found to directly
affect the balance of pro-apoptotic and anti-apoptotic proteins in squamous cell carcinoma
(SCC) cell lines [157]. It is also known be involved in attenuated sensitivity to cytotoxic
anticancer therapy [155,158]. Similarly, the reactive oxygen species (ROS) that ionizing
radiation creates in the body have been shown to induce NF-kB as a cytoprotective mechanism
within tumor cells, rendering the radiation therapy less effective [159]. There is even evidence
that NF-kB has direct carcinogenic effects that give tumor cells the ability to evade the
regulatory functions of the immune system [148]. It has also been shown that both tobacco
smoke condensate and betel nut extract activate NF-kB indirectly via degradation of inhibitor
kB proteins (IkB) [160,161].

With its constitutive activation and proven role in radiation therapy resistance, its inhibition is
a logical target for therapy. Salicylates, antioxidants, nonsteroidal anti-inflammatory drugs
(NSAIDs), prostaglandins, and glucocorticoids have all shown effectiveness in various settings
to inhibit NF-kB [162]. IkB kinase beta (IKKβ) inhibitors have also shown some effectiveness
in preclinical studies in various carcinomas, yet no head and neck carcinoma studies are
currently underway [163]. Further development of these novel therapies continues in the hopes
that through inhibition of NF-kB, a decrease in tumor invasion, aggressiveness, and metastasis
will be realized.

Heat Shock Protein 90
Heat Shock Protein 90 (Hsp90) is a molecular chaperone that induces conformational changes
in numerous protein substrates, including transcription factors and protein kinases [164,165].
Hsp90 has been shown to be involved with proteins in many signaling pathways important for
tumor cell survival, proliferation, and metastasis. Specifically, Hsp90 is associated with the
EGFR pathway, IGF-R, Akt, ERK, Ikβ kinases, p53, and STAT3 [165]. It has been shown to
be constitutively expressed at up to 10 times higher levels in tumor cells when compared to
normal cells [166]. Therefore, therapeutic inhibition of Hsp90 offers the potential to
simultaneously disrupt numerous pathways known to be involved in the progression toward
malignant phenotypes.

A Geldanamycin derivative and semisynthetic analogue, 17-AAG (Tanespimycin), became
the first Hsp90 inhibitor to enter clinical testing [167]. Recently, Shintani and colleagues
investigated the effects of 17-AAG on radiation sensitivity on oral SCC cell lines in vitro. They
found that the radiation response was enhanced in 17-AAG treated cells, but only in cell lines
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with wild-type p53 expression. Yin and colleagues recently used a novel Hsp90 inhibitor, EC5,
in their study of eight HNSCC cell lines [168]. EC5, a benzoquinone ansamycin antibiotic
derivative, was shown to have anti-tumor effects in xenograft models [168]. They also
compared these results with 17-AAG, and it was shown that EC5 caused more potent anti-
tumor effects in these models [168].

Prognostic and Diagnostic Markers, Genetic Profiling
With the advent of increasingly sophisticated molecular detection techniques and technologies
such as DNA microarrays, large numbers of genetic markers are able to be tested with greater
ease. In a study by Roepman and colleagues, predictor gene sets were found to have greater
predictive power in the detection of local nodal metastases from primary tumor samples than
the current clinical diagnosis and staging systems [169]. While this technology offers excellent
opportunities to further dissect the molecular and genetic interactions that participate in
carcinogenesis, it is clear that conflicting data and findings will persist, as continued
improvement in analysis and interpretation occurs.

Early in the molecular study of head and neck cancer, several studies demonstrated an
association between p53 abnormalities and poor outcome. Yet, other large follow-up studies
failed to demonstrate such an association [78]. The prognostic significance of p16 aberrations
has also been variable. A majority of studies conducted on the significance of EGFR and cyclin
D1 overexpression have shown them to be associated with a worse prognosis in patients with
HNSCC [78]. Similarly, genetic alterations of Cox-2, p27, p53, CCDN1 and VEGF, among
others, have all been shown in various studies to be associated with an increased risk of
metastasis, disease recurrence, and/or overall worse prognosis [78,170]. However, like many
other markers, there have been other studies that fail to confirm these significant findings.

As single molecular markers, most that have been studied to date have failed to show sufficient
predictive potential in terms of the course of disease, prognosis, and survival. However, while
single markers may not prove to have the clinical applicability that many had hoped for,
combinations of different molecular markers and genetic expression patterns may offer more
promising diagnostic and prognostic value. Utilizing cDNA microarray technology, Chung
and colleagues looked at 60 HNSCC tumor samples and categorized them into four distinct
subtypes of HNSCC, each showing clinically unique behavior [171]. Not only did they show
that these subtypes showed distinct behavior clinically, they also concluded that the status of
possible regional metastases could be predicted by genetic microarray analysis of the primary
lesion [171]. Other combinatorial approaches, using biomarkers and traditional clinical
markers have been proposed and will likely gain increasing interest [172]. Selection from
among the competing markers, and incorporation into clinical practice will be one of the major
challenges on the horizon for physicians.

Conclusion
While cancer is generally thought of as a disease of DNA, the risk for any individual of
developing a tumor based on his or her genomic makeup cannot be explicitly determined given
our current scope of knowledge. However, the risk is certainly a function of germline DNA
composition, interacting with the environment (especially toxins and infections), and perhaps
an arbitrary component of statistical probability applied over the years of a normal lifespan.
The types of genetic damage incurred are probably primarily to DNA in the form of deletions,
amplifications, or focal damaging mutations, although other mechanisms are increasingly
noted to be important including epigenetic changes to chromatin. No matter what the
mechanism, the ultimate event is a perturbation of normal cellular biomolecules and
homeostasis leading to the hallmark processes of cancer characterized by pathways such as
those described in the preceding sections.
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Certainly most scientists and clinicians emphasize models of carcinogenesis similar to the ones
just described, heavily focused on molecular events and cancer pathways. Yet while our
research colleagues rely heavily on an increasingly sophisticated set of molecular assays and
reagents, the clinical care of the head and neck cancer patient is currently almost devoid of any
molecular diagnostic. Likewise, the set of targeted cancer therapies for our patients remains
limited and prognosis or response to therapy has rarely if every been assigned based on
molecular testing. However, the landscape appears quite likely to change in the near future.
One has only to look at the therapies listed in table 2 to witness the increasing need to identify
which specific genes and pathways are altered in a particular tumor. It is likely that patients at
differential risk of developing cancer are increasingly likely to be identified from germline
DNA, either in the form of mutations or SNP’s. Tumors that are primarily attributable to viral
etiologies are likely to be identified and with potentially altered treatment paradigms, or
perhaps averted entirely through vaccines. The integration of molecular diagnostics and
molecular-risk-based approach to cancer treatment that is pathway driven is likely to be both
a major success and challenge that our generation faces over the coming years.

Synopsis
Patients present with differential baseline risk of cancer based on normal and expected variation
in genes associated with cancer. The baseline risk of developing cancer is acted on throughout
life as the genome of different cells interacts with the environment in the form of exposures
such as toxins or infections. As genetic damage is incurred throughout a lifetime, either directly
to DNA sequences or to the epigenome, events are set in motion to progressively disrupt normal
cellular pathways towards tumorigenesis. This manuscript attempts to characterize broad
categories of genetic aberrations and pathways in a light that might be useful for the clinician
to understand the risk of developing cancer, the pathways that are disrupted, and the potential
for molecular-based diagnostics.
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Figure 1. Diversity of Head & Neck Cancer
Histopathologic diagnoses that present at the various subsites in the head and neck.
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Figure 2. Genetic progression of HNSCC
Genetic changes associated with the histological progression of HNSCC based on loss of
chromosomal material (allelic loss). Genetic alterations have been placed prior to the lesion
where the frequency of the particular event plateaus. It is the accumulation and not necessarily
the order of genetic events that determines the progression. A small fraction of benign
squamous hyperplastic lesions contain 9p21 or 3p21 loss, suggesting that an unidentified
precursor lesion (or cells) may also give rise to dysplasia. Candidate tumor suppressor genes
include p16 (9p21), p53 (17p), and retinoblastoma (13q), and a candidate proto-oncogene
includes cyclin D1 (11q13). (figure taken and adapted with permission from Califano.)
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Figure 3.
Molecular pathways contributing to the promotion and progression of tumorigenesis in head
and neck cancer.
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Table 1
Most Common Somatic Mutations of Various Head & Neck Subsites
Limited listing of some of the most common somatic mutations found in various anatomical regions of the head and
neck. While at this time, there exists the capabilities to detect these mutations within tumor samples, their full clinical
relevance has yet to be fully realized.

HEAD & NECK SUBSITE GENE SAMPLE POSITIVE/TOTAL (%
POSITIVE)

Larynx CDKN2A 45/262 (17%)
PTEN 10/43 (23%)
EGFR 5/82 (6%)
KRAS 4/166 (2%)
HRAS 2/96 (2%)

Oral Cavity CDKN2A 98/508 (19%)
HRAS 67/494 (13%)
FGFR3 44/136 (32%)
PIK3CA 18/145 (12%)
KRAS 14/497 (2%)

Oropharynx MET 33/156 (21%)
CDKN2A 19/173 (10%)

PTEN 7/27 (32%)
KRAS 3/105 (2%)
BRAF 3/52 (5%)

Tonsil EGFR 7/45 (15%)
CDKN2A 0/3 (0%)

HRAS 0/3 (0%)
KRAS 0/3 (0%)
NRAS 0/3 (0%)

Sinonasal Cavity KRAS 4/121 (3%)
HRAS 2/11 (18%)
NRAS 2/11 (18%)
STK11 2/7 (28%)
EGFR 1/5 (20%)

Esophagus (upper 1/3) TP53 4/4 (100%)
KRAS 1/4 (25%)

CDKN2A 1/3 (33%)
PIK3CA 1/3 (33%)
CTNNB1 0/9 (0%)

Thyroid BRAF 2013/4793 (41%)
RET 274/706 (38%)

NRAS 132/1962 (6%)
KRAS 80/1878 (4%)
HRAS 56/1844 (3%)

Salivary Gland HRAS 17/90 (18%)
PTEN 5/13 (38%)

DTNNB1 2/44 (4%)
KRAS 1/40 (2%)

CDKN2A 1/8 (12%)
*
Note: Squamous Cell Carcinoma (SCC) was the only histology tested for in the Larynx, Oral Cavity, Oropharynx, Tonsil, Sinonasal Cavity, and

Esophagus. A wider range of histologic variants were included for the analysis of Thyroid and Salivary Gland subsites.
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Table 2
A limited listing of selected targeted agents that are currently undergoing clinical trials for the treatment of head and
neck carcinoma. This partial list was obtained through an extensive and comprehensive search on
www.clinicaltrial.gov.

Drug Name (Tradename) Target(s) Phase of study in Head and Neck cancer
Cetuximab (Erbitux) EGFR III

Gefitinib (Iressa) EGFR I/II/III
Erlotinib (Tarceva) EGFR I/II/III

Panitumumab (Vectibix) EGFR I/II/III
BIBW 2992 (Tovok) EGFR, HER-2/neu II

Zalutumumab (HuMax-EGFr) EGFR I/II/III
Trastuzumab (Herceptin) HER-2/neu II

Lapatinib (Tykerb) EGFR, HER-2/neu I/II/III
Cediranib (Recentin) VEGF I/II
Sorafenib (Nexavar) Raf, VEGF I/II

Semaxanib VEGF I/II
Pazopanib VEGF II

Sunitinib (Sutent) VEGF I/II
Bevacizumab (Avastin) VEGF I/II/III

Romidepsin Histone deacetylase I/II
Vorinostat (Zolinza) Histone deacetylase I/II
Dasatinib (Sprycel) Tyrosine kinases II
Imatinib (Gleevec) Tyrosine kinases II

Pazopanib VEGF, Tyrosine kinases II
Vandetanib (Zactima) VEGF, EGFR I/II

XL880 VEGF, Tyrosine kinases II
Perifosine (KRX-0401) Akt II
Bortezomib (Velcade) NF-kB, Tyrosine kinases I/II
Lonafarnib (Serasar) Farnesyl transferase I/II

Tanespimycin (KOS-953) Hsp90 I/II
AZD0530 Src/Abl kinase II
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