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Abstract

Myotubularin is a lipid phosphatase implicated in endosomal trafficking in vitro, but with an unknown function in vivo.
Mutations in myotubularin cause myotubular myopathy, a devastating congenital myopathy with unclear pathogenesis and
no current therapies. Myotubular myopathy was the first described of a growing list of conditions caused by mutations in
proteins implicated in membrane trafficking. To advance the understanding of myotubularin function and disease
pathogenesis, we have created a zebrafish model of myotubular myopathy using morpholino antisense technology.
Zebrafish with reduced levels of myotubularin have significantly impaired motor function and obvious histopathologic
changes in their muscle. These changes include abnormally shaped and positioned nuclei and myofiber hypotrophy. These
findings are consistent with those observed in the human disease. We demonstrate for the first time that myotubularin
functions to regulate PI3P levels in a vertebrate in vivo, and that homologous myotubularin-related proteins can functionally
compensate for the loss of myotubularin. Finally, we identify abnormalities in the tubulo-reticular network in muscle from
myotubularin zebrafish morphants and correlate these changes with abnormalities in T-tubule organization in biopsies from
patients with myotubular myopathy. In all, we have generated a new model of myotubular myopathy and employed this
model to uncover a novel function for myotubularin and a new pathomechanism for the human disease that may explain
the weakness associated with the condition (defective excitation–contraction coupling). In addition, our findings of
tubuloreticular abnormalities and defective excitation-contraction coupling mechanistically link myotubular myopathy with
several other inherited muscle diseases, most notably those due to ryanodine receptor mutations. Based on our findings, we
speculate that congenital myopathies, usually considered entities with similar clinical features but very disparate
pathomechanisms, may at their root be disorders of calcium homeostasis.
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Introduction

Myotubular myopathy is a severe, X-linked congenital myop-

athy with onset in infancy [1]. It is characterized by profound

neonatal hypotonia and skeletal muscle weakness. It is associated

with substantial mortality, with approximately half of all affected

boys dying in the first year of life [2]. Surviving children have

significant morbidity associated with respiratory compromise and

difficulties with ambulation. Currently there are no treatments or

disease modifying therapies available for this condition.

The condition is defined by characteristic changes observed on

muscle biopsy [1]. Biopsies show muscle fiber hypotrophy and an

abundance of fibers with large, centralized nuclei of unusual

appearance. These nuclei are distinct in appearance from those

observed in degenerative conditions like Duchenne muscular

dystrophy, and are the defining pathologic features of a group of

congenital myopathies called centronuclear myopathies [3].

Myotubular myopathy is caused by mutations in the myotubu-

larin gene [4]. Over 200 mutations have been reported in the

myotubularin gene, the majority of which result in loss of

functional gene expression [1]. Myotubularin is the only gene

associated with myotubular myopathy. It is the canonical member

of a large family of homologous proteins called the myotubularin

related proteins (MTMRs) [5]. Of interest is the fact that several

MTMRs are mutated in human neurologic diseases, including

mutation of MTMR14 in an autosomal form of centronuclear

myopathy [6].

Myotubularin was originally characterized as a protein tyrosine

phosphatase, but was subsequently found instead to function

primarily as a lipid phosphatase [7,8]. It acts specifically to remove

phosphates from the 3-position of phosphoinositide rings. As

demonstrated in cell free biochemical assays [7,8] and with forced

exogenous expression [9,10], myotubularin converts phosphoino-

sitide-3-phosphate (PI3P) to phosphoinositide phosphate (PIP) and
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phosphoinositide-3,5-bisphosphate (PI3,5P2) to phosphoinositide-

5-phosphate (PI5P). Most recently, Cao and colleagues have

demonstrated using RNAi in A431 cells that knockdown of

myotubularin results in a 60–120% increase in PI3P levels, thus

substantiating the requirement for myotubularin in the regulation

of endogenous PI3P [11]. Increased PI3P levels have also been

observed in yeast lacking the myotubularin homolog ymr1 [8,12].

As yet, however, this activity has not been directly examined in

whole vertebrates or in specific organ systems, including muscle.

The functional importance of myotubularin’s phosphatase activity

is assumed from the fact that missense mutations that alter critical

amino acids in the phosphatase domain without affecting protein

stability result in myotubular myopathy [1].

Phosphoinositides are implicated in myriad cellular functions, chief

among them the regulation of membrane traffic and vesicle/

organelle movement [13]. Because it acts to modify certain PI

residues, myotubularin is assumed to function as a regulator of

membrane traffic and in particular the movements of vesicles

between endosomal compartments [14,15]. Overexpression of

myotubularin in cell culture delays traffic out of the endosomal

compartment and causes vacuole accumulation. However, as with

myotubularin phosphatase activity, a role for myotubularin in the

regulation of membrane traffic in vivo and specifically in skeletal

muscle has yet to be determined. In addition, unlike with other

myopathies due to altered membrane traffic (examples include

Danon Disease due to LAMP2 mutation [16]), myotubular

myopathy is not characterized by the pathologic accumulation of

vesicles.

Many critical questions remain unanswered concerning myo-

tubularin function and myotubular myopathy pathogenesis. These

include whether myotubularin truly functions as a lipid phospha-

tase and regulator of membrane traffic in vivo. Furthermore, the

relationship between the proposed functions of myotubularin and

disease pathogenesis is not clear. The same is true with the

association between the unique histologic appearance of the

muscle in myotubular myopathy patient biopsies and the etiology

of muscle weakness and hypotonia. The lack of knowledge

concerning these fundamental issues is a significant barrier in

the development of therapeutic strategies for the disease.

A murine model of myotubular myopathy exists, generated by

targeted mutagenesis [17]. It recapitulates the clinical and

histopathologic features of the disease, thus confirming the

association between myotubularin and myotubular myopathy.

However, due in part to technical limitations with the murine

system, it does not address many of the fundamental questions

mentioned above. To begin answering these questions, and to

develop a model system amenable to rapid testing of therapeutic

strategies, we report here the development of a zebrafish model of

myotubular myopathy. Using antisense morpholino technology, we

generated zebrafish embryos with reduced myotubularin protein

expression. These embryos have severely impaired motor function,

muscle fiber atrophy and the presence of large, abnormally located

nuclei. These findings are reminiscent of those seen in myotubular

myopathy. We also demonstrate that loss of myotubularin causes

increased PI3P levels in muscle, thus confirming for the first time

that myotubularin functions as a lipid phosphatase in a vertebrate

model system. Using RNA-mediated rescue experiments, we show

that the homologous myotubularin-related genes MTMR1 and

MTMR2 are able to functionally compensate for the loss of

myotubularin. Lastly, and most significantly, we identify alterations

in the T-tubule and sarcoplasmic reticular networks in morphant

zebrafish muscle. We confirm that similar disorganization of the

tubulo-reticular network is present in biopsy samples from patients

with myotubular myopathy. In all, we have successfully created a

zebrafish model of myotubular myopathy, and have used this model

to both answer fundamental questions concerning myotubularin

function and to uncover a novel mechanism to explain the

pathogenesis of the disorder.

Results

Morpholino Knockdown of Zebrafish Myotubularin
To study the function of myotubularin (MTM1) in zebrafish, we

employed antisense morpholinos to achieve functional gene

knockdown. We first identified the zebrafish homolog of MTM1

using the Ensembl genome browser (ENSDARG00000037560).

By bioinformatics and RT-PCR from zebrafish embryonic RNA,

we found that MTM1 and 12 of 14 of the MTM1-related gene

products (MTMRs) are expressed in the developing fish (Figure

S1). We then designed morpholinos to the translation start site

(ATG MO), to the splice donor site of exon 1 (Ex1 MO), and to

the splice acceptor site of exon 3 (Ex3 MO). Both splice morphants

were predicted to result in the loss of an exon and the introduction

of a premature stop codon. These morpholinos were indepen-

dently injected into 1–4 cell stage embryos and then embryos were

phenotypically analyzed at 24, 48, and 72 hours post fertilization

(hpf). A control morpholino (CTL MO) designed to a random

sequence of nucleotides not found in the zebrafish genome was

used to control for injection related non-specific effects [18].

The efficacy of the ATG morpholino to interfere with

translation was verified by the demonstration of reduced

myotubularin protein levels by immunofluorescence and western

blot analysis of samples from ATG MO injected embryos (Figure

S2A, B). The ability of the splice morphants to alter myotubularin

RNA processing and stability was confirmed by RT PCR analysis

using primers to flanking exons (Figure S2C). Of note, all 3

morpholinos yielded indistinguishable phenotypes. The ATG

morpholino was used for analysis and quantitation in all

subsequent experimentation, with all phenotypic observations

additionally verified using the two splice morpholinos.

Author Summary

Congenital myopathies are inherited muscle conditions
typically presenting in early childhood. They are individ-
ually rare, but as a group are likely as common as
conditions such as muscular dystrophy. The zebrafish is an
emerging experimental system for the study of myopa-
thies. We have utilized the zebrafish to develop a model of
myotubular myopathy, one of the most severe childhood
muscle diseases and a condition whose pathogenesis is
poorly understood. We have generated fish that have the
characteristic behavioral and histological features of
human myotubular myopathy. Using this model, we then
made novel insights into the pathogenesis of myotubular
myopathy, including the identification of abnormalities in
the muscle tubulo-reticular system. We subsequently
identified similar changes in muscle from patients with
myotubular myopathy, corroborating the importance of
our zebrafish findings. Because a functional tubulo-
reticular complex is required for normal muscle contrac-
tion, we speculate that the weakness observed in
myotubular myopathy is caused by breakdown of this
network. In all, our study is the first to identify a potential
pathomechanism to explain the clinical features of
myotubular myopathy. Furthermore, by revealing abnor-
malities in the tubulo-reticular system, we provide a novel
link between myotubular myopathy and several other
congenital myopathies.

New Model of Myotubular Myopathy
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Knockdown of Zebrafish Myotubularin Results in
Abnormal Skeletal Muscle Function

Zebrafish embryos undergo rapid skeletal muscle development,

and multinucleated myotubes are present and easily recognizable

by 24 hours post fertilization. We thus began our analysis at this

time point. Live microscopic analysis of myotubularin morphant

embryos revealed a subtle but reproducible abnormality in body

shape. Specifically, knockdown embryos exhibited a dorsal

curvature (**) through the back and tail instead of the normal

flat or C-shaped dorsum (Figure 1A). A similar morphologic

abnormality has been observed in other zebrafish models of

congenital myopathies [19,20].

Myotubularin morphant zebrafish began exhibiting more

distinct morphologic abnormalities starting at 48 hpf, with the

most obvious changes present in embryos at 3 days post

fertilization (Figure 1B). The most consistent finding was thinning

of the muscle compartment (bracket, Figure 1B). Morphant

embryos also frequently had bent and/or foreshortened tails, a

feature commonly associated with abnormalities in muscle

structure or function (arrow, Figure 1B). Of note, the most

severely affected embryos (ex: bottom embryo, Figure 1B) also

exhibited changes consistent with an overall delay in embryonic

development (small heads, abnormally shaped yolk balls, and

reduced body extension).

In zebrafish, the first recognizable muscle dependent motor

function, detected between 17 and 26 hpf, is spontaneous embryo

coiling [21]. On average, control injected embryos had 10.2 (+/

20.4) spontaneous muscle contractions per 15 second period

(Supplemental Video 1). Conversely, embryos injected with

myotubularin morpholinos had only 5.2 (+/20.5) contractions

in the same period (Figure 2A and Supplemental Video 2). This

abnormality was highly reproducible (P,0.0001), and marked the

earliest observed functional abnormality in zebrafish with reduced

myotubularin levels.

In addition to a decrease in spontaneous coiling frequency,

myotubularin morphants also displayed defective motor behaviors

later in development. Normally bouts of muscle activity contribute

to the hatching of larvae from their protective outer chorion

between 48 and 60 hpf. Typically approximately 90% (87.2%+/

22.3%) of control injected embryos by 60 hpf had hatched from

their chorions (Figure 2B). In contrast, only 35.3% (+/23.3%) of

age-matched myotubularin morpholino-injected embryos were

found to have hatched (Figure 2B), consistent with a continued

decrease in muscle activity. In the most severe morphants, delayed

embryonic development also likely contributed to the reduction in

chorion hatching.

Once hatched, the myotubularin morphant larvae also

displayed profound abnormalities in touch-evoked escape behav-

iors. Typically, 72 hpf larvae respond to tactile stimuli with a rapid

and vigorous escape contraction, followed by swimming, which

often resulted in larvae swimming out of the field of view

(Figure 2C; Supplemental Video 3). In contrast, myotubularin

morphants displayed weak escape contractions, followed by

diminished swimming that often failed to propel the larvae out

of the field of view (Figure 2C; Supplemental Video 4). The

delayed chorion hatching, diminished touch-evoked escape

behaviors, and morphologic changes were highly indicative of

decreased muscle function.

Myotubularin Knockdown Results in Severe
Abnormalities in Muscle Structure

Severe muscle pathology, observed at both the light and

electron microscopic levels, underlied the functional defects

described above. We focused our analysis on muscle from 72

hpf embryos, as the muscle structure at this age is mature and

greatly resembles that of human muscle. Light microscopic

analysis of hematoxylin/eosin stained myotubularin morphant

muscle revealed thin myofibers with abnormally located nuclei (**,

Figure 3B). Analysis of semi-thin sections more dramatically

illustrated these abnormal nuclei, which were mislocalized, large

and filled with nucleoli of unusual appearance (Figure 3C). These

findings are highly reminiscent of the nuclear abnormalities

observed in human myotubular myopathy, shown in longitudinal

section in Figure 3A.

We further characterized the perinuclear compartment using

electron microscopy (Figure 4). Nuclei from myotubularin morphants

Figure 1. Abnormal morphology in myotubularin morphant embryos. (A) Live embryos at 24 hpf injected with either control (CTL) or
myotubularin (MTM) morpholinos. MTM morphants are of equivalent size, but are bent or U-shaped in appearance. (B) Live embryos at 72 hpf
injected with control (CTL MO) or myotubularin (MTM MO) morpholinos. MTM morphants are mildly dysmorphic in appearance, and display selective
thinning of the muscle compartment (brackets) as well as foreshortening of their tails.
doi:10.1371/journal.pgen.1000372.g001

New Model of Myotubular Myopathy
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were again found to be unusual in appearance (Figure 4B). The nuclei

were surrounded by enlarged areas of disorganized cytoplasm which

had a relatively paucity of normally appearing organelles. Higher

magnification of the perinuclear compartment underscored the

perinuclear changes, revealing abnormal mitochondria, areas lacking

any organellar structure, and disorganized tubule-like structures

(Figure 4C) In addition, some fibers contained large, bizarre,

membranous structures of unclear origin (Figure 4D). This

perinuclear disorganization is commonly observed in human

myotubular myopathy muscle biopsies, and similar membranous

structures have also been reported [22]. Of note is that we did not

observe obvious vacuoles in the perinuclear area of any myofibers

examined, which is contrary to what might be expected for a defect in

endosomal trafficking.

Myotubularin Morphants Exhibit Myofiber Hypotrophy
The fact that myotubularin morphants had thin appearing

muscle compartments by live image analysis (Figure 2) suggested

that the muscle fibers may be hypotrophic as compared to

controls. To examine this, we isolated myofibers from 72 hpf

control and myotubularin morpholino injected embryos. Myofiber

size was determined by calculating the area of myofibers stained

by immunofluorescence with a myosin heavy chain (MHC)

antibody. Myofibers from myotubularin morphants were signifi-

cantly smaller than those from controls, measuring only 50% of

control area (Figure 5A, B). The reduced size was not due to loss of

myofiber structural integrity, as evidenced by the normal

appearance of sarcomeric structures with MHC antibody labeling.

Myofiber hypotrophy is an abnormality that is commonly

observed in the muscle from myotubular myopathy patients [2].

Myotubularin Regulates PI3P Levels in Skeletal Muscle In
Vivo

One of the central questions related to myotubularin function is

whether it has lipid phosphatase activity in vivo. To address this, we

measured levels of PI3P, the primary lipid upon which

Figure 2. Abnormal motor function in myotubularin morphants. (A) Quantitation of spontaneous embryo coiling at 24 hpf (see also
Supplemental Videos 1 and 2). On average, CTL morphants coiled 10.2 times in 15 seconds, while MTM morphants coiled only 5.2 times. (B)
Quantitation of chorion hatching in 60 hpf morphants. 87.2% of CTL morphants are hatched from their protective chorions by 60 hpf, as opposed to
only 35.3% of MTM morphants. (C) Touch-evoked swimming was video captured in 72 hpf morphants. As expected, CTL morphants responded to
tactile stimuli with a rapid escape response contraction followed by swimming. Conversely, MTM morphants displayed a weak escape contraction
followed by ‘‘twittering’’ movements (example at 33 ms) but never normal swimming. Scale bar = 1 mm.
doi:10.1371/journal.pgen.1000372.g002

New Model of Myotubular Myopathy
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myotubularin acts in vitro, in morpholino-injected embryos. For

whole embryo measurements, we extracted total lipids and then

used a lipid-protein-antibody overlay technique. When normalized

to PI4P levels, the amount of PI3P detected in lipid preps from

myotubularin morphants was not significantly different from the

level in controls (Figure S3). The fact that overall PI3P levels were

not changed was unsurprising considering that 7 other MTMRs

with PI3P phosphatase activity are present in the fish embryo (see

Figure S1).

Given that myotubularin is specifically required for muscle

function, we next wanted to measure PI3P levels in muscle only.

To accomplish this, we performed quantitative immunofluores-

cence on isolated myofibers using a PI3P antibody. Myotubularin

morphant myofibers had readily observable increases in PI3P

antibody staining, in particular in the perinuclear area (Figure 6A).

We quantitated the pixel intensity of the perinuclear PI3P staining,

and found that myotubularin morphants had levels 1.6 times

higher than observed in controls (Figure 6B). This was consistent

with a loss of myotubularin’s phosphatase activity in the muscle,

and provided evidence that myotubularin functions to regulate

PI3P levels in muscle in vivo.

MTMRs 1 and 2 Compensate for the Loss of Myotubularin
A potential explanation for the fact that PI3P levels are normal

in the whole embryo but increased in muscle is that myotubularin

is the sole or primary PI3P phosphatase in muscle while other

MTMRs are expressed in other tissues. This question has been

examined in murine myocytes by RT-PCR, and myotubularin was

found to be the predominant phosphatase expressed in differen-

tiated fibers [23]. We examined this question in the developing

zebrafish using whole mount RNA in situ hybridization. We

focused on the expression of myotubularin and its two most closely

related homologs, MTMR1 and MTMR2. We found that

between 24 hpf and 72 hpf, only myotubularin was expressed in

muscle (Figure 7A and data not shown), supporting the idea that it

is the primary PI3P phosphatase in that tissue.

We thus hypothesized that myotubularin knockdown results

specifically in abnormalities in muscle because other functionally

similar MTMRs are not expressed in muscle. To test this, we

performed a series of gene rescue experiments (Figure 7B). We

injected embryos with myotubularin morpholino and RNA from

either myotubularin, MTMR1, or MTMR2 and measured the

ability of embryos to hatch from their chorions by 60 hpf. In these

experiments, the morpholino and the RNA are expressed

ubiquitously. As expected, injection of morpholino alone caused

a significant reduction in hatching (35% hatched; see also

Figure 2B), while co-injection with full-length zebrafish myotubu-

larin RNA resulted in significant amelioration of this hatching

defect (71% hatched). Interestingly, co-injection of morpholino

with either MTMR1 or MTMR2 RNA also restored the ability to

hatch from the chorion. MTMR1 rescued hatching nearly to

control levels (82%hatched; Figure 7B), while MTMR2 resulted in

more modest improvement (55% hatched; Figure 7B). Therefore,

these functionally similar MTMRs can compensate for the lack of

myotubularin function in skeletal muscle.

Myotubularin Knockdown Results in T-Tubule
Abnormalities

A recent study on mouse myotubularin by Buj-Bello and

colleagues reported localization of the protein to the T-tubule/

sarcoplasmic reticulum junction [24]. We examined myotubularin

subcellular localization in zebrafish myofibers, and determined by

immunofluorescent analysis that the protein was expressed in a

distinctive linear pattern that overlaps with that of the dihydro-

pyridine receptor (DHPR), a marker for T-tubules (Figure 8). This

pattern is thus consistent with localization to T-tubules. As

expected, this staining was essentially undetectable in myofibers

derived from myotubularin morphants (Figure S2).

Based on this localization, we were interested in the effect of

myotubularin knockdown on T-tubule organization. We performed

ultrastructural analysis using electron microscopy (Figure 9). Muscle

from control morpholino injected embryos exhibited the normal

pattern of T-tubules and sarcoplasmic reticulum (SR), with the SR

coursing tightly through the sarcomeres and the T-tubules forming

triads at regular periods. Conversely, muscle from myotubularin

morpholino injected embryos had grossly aberrant SR and T-tubule

networks (Figure 9). The SR networks were irregular, disorganized,

and often randomly interspersed throughout the sarcomere. The T-

tubule triads showed a range of abnormalities, from mild changes in

electron density of the triad (arrow, upper right panel), to severe

dilation of the triad structure (arrows, lower right panel), to fibers with

essentially unrecognizable SR/triad areas (arrow, lower left panel).

We next determined if these ultrastructural changes correspond-

ed to alterations in T-tubule function. We focused on excitation-

contraction coupling, a process that requires intact T-tubules. We

first verified that nervous system output to muscle was normal by

Figure 3. Abnormal histopathology in 72 hpf myotubularin
morphants. (A) H/E stained longitudinal myofibers from myotubular
myopathy (MTM) and age matched control (CTL) human muscle
biopsies. Arrows point to abnormal nuclei. (B) H/E stained longitudinal
myofibers from control (CTL MO) and myotubularin (MTM MO)
morphant 72 hpf embryos. Myonuclei are abnormally rounded (arrows),
and there is increased space between fibers (*). (C) Toluidine blue
stained semi-thin sections from 72 hpf morphants. Myonuclei from
myotubularin morphants are large, abnormally rounded, and contain
discrete nucleoli (arrows). Sarcomeric units, however, are normal in
appearance. Scale bar = 20 mm.
doi:10.1371/journal.pgen.1000372.g003

New Model of Myotubular Myopathy
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assaying touch-evoked fictive swimming. To examine this, whole-

cell voltage recordings were made from myofibers in vivo. In both

control and myotubularin morphants, tactile stimulus resulted in

rhythmic membrane depolarization in skeletal muscle (Figure S4).

These data are consistent with intact output from the nervous

system and through the neuromuscular junction [25,26].

We then proceeded to study excitation-contraction coupling

(Figure 10). This was accomplished by measuring the ability of

myofibers to contract when exposed to depolarizing stimuli of

progressively higher frequencies [27]. Employing this technique, we

found that control myofibers consistently contracted at all stimuli up

to 30 Hz, with the average maximal frequency equaling 27.0 Hz.

Conversely, myofibers from myotubularin morphants exhibited

increasing abnormalities above 10 Hz, with no myofibers able to

contract to stimuli at 25 Hz and the average maximal frequency

equaling only 11.5 Hz. This result is consistent with a defect in

excitation-contraction coupling, and provides functional evidence to

support the morphologic abnormalities observed in the T-tubules.

Myotubular Myopathy Muscle Biopsies Exhibit T-Tubule
Disorganization

We were interested to correlate our findings with muscle from

myotubular myopathy patient biopsies. T-tubule abnormalities

have not been specifically mentioned in previous pathologic

analyses from myotubular myopathy patients. We examined T-

tubule organization in human biopsy samples using immunohis-

tochemistry and antibodies to DHPRa1, a T-tubule marker, and

to RYR1, a marker of the adjacent sarcoplasmic reticulum. A

similar technical approach was successfully utilized by Laporte and

colleagues to examine T-tubule organization in centronuclear

myopathy patients with BIN1 mutations [28]. As a staining

control, we used muscle from an unaffected, age matched control

sample. DHPRa1 and RYR1 staining in the control muscle were

found in the expected pattern along the membrane and

throughout the cytoplasm (Figure 11A and Figure 11B, respec-

tively). Conversely, samples from three patients revealed clear

abnormalities in both DHPR and RYR1 staining patterns. T-

tubules were found concentrated around the abnormally located

central nuclei, or in irregular densities in the centers of several

fibers. Importantly, other plasma membrane components were not

found in this distribution (Figure S5), indicating that this

disorganization is relatively specific for T-tubules.

We lastly examined electron micrographs obtained from patient

muscle biopsies (Figure 12). Age matched control muscle showed

the typical tight triad structure with well-organized adjacent

sarcoplasmic reticulum. In contrast, micrographs from 3 myotub-

Figure 4. Abnormal perinuclear ultrastructure in 72 hpf myotubularin morphants. Comparison of the perinuclear area from control (CTL
MO) and myotubularin (MTM MO) morphants. (A, B) Control injected embryos had thin myonuclei (N) with well organized perinuclear organelles
(M = mitochondria). Myotubularin injected embryos had large, rounded nuclei (N) and disorganized perinuclear compartments. Three embryos from
three independent injections were examined. Higher magnification (C, D) of the perinuclear compartment revealed abnormal mitochondria (M), areas
nearly devoid of organelles (**), and several tubule-like structures (arrows). (E) Example of an unusual membranous perinuclear structure. Such
structures were observed in multiple myofibers. Scale bars: A, B (2 mm), C–E (500 nm).
doi:10.1371/journal.pgen.1000372.g004

New Model of Myotubular Myopathy
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ular myopathy patients showed various degrees of dilatation and

disorganization of the T-tubules and adjacent sarcoplasmic

reticulum. In conjunction with the immunostaining, these data

confirm that T-tubule abnormalities are present in both our

zebrafish model and in patients with myotubular myopathy.

Discussion

We used antisense morpholinos to investigate the effect of

myotubularin knockdown on zebrafish development. Our data

from these studies illuminate several novel insights into myotubu-

larin function/dysfunction. The first is that knockdown of

zebrafish myotubularin recapitulates the features of myotubular

myopathy, and thus demonstrates that zebrafish are an excellent

model for studying the disease. The second is that closely related

MTMRs can functionally compensate for the loss of myotubu-

larin, suggesting that homolog upregulation is a viable therapeutic

strategy in myotubular myopathy. The third is that T-tubule

abnormalities are present in both zebrafish and human patients

lacking myotubularin. As discussed below, T-tubule abnormalities

are a unifying pathologic feature shared now by several congenital

myopathies.

Zebrafish as a Disease Model of Myotubular Myopathy
Myotubular myopathy is characterized clinically by the early

onset of weakness and hypotonia, and pathologically by Type I fiber

hypotrophy and the presence of centralized nuclei with abnormal

appearance surrounded by areas of sarcoplasmic disorganization

[1]. Zebrafish with reduced levels of myotubularin share all of these

essential disease features. Embryos have defects in the earliest

muscle dependent functional processes, including diminished

spontaneous contractions and an inability to hatch from their

chorions. The histopathology of myotubularin morphant fish closely

mirrors the appearance of human myotubular myopathy muscle.

Fibers are small (50% of control size) and have large, unusual and

mislocalized nuclei surrounded by areas of sarcoplasmic disorgani-

zation. The perinuclear area also often contains accumulation of

abnormal membranous structures; such structures have been

reported in human ultrastructural analyses [22].

The myotubularin morphant zebrafish described here are now

the second model system that recapitulates the ‘‘clinical’’ and

pathologic features of myotubular myopathy by knocking down

myotubularin levels during development. The other model is a

mouse gene knockout generated by Buj-Bello, Laporte, Mandel

and colleagues [17]. One interesting difference between our model

and the knockout mice is the timing of the muscle phenotype. Our

phenotype is present at a very early time point (essentially when

primary myogenesis is completed), whereas the knockout mice

have a period of normal development followed by precipitous

degeneration. It is not clear which more accurately reflects the

human disease, for while patients often have symptoms at birth,

the ability to measure/detect in utero abnormalities in muscle

function is difficult [1]. The difference between the two models

Figure 5. Myofiber hypotrophy in myotubularin morphants. (A)
Representative myofibers from control (CTL) and myotubularin (MTM)
morphant embryos at 72 hpf. Fibers were immunostained with an
antibody to myosin heavy chain (a-MHC). MTM fibers have normal MHC
staining, but appear thinner. Scale bar = 20 mm. (B) Quantitation of
myofiber size. Control myofibers averaged 7000 pixels, while myotu-
bularin morphant fibers were only 4000 pixels.
doi:10.1371/journal.pgen.1000372.g005

Figure 6. Increased PI3P levels in myotubularin morphant
myofibers. (A) Representative myofibers immunostained with anti-
PI3P. Perinuclear staining of PI3P in myotubularin morphant myofibers
is much more abundant than in control myofibers (arrows). There is also
a modest increase in membrane localized PI3P (*). Scale bar = 10 mm.
(B) Quantitation of PI3P immunofluorescence. PI3P intensity measured
over a uniform perinuclear area (see methods for details) and was
83.7+/27.8 pixels for control morphants and 135.5+/23.3 for myotu-
bularin morphants (3 trials; p = 0.0027). This represented a 1.66 increase
in PI3P staining intensity.
doi:10.1371/journal.pgen.1000372.g006
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may be reflective of the rapid and compacted development of the

zebrafish. Conversely, it may be due to the fact that muscle

maturation in the mouse continues for the first several postnatal

weeks. Thus the difference may reflect the specifics of muscle

development in the two organisms instead of intrinsic differences

in myotubularin function in the species.

Our zebrafish model joins a growing list of myopathies and

dystrophies that are successfully modeled in zebrafish

[19,20,25,29–32]. Given the large number of offspring that can

be studied and the highly reproducible nature of our morphant

phenotype, the myotubular myopathy zebrafish should provide an

excellent springboard for high throughput testing of small

molecule therapeutics.

Myotubularin Regulates PI3P Levels In Vivo
One of the fundamental questions regarding myotubularin

function was whether it behaved as a lipid phosphatase in vivo. We

were able to address this question using our zebrafish model. Using

quantitative immunohistochemistry, we demonstrate that PI3P, the

principal substrate for myotubularin phosphatase activity, accumu-

lates in myofibers from myotubularin morphant embryos. This is

the predicted result from loss of myotubularin expression if it acts as

a 3-position phosphatase. Significantly, these data are very

consistent with the previously reported changes in PI3P levels

found when myotubularin protein levels are reduced in cell culture

or in yeast. We observed a 1.6 fold increase in PI3P in skeletal

muscle, while Cao et al detected a 1.6 to 2 fold increase using RNAi

in A431 cells and Dixon and colleagues found a 2 fold increase in

ymr1 null yeast. Of note, our results represent one of the first

assessments of potential phosphatase activity for any myotubularin

family member in vivo and the first specifically in muscle.

Functional Compensation by Homologous MTMRs
Including myotubularin, 15 MTMRs are present in the

vertebrate genome. All are expressed in zebrafish, mouse and

man. Eight of the 15 have apparently identical phosphatase

activity, with the remaining 7 are considered ‘‘phosphatase-dead’’

MTMRs [33]. Because myotubularin mutations result in severe

muscle disease, it seems clear that none of the phosphatase active

MTMRs compensate in myotubular myopathy patients [14]. It

was not known whether this is due to unique non-phosphatase

properties of myotubularin, or rather due to expression differences

between MTMRs. Our data convincingly support the later

conclusion. We show that MTMR1 and MTMR2, the MTMRs

with the highest homology to myotubularin, are not expressed in

zebrafish muscle. Furthermore, exogenous ubiquitous expression

of either gene rescued the myotubularin morpholino phenotype.

Importantly, expression of these MTMRs in control fish did not

result in obvious phenotypic abnormalities. This implies that

increasing the expression of either MTMR1 or MTMR2 in

patient muscle is a viable potential treatment strategy for

myotubular myopathy.

T-Tubule Abnormalities Due to Loss of Myotubularin in
Zebrafish and Man

Perhaps the most significant finding from our study is that

decreasing myotubularin expression or function results in both

structural and functional abnormalities in the T-tubule network.

This finding is significant for several reasons. The first is that it

provides the first viable explanation for why patients (and mice

and zebrafish) have significant weakness. T-tubules are critical for

several aspects of muscle contractions and force generation, in

particular for excitation-contraction coupling [34]. Impairment of

Figure 7. MTMR rescue of the myotubularin morphant
phenotype. (A) Whole mount in situ hybridization of 24 hpf embryos
reveals muscle staining for myotubularin (MTM1 AS) and not for MTMR1
or MTMR2 (data not shown). A sense probe to MTM1 (MTM1 S) was
used as a background control. (B) RNA rescue experiment. RNA to
MTM1, MTMR1 or MTMR2 was co-injected with myotubularin morpho-
lino. Rescue was determined by the % of hatched embryos at 60 hpf.
Values were: No RNA (35.5%+/23.3%, N = 201), MTM1 RNA (71%+/24.5,
N = 100, p (when compared to No RNA),0.0001), MTMR1 RNA (82%+/
25.5%, N = 50, p,0.001), MTMR2 RNA (54.6%+/25.1% N = 97,
p = 00015).
doi:10.1371/journal.pgen.1000372.g007

Figure 8. Myotubularin localizes to T-tubules. Myotubularin and
DHPRa1 co-localize. Double label immunofluorescence was performed
on isolated myofibers. As demonstrated using confocal microscopy,
myotubularin (red) and DHPRa1 (green) signal significantly overlap
(orange, panel 3). Scale bar = 10 mm.
doi:10.1371/journal.pgen.1000372.g008
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this network should clearly lead to diminished force production

and muscle weakness. We demonstrate this functionally in the

zebrafish, as embryos with decreased myotubularin have excita-

tion-contraction coupling abnormalities.

A second significance to these data is that they provide a

plausible hypothesis for myotubularin function in myofibers. T-

tubules biogenesis and maintenance is dependent on the

continuous recycling of its membranous contents [15]. Membrane

recycling is in turn dependent on tight regulation of phosphoino-

sitides. Therefore, one possible explanation for our results is that

myotubularin functions to regulate the recycling of T-tubule

membrane components via its ability to participate in the

regulation of phosphoinositide levels.

An association between T-tubule homeostasis and myotubularin

is especially attractive given the potential functional similarities

between T-tubule recycling and endosomal dynamics. Previous

studies have shown that both endosomes and T-tubules share

similar structural and regulatory components. Most notably,

BIN1/amphiphysin2 and dynamin-2 are critical regulators of

membrane trafficking at the endosome [35,36], and both are

expressed at the T-tubule [28]. In addition, BIN1 is required for

T-tubule biogenesis in cultured myocytes and for T-tubule

organization in Drosophila [37,38]. As discussed below, mutations

in both BIN1 and dynamin-2 result in centronuclear myopathy

[1], a myopathy with similar pathologic features to myotubular

myopathy. Such overlapping roles are also seen with caveoli,

which are critical for both T-tubule formation/maintenance and

for endocytosis [39,40]. Thus, given the many observations

functionally linking T-tubule dynamics and the regulation of

endosomes, it seems very likely that myotubularin’s primary

function in muscle is controlling T-tubule dynamics in a fashion

analogous to that described for its regulation of endosomal

trafficking in vitro [10,11].

A final importance relates to other congenital myopathies.

Traditionally, congenital myopathies are considered a group of

independent conditions, distinguished by their histopathologic

features on muscle biopsy. However, they are in general similar in

clinical presentation, characterized by neonatal hypotonia and

non-progressive weakness [41]. The discovery of T-tubule

abnormalities in myotubular myopathy now pathogenically links

the three most prevalent groups of congenital myopathies. Core

myopathies are caused by mutations in the ryanodine receptor

(RYR1) [42], the calcium channel located at the T-tubule/

sarcoplasmic reticulum border that is required for excitation-

contraction coupling [25], and by mutations in Selenoprotein-N

[43], a modifier of RYR1 [20]. Most nemaline myopathies are

caused by mutations in the components of the thin filaments,

proteins which function downstream of RYR1 and calcium release

to initiate contraction [44]. Along with the centronuclear

myopathies due to BIN1 (where T-tubule abnormalities have

already been documented) and dynamin-2 mutation [1], myo-

tubular myopathy likely is an ‘‘upstream’’ defect, resulting in

abnormalities in the underlying T-tubule and sarcoplasmic

reticular structure upon which RYR1 function is dependent.

In light of this commonality between congenital myopathies, the

next important step is to see if modifiers of excitation-contraction

coupling and T-tubule function can ameliorate the muscle

weakness in the relevant disease models. We are currently at

work developing and testing such agents in our zebrafish model of

myotubular myopathy.

Figure 9. T-tubule structural abnormalities in myotubularin morphant muscle. T-tubule (vertical arrows) and sarcoplasmic reticulum
(angled arrows) abnormalities as demonstrated by electron microscopy. Control morphant (panel 1; CTL): normal T-tubule triad with accompanying
thin, well-organized SR network (arrow). Myotubularin morphants (panels 2–4): Panel 2 shows mildly dilated triads and SR networks. Panel 3 shows
severely dilated and dysmorphic triads and widely looped SR. Panel 4 illustrates severe disorganization, with unrecognizable T-tubule triads and
aberrant adjacent SR networks. Scale bar = 500 nm.
doi:10.1371/journal.pgen.1000372.g009

Figure 10. Excitation-Contraction Coupling abnormalities in
myotubularin morphants. Excitation-contraction (E–C) coupling.
Control morphant myofibers could respond to 15 ms depolarizing
current injections to 0 mV from 0 to 30 Hz (average max frequen-
cy = 27.0+/20.9 Hz, N = 5). In contrast, myotubularin morphant muscle
progressively failed to contract to stimuli above 10 Hz (average
maximum frequency = 11.5+/21.5 Hz, N = 5, p,0.0001).
doi:10.1371/journal.pgen.1000372.g010
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Summary
We have developed a new vertebrate model of myotubular

myopathy, which has allowed us to answer fundamental questions

regarding myotubularin function, and to make novel insights into

the pathogenesis of the human disease. In the future, this model

may provide a valuable platform for developing and testing novel

therapeutics based on our new insights.

Materials and Methods

Morpholinos
Morpholinos were designed to the putative ATG, to the exon 1

splice donor site, and to the exon 3 splice acceptor site of the

zebrafish myotubularin gene (GeneTools, LTC). The control

morpholino (GeneTools) was designed to random sequence with

no homology by BLAST analysis in the zebrafish genome. The

morpholino sequences are as follows:

Control morpholino (CTL MO): CCT CTT ACC TCA GTT

ACA ATT TAT A

ATG morpholino (ATG MO): AGACCCTCGTCGAAAAGT-

CATAACG

Exon 1 morpholino (Ex1 MO): GGAAATGCTCGGGCC-

TACCTTTACG

Exon 3 morpholino (Ex3 MO): CCTGTCAACACACGCAG-

GAACATTG

Injections
1.5 nL of morpholino (0.08 mM) was injected into the yolk of

1–4 cell stage zebrafish embryos as described previously [18].

Embryos were subsequently grown in egg water and then analyzed

at various time points. Western blot and RT-PCR analysis for

determining morpholino efficacy were described previously [18].

Live Imaging
Embryos were examined by live image analysis using a Leica

stereomicroscope and camera. Both photomicrographs and videos

were obtained using this system.

Spontaneous Embryo Coiling
To measure spontaneous coiling, embryos were manually

dechorionated at 24 hpf and recorded for 15 seconds. Records

were obtained approximately 5 minutes after dechorionation.

Touch Evoked Swimming
Touch-evoked motor behaviors were elicited by touching the

head, yolk sac or tail with a pair of No. 5 forceps. Motor behaviors

were recorded by video microscopy (,206) using a Panasonic

CCD camera (wv-BP330) mounted on a Leica dissection

microscope. Videos captured (30 Hz) on a Macintosh G4

computer with a Scion LG-3 video card using Scion Image

software (www.scioncorp.com) were processed with ImageJ.

Histopathology
For hematoxylin/eosin sections, 72 hpf embryos were fixed

overnight at 4uC in 4% paraformaldehyde, washed in PBS,

dehydrated in alcohols and xylenes, and embedded in paraffin.

Microtome sections were cut at 2 mm. H/E was done per

standard protocol. For semi thin sections and electron microscopic

analysis, 72 hpf embryos were fixed overnight at 4uC in

Karnovsky’s fixative and then processed for sectioning by the

Microscopy and Imaging Laboratory (MIL) core facility. Semi-

thin sections were stained with Toludine blue. Light microscopy

was performed using an Olympus BX-51 microscope and images

captured with an Olympus DP-70 digital camera. Electron

microscopy was performed using a Phillips CM-100 transmission

electron microscope.

Myofiber Cultures
Mixed cell cultures from 72 hpf embryos were obtained as

follows. Embryos were euthanised with tricaine and the dissociated

in 10 mM collagenase type I (Sigma) for 60–90 min at room

temperature. Embryos were triturated approximately every

30 min. Dissociated preps were pelleted by centrifugation (5 min

at 3000 rpm), resuspended in CO2 independent media (Invitro-

gen), passed through a 70 mm filter (Falcon), and plated onto

chamber slides (Falcon) precoated with poly-L-Lysine (Sigma).

Culture media was changed after one hour, after which cells were

fixed for 15 min in 4% paraformaldehyde.

Figure 11. Alteration of T-tubule/SR component localization in
myotubular myopathy. Muscle from 3 myotubular myopathy
patients and an age matched control were immunostained with
DHPRa1 to mark T-tubules (A) and RYR1 to mark the adjacent
sarcoplasmic reticulum (B). Abnormal distribution of DHPRa1 and
RYR1 was observed in numerous fibers in all 3 myotubularin patients
but in none of the control fibers (arrows). Scale bar = 20 mm.
doi:10.1371/journal.pgen.1000372.g011
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Myofiber Immunofluorescence
Fixed cells were blocked in 10%NGS/0.3% Triton, incubated

in primary antibody overnight at 4uC, washed in PBS, incubated

in secondary antibody, washed in PBS, then mounted with

ProLong Gold plus DAPI (Invitrogen). For PI3P antibody staining,

cells were processed according to manufacturers protocol (Echelon

Biosciences). The following primary antibodies and dilutions were

used: mouse anti-myosin heavy chain (MF20; 1:20; Developmen-

tal Hybridoma Bank); mouse anti-PI3P (1:100; Echelon); rabbit

anti-myotubularin (1:50; Stratagene); and mouse anti-DHPR1a

(1:200; Abcam). Alexafluor conjugated secondary antibodies were

used at 1:250 (Invitrogen). Images were obtained by confocal

microscopy as described previously [18].

Myofiber Area
Myofiber area was measured from photomicrographs using

Metamorph software. Myofibers were outlined using the freehand

tool and analyzed for total two-dimensional area.

Quantitative Immunofluorescence
PI3P antibody staining was performed as described above.

Samples were analyzed on an Olympus IX-71 inverted confocal

microscope and images captured using the FluoView v4.3

software. Fluorescent images were processed for quantitation

using Metamorph (Sunnyvale, CA). Identical regions (immediate

perinuclear area) were selected from each fiber using the rectangle

tool set to a constant area. Boxed areas were then analyzed for

pixel intensity. 15 myofibers from control and myotubularin

morphant myofibers were compared for each region (5 per single

myofiber prep63 independent preps). Statistical significance was

determined using a Students one-tailed t-test (Prism software) [45].

Lipid Overlay Assay
The lipid overlay assay was performed per manufacturer

protocol for PI3P and PI4P on lipids extracted from 72 hpf

embryos (Echelon Biosciences) [11].

Whole-Mount In Situ Hybridization
In situ hybridization was performed as described previously [18].

Probes were made by in vitro transcription from zebrafish cDNA

plasmids (all clones obtained from Open Biosystems).

RNA Rescue
RNA for morpholino rescue was prepared by in vitro

transcription using the mMessage mMachine kit (Ambion). RNA

was co-injected with morpholino at a concentration of 100 ng/ml.

Rescue was determined by measuring the percentage of embryos

hatched from their chorions at 60 hpf.

In Vivo Electrophysiology
For in vivo electrophysiological measurements [46], larvae (72–

80 hpf) were pinned in a Sylgard-coated petri dish (Dow Corning,

Midland, MI) containing extracellular recording solution with

curare [in mM:134 NaCl, 2.9 KCl, 2.1 CaCl2, 1.2 MgCl2, 10

glucose, 10 HEPES, pH 7.8 and 3 mM d-tubocurarine]. Larvae

were manually skinned on one side, exposing muscle tissue.

Electrodes were pulled from borosilicate glass and filled with

internal recording solution [in mM: 116 K-gluconate, 16 KCl, 2

MgCl2, 10 HEPES, 10 EGTA, at pH 7.2 with 0.1% Sulforho-

damine B for muscle cell type identification]. Whole-cell

recordings were performed on individual adaxial myocytes using

an Axopatch 200B amplifier (Axon Instruments, Union City, CA),

low pass filtered at 1 kHz and sampled at 2–10 kHz. For each

patch-clamped myocyte, steps of depolarizing current (3–6 nA)

were injected to induce contraction. Current pulses were first

delivered at a frequency of 1 Hz for 10 s. Frequency was increased

by 5 Hz intervals until the myocyte reached tetanus. Contractions

were recorded by video imaging and data acquired using a

Digidata 1322A interface controlled by pClamp 8 software (Axon

Instruments). Data analysis was performed using Clampfit 10.

Touch-Evoked Fictive Swimming
Touch-evoked fictive swimming was elicited with a fire-polished

recording electrode (,50 mm) controlled by a Burleigh PCS-1000

piezoelectric manipulator and PCS-250 patch clamp driver

(EXFO Life Sciences) as described previously [47] until fictive

swimming was evoked.

Section Immunohistochemistry
Cryosections from human muscle biopsies were incubated

overnight at 4uC in primary antibody (DHPRa1, 1:200; RYR1,

1:100; a-dystroglycan, 1:50), washed in TBS, and then processed

using the kit (Novacastra). Photomicrographs were obtained on an

Olympus XL.

Figure 12. Ultrastructural changes in T-tubules in myotubular myopathy. Electron microscopic analysis of muscle from 3 myotubular
myopathy patients (MTM) and one age-matched control (CTL). Control T-tubule triads are discretely formed (arrow), and the adjacent SR network is
thin and well organized. Triads and adjacent SR from patient biopsies are dilated and disorganized. Scale bar = 500 nm.
doi:10.1371/journal.pgen.1000372.g012
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Western Blot Analysis
Western blot analysis was performed as previously described

[48]. Rabbit anti-myotubularin (Stratagene) was used at 1:1000

and anti-rabbit secondary (Santa Cruz Biotech) at 1:2000. Goat

anti-actin (Santa Cruz Biotech) was used at 1:1000 and anti-goat

secondary (Santa Cruz Biotech) at 1:200. Luminenscent detection

was performed using the Lumiglo reagent (Cell Signalling).

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by national and local animal welfare bodies,

and all animal work was approved by the appropriate committee

(UCUCA #09835).

Supporting Information

Figure S1 RNA expression of zebrafish MTMRs. RNA was

isolated from 24 hpf zebrafish embryos and processed for RT-

PCR. PCR was performed with primers specific for MTM1 and

MTMRs 1–15 (excluding MTMRs 4 and 11). Bands were

detected for all MTMRs tested.

Found at: doi:10.1371/journal.pgen.1000372.s001 (0.80 MB TIF)

Figure S2 Morpholino knockdown of zebrafish myotubularin. (A)

Immunohistochemistry using a myotubularin antibody on isolated

myofibers from embryos injected with control (CTL MO) or

myotubularin ATG (ATG MO) morpholinos. The linear staining

pattern observed in control myofibers (see Figure 8) was barely

detectable in MTM1 morphant fibers. (B) Western blot analysis

from protein isolated from 72 hpf embryos injected with control

(CTL MO) or myotubularin ATG (ATG MO) morpholinos. A

band corresponding to myotubularin was detected in CTLs but not

in MTM morphants. Blots were re-probed with actin to assure

equal loading. (C) RT-PCR analysis from RNA extracted from 48

hpf control (CTL), exon 3 specific (Ex3), and exon 1 specific (Ex1)

myotubularin morphants. Top panel: dynamin-2 (DNM) specific

primers reveal intact RNA and equal starting cDNA from all

samples. Middle panel: primers spanning exons 1–3 reveal reduced

products for both the exon 1 and exon 3 splice blocking morphants.

Bottom panel: primers spanning exons 2–4 reveal substantially

reduced product in the exon 3 splice blocking morphants but a

normal product in the exon 1 morphants. Taken together, the RT-

PCR data reveals that the Ex1 morpholino successfully results in

exclusion of exon 1 from the final RNA. The Ex3 morpholino

causes exclusion of exon 3 as well as overall reduction in MTM1

RNA, likely due to nonsense mediated decay mechanisms.

Found at: doi:10.1371/journal.pgen.1000372.s002 (5.31 MB TIF)

Figure S3 Total PI3P levels are unaffected in myotubularin

morphants. PI3P mass strip assay performed on lipids isolated from

control (CTL MO) or myotubularin (MTM MO) 72 hpf morphant

embryos. No difference in PI3P levels was observed in MTM1

morphants (CTL 0.87 Pmol+/20.10; MTM 0.83 Pmol+/20.07;

n = 3). Equal spotting of lipids was determined by measuring PI4P

levels on duplicate samples (data not shown).

Found at: doi:10.1371/journal.pgen.1000372.s003 (1.22 MB TIF)

Figure S4 Touch-evoked fictive swimming. Touch-evoked

fictive swimming in control morphants (left) and myotubularin

morphants (right) in response to a 50 ms tactile stimulus. Normal

responses were detected in the myotubularin morphants, indicat-

ing that neuronal input to skeletal myofibers is intact.

Found at: doi:10.1371/journal.pgen.1000372.s004 (0.15 MB TIF)

Figure S5 a dystroglycan staining on human biopsy samples.

Immunohistochemistry with an a dystroglycan antibody. Note the

normal staining around the plasma membrane and the lack of

internal staining. * indicate examples of fibers with central nuclei.

Scale bar = 20 mm.

Found at: doi:10.1371/journal.pgen.1000372.s005 (9.71 MB TIF)

Video S1 Spontaneous coiling in a 24 hpf control morphant

embryo.

Found at: doi:10.1371/journal.pgen.1000372.s006 (4.98 MB AVI)

Video S2 Spontaneous coiling in a 24 hpf myotubularin

morphant embryo.

Found at: doi:10.1371/journal.pgen.1000372.s007 (5.01 MB AVI)

Video S3 Touch evoke escape response in a 72 hpf control

morphant embryo.

Found at: doi:10.1371/journal.pgen.1000372.s008 (0.93 MB AVI)

Video S4 Touch evoke escape response in a 72 hpf myotubu-

larin morphant embryo.

Found at: doi:10.1371/journal.pgen.1000372.s009 (1.24 MB AVI)
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