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Abstract
Studies of diagnostic tests are often designed with the goal of estimating the area under the receiver
operating characteristic curve (AUC) because the AUC is a natural summary of a test’s overall
diagnostic ability. However, sample size projections dealing with AUCs are very sensitive to
assumptions about the variance of the empirical AUC estimator, which dependens on two correlation
parameters. While these correlation parameters can be estimated from available data, in practice it
is hard to find reliable estimates before the study is conducted. Here we derive achievable bounds
on the projected sample size that are free of these two correlation parameters. The lower bound is
the smallest sample size that would yield the desired level of precision for some model, while the
upper bound is the smallest sample size that would yield the desired level of precision for all
models. These bounds are important reference points when designing a single or multi-arm study;
they are the absolute minimum and maximum sample size that would ever be required. When the
study design includes multiple readers or interpreters of the test, we derive bounds pertaining to the
average reader AUC and the ‘pooled’ or overall AUC for the population of readers. These upper
bounds for multireader studies are not too conservative when several readers are involved.
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1 Introduction
Receiver operating characteristic (ROC) curves assess the ability of a diagnostic test to
discriminate between two populations. See Pepe and Zhou et. al. for a comprehensive
description of methods for diagnostic tests [25,33]. The area under the ROC curve (AUC) is
the probability that a randomly selected observation from one population scores less on the
test than a randomly selected observation from the other population. If the AUC is one (or zero)
then the test discriminates perfectly, but if the AUC is one-half then the test has no
discriminative ability whatsoever. The AUC is an easily understood metric that summarizes
the test’s overall diagnostic ability. Studies that seek to assess the ability of a diagnostic test
are typically designed to estimate the AUC within a fixed margin of error [9,10,20,23,24,13].
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The AUC estimator of choice is the empirical (scaled Mann-Whitney-U) estimator because it
is a consistent and efficient estimator under very general conditions [9,15]. Its variance depends
on the true AUC and two additional correlation parameters, both of which can be estimated
nonparametrically from the data at hand [17,9,1]. However, at the design stage, there is seldom
any data available to estimate these parameters. Investigators may have an idea of what the
AUC might be, but they seldom have a reliable guess for the correlation parameters.
Unfortunately these correlation parameters play an important role in determining the variance,
making the subsequent sample size projections quite sensitive to the initial inputs.

However, it is possible to determine the maximum and minimum sample size required to
achieve a certain level of efficiency, over all models, without having to specify the correlation
parameters. To derive these bounds, we use the fact that the maximum and minimum variance
of the empirical AUC estimate, over all models, depends only on the true AUC and the sample
size. Specification of the two key correlation parameters is, in this sense, eliminated. The
minimum sample size will yield the desired level of precision for some model, while the
maximum will yield the desired level of precision for all models. These bounds are useful for
determining the sensitivity of sample size projections to modeling assumptions and for
determining the extent of resources that may be needed for a given study.

We then extend these bounds to complex designs involving multiple tests and multiple readers
of each test. These situations require specification of the correlation structure between the tests
and readers. We examine the bounds in relation to projections obtained according to the
standard ANOVA approach for multi-reader studies. This approach is based on a random
effects ANOVA model for each reader’s empirical AUC, which does account for correlation
between readers. These methods apply, in principle, to any large sample situation under certain
conditions (see [31,21,28]). However, the ANOVA approach is highly sensitive to assumptions
about the components of variance and may yield projections greater than the upper bound. We
illustrate this behavior and discuss when these bounds are themselves sufficient projections.

Section §2 is background and establishes notation. Sample size projections for estimating a
single AUC are in §4 and projections for estimating the difference between two AUCs are in
§5. Extensions to designs involving multiple readers are also considered. Closing comments
are in section §7.

2 Background
A sample of test outcomes from the ‘non-diseased’ or normal population will be represented
by random variables X1, X2, … , Xm with cumulative distribution function F. Likewise,
represent the test outcomes from the ‘diseased’ or abnormal population as Y1, Y2, … , Yn with
CDF G. Denote the AUC as θ = P(X < Y) [1]. The empirical estimator of the AUC, θ ̂, is

(1)

where  and I(·) is an indicator function. If CDFs F and G are continuous
then E[θ ̂] = θ and
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(2)

where ρy = [P (X < min(Yi, Yj)) − θ2]/θ(1 − θ) and ρx = [P (max(Xi, Xj) < Y) − θ2]/θ(1 − θ) are
the correlation coefficients between two indicators variables based on the same y (or x)
observation. The major contributors to the varaince are ρy/m and ρx/n; the first term is O(1/
mn). Both ρy and ρx take different forms depending on the underlying model, but both can be
estimated non-parametrically if data are available [17,9,1].

Ties reduce the variance of θ ̂ [26]. Assume that F and G have common discontinuities (the
only ones that allow ties of importance), finite in number and denoted by ξk, k = 1, … , K.

Define pk = P(Xi = ξk) and qk = P(Yj = ξk) then  and the variance
of θ ̂ is now

(3)

where  and  are now the corresponding correlation coefficients. The correction term is
often negligible, but can, under certain circumstances, be of the same order of magnitude as
the initial term in the variance [15, p. 20].

In the sections that follow, we will use the fact that the empirical AUC estimator, θ ̂, and
difference between two such estimators for different tests, say θ ̂A − θ ̂B, are both approximately
normally distributed in large samples [15,16]. Hence, an approximate (1 − α)100% confidence
interval for θ is

(4)

where V (θ ̂) is given by (2). Likewise a hypothesis test of H0 : θ = θ0 versus H1 : θ = θ1 > θ0

based on the test statistic  has Type II error probability:

(5)

Here we ignored the lower tail of the test, which contributes very little in any case. Equations
(4) and (5) readily generalize when the object of inference is θA − θB and they are often used
for sample size projections with the understanding that misspecification of ρy and ρx can be
costly [5,12].

Although ρy and ρx are often intractable, there are two important exceptions where an analytical
form for V (θ ̂) can be obtained [2,8]. The first is the ‘biexponential’ model where Xi ~
Exponential(λx) and Yj ~ Exponential(λy). Direct calculation yields P (max(Xi, Xj) < Y) = 2θ2/
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(1 + θ) and P (X < min(Yi, Yj)) = θ/(2 − θ) with correlation parameters ρx = θ/(1 + θ) and ρy =
(1 − θ)/(2 − θ) [2,9]. Because the correlation parameters depend on the AUC in a simple fashion,
this model is routinely used for sample size calculations [9,23]. However this can (and often
does) lead to sample sizes that are too small for many applications [20,32].

The second noteworthy case is an equal variance ‘binormal’ model where a Taylor series
expansion of the AUC variance is free of correlation parameters. The binormal assumption is
that some monotonic transformation, say h(·), can be found such that  and

 [18,19,6,30]. Without loss of generality let μx < μy. The area under that ROC

curve is where Φ[·] is the standard

normal CDF. θnor is a monotone increasing function of  and inference
on δ leads to inference on θ by a simple transformation [27,7,24]. A Taylor series argument
yields the following approximation for the standard error when σx = σy,

(6)

where A = 1.414×Φ−1[θ] [20,23]. We will use these two cases for comparison against the
sample size bounds.

3 Bounding the Variance of the Empirical AUC Estimator
When F and G are both continuous, Birnbaum and Klose [4] show that

(7)

where i = 1 if , i = 2 otherwise, and

(8)

(9)

These bounds are achievable when the underlying distributions are continuous. The confidence
interval,  is robust in that it maintains at least (1 − α)100%
coverage probability under model failure (see [3]). We will make use of the fact that (7) implies

(10)
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where i = 1, 2 depending on (min(m, n) − 1)/(max(m, n) − 1) as noted above. The middle term
of (10) is the inflation factor that corrects the variance for the dependence between indicator
variables.

When ties are present, equation (3) indicates that the upper bound on the variance still holds.
In fact, Lemma 5.1 of Lehmann [14] shows that these bounds extend immediately by simply

subtracting  from each of the upper and lower bounds
and replacing θ with θ*. Note that this correction term, which requires specification of the
probability mass on points of common discontinuities, is often quite small. Hence ignoring
ties, which we do for the remainder of this paper, is at worse conservative.

Now consider two distinct diagnostic tests, A and B. For test ‘A’, let XA1, XA2, … , XAm and
YA1, YA2, … , YAn have CDFs FA and GA respectively. The AUC is θA = P(XA < YA) and the
variance of θ ̂A depends on ρAy and ρAx, the cluster correlations under modality ‘A’. Let a similar
notational structure exist for test ‘B’. The difference in AUCs, θA − θB, is of interest. The
variance of the estimated difference is

(11)

where ρ = Corr[θ ̂A, θ ̂B]. If different participants are evaluated on each modality then ρ = 0.
However, we gain efficiency by evaluating the same cases under both modalities because ρ is
now positive. Hanley and McNeil provide a useful discussion and tabulation of ρ [10].
Assuming ρ is fixed and nonnegative, equation (11) can be bounded by substituting the upper
and lower bounds for the variance as follows:

(12)

(13)

where i = 1 if , i = 2 otherwise. Define the lower bound to be
zero whenever the RHS of (13) is negative. These bounds are achievable only when ρ = 0.
Nevertheless, they are useful reference points.

If the cluster correlations are the same across modalities (i.e., ρAx = ρBx = ρx and ρAy = ρBy =
ρy), then a set of tighter, achievable bounds exist. Factoring out the now common over-
dispersion term (1 + (n − 1)ρy + (m − 1)ρx) in equation (11) and bounding by (10) yields

(14)
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(15)

The maximum of the Bi’s is required in the first term of the RHS of equation (15) because (10)
must hold for both modalities. These bounds are achievable, but hold only when the cluster
correlations are equal across modalities. Upper bounds (12) and (14) are equal when ρ = 0.

4 Sample Size Projections for a Single AUC
To bound the projected sample size, we substitute the maximum and minimum variance from
(7) for V (θ ̂) in (4) and (5) and solve. The idea is to find the smallest sample size that will meet
the statistical planning criteria in every model, call it nmax and the smallest sample size that
will meet the statistical criteria for some model, call it nmin. Any projected sample size must
then be less than or equal to nmax and greater than or equal to nmin. These limits reveal the
range of potential sample sizes, which we can use to address the projection’s sensitivity to
violations of assumptions.

Substituting the maximum variance for V (θ ̂) yields the smallest sample size that achieves a (1
− α)100% CI of at most length L in every model. This upper bound for projected sample sizes
is,

(16)

The smaller of the normal and abnormal groups must be at least nmax to guarantee that a (1 −
α)100% CI will have length L or less. There is no model under which nmax would result in a
(1 − α)100% CI with length greater than L.

Substituting the minimum variance for V (θ ̂) yields the smallest sample size that could possibly
achieve a (1 − α)100% CI of length L. The lower bound for projected sample sizes is the solution
to

(17)

where i = 1, 2 depending on (min(m, n) − 1)/(max(m, n) − 1) as noted eariler. This equation
must be solved numerically for nmin. A useful device is to fix the ratio of group sizes, say k,
so that m = kn and then solve for n. Here k = m/n is the ratio of normals to abnormals; typically
k > 1. The solution, nmin, is the smallest sample size that could possibly yield a (1 − α)100%
CI of length L. There is some model for which nmin would result in a (1 − α)100% CI with
length L.

The same logic applies for power calcualtions: just substitute the maximum and minimum
variance from (7) for V (θ ̂) in (5). Numerical solutions are again needed to solve for nmin, but
an analytical expression exists for nmax:
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(18)

The smaller of the normal and abnormal groups must be at least nmax to guarantee at least (1
− β) power to detect θ1 under any model. With nmin, there is at least one model under which
there is (1 − β) power to detect θ1. Simply put, at least nmin observations will be required to
achieve (1 − β) power, but up to nmax observations may be needed.

EXAMPLE 1a: An investigator guesses that the AUC for a new diagnostic assay will be 85%
and he would like to estimate that AUC within a margin of error of 5% (i.e., L = 0.1) from a
95%CI. Equal numbers of disease and non-diseased participants will be recruited. The
maximum projection is 196 participants in both groups and the lower projection is at least 101
participants per group. (Here, i = 2 and B2(101, 101, 0.85) = 51.62 so that the LHS of (17) is
197.61, which is the closest to 195.91=RHS without going below). Under the equal variance
binormal model we project 151 participants per group and under the biexponential model we
need 117 per group. The biexponential model appears quite optimistic. The maximum
projections require 30% more participants than the binormal and 68% more than the
biexponential.

EXAMPLE 1b: An investigator wants to test the hypothesis that the accuracy of a new
diagnostic assay is 0.8. She believes recent improvements will increase the accuracy to 0.9 and
she wants to have 80% power to detect this difference with 5% Type I error. If the ratio of
normals to abnormals is 1:1 (i.e., k=1), then she requires at least 58 abnormal participants, but
no more than 108. The binormal model suggests 81 abnormal and the biexponential models
suggests 66. But if 2 normals are enrolled for every abnormal (i.e., k=2), then the binormal
models suggests only 66 abnormal and the biexponential only 57. Now the projection bounds
indicate that at least 39 abnormals are required, but no more than 108 are needed. Remember
that the maximum bound depends only on the smaller of the two groups. (Here, i = 2 for all
cases. When k = 1, B2(58, 58, 0.8) = 22.06, , B2(58, 58, 0.9) = 17.73,

; when k = 2, B2(78, 39, 0.8) = 29.27, B2(78, 39, 0.9) = 24.06,
 and . Substituting these into (5) gives 1 − β ≈ 0.807 in both

cases.)

4.1 Multiple Readers and their Average AUC
Sometimes the outcome of a diagnostic test must be interpreted by a ‘reader’. For example, X-
rays and MRI scans require the interpretaion of a reader. But two readers may score the same
test result, in this case an image, differently. This disagreement ultimately results in different
ROC curves for each reader and introduces a source of variability that is not due to the
diagnostic test itself. (This framework also applies to multicenter trials when the outcome of
an ‘objective’ diagnostic test for the same case may vary as it is evaluated at each site.) The
primary interest in a multireader design such as this is no longer each reader’s AUC, but instead
the average reader AUC.

A sample of test outcomes for the rth reader (r = 1, … , R readers) will be represented as Xr1,
Xr2, … , Xrm and Yr1, Yr2, … , Yrn with CDFs Fr and Gr. Each reader’s AUC is θr = P(Xr <

Yr). Its empirical estimate is  where Zrij = I(Xri < Yrj), i = 1, … , m, j =
1, … , n and the variance of θ ̂r depends on θr, ρ ry and ρrx.
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In the design stage, it is not unreasonable to assume that readers are exchangeable in the sense
that they have the same true accuracy and cluster correlation parameters. That is, θr = θ, ρry =

ρy and ρrx = ρx for all r. Then, the obvious empirical estimate of θ is,  and V ar
[θ ̂r] does not depend on r by assumption. Then

(19)

where ρdr,sm is the correlation between different readers on the same modality (typically
ρdr,sm > 0). Note that V ar [θ ̂] is the term we have been bounding and estimating under different
models.

Equation (19) shows that including multiple readers deflates the variance by [1/R + ρdr,sm(R −
1)/R]. Therefore, accounting for multiple readers amounts to nothing more than deflating the
projected sample sizes (and bounds) by the same factor. That is, the new upper bound is

 and the new lower bound is
. Likewise for projections under the binormal and

biexponential models. For example, with 4 readers and ρdr,sm = 0.3, the projections are reduced
by a factor of 0.475. In example 1a, this means the maximum reduces to 94, the lower to 48,
the binormal to 72, and biexponential to 56. The same applies for the power projections in
example 1b.

4.2 Efficiency Considerations
The loss in efficiency incurred when using the maximum sample size projection depends on
the true underlying model. The maximum potential increase in sample size, over all models,
is (nmax/nmin − 1)100%. In example 1a, the potential increase in sample size is 94.1%. However,
this maximum is only achieved if the true underling model happens to yield the smallest
possible variance for the empirical AUC estimator. This is unlikely. A more realistic approach
is to compare the maximum sample size to that obtained under the two most commonly assumed
models: the biexponential and binormal. In example 1a, we saw that the increase in sample
size was 68% and 30%.

To illustrate, we assume k = m/n ≥ 1, which is most common in practice and compare the sample
sizes required to provide a confidence interval of length L. The ratios of projected sample sizes
for the maximum versus binormal and maximum versus biexponential are

(20)

and

(21)
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For the biexponential model we use an approximation to the variance to obtain a closed form
expression for the sample size ratio. Namely V ar [θ ̂] ≈ θ(1 − θ)(ρy + kρx)/nk, which just assumes
that 1/kn2 is zero.

Figure 1 displays these ratios as a function of the area under the curve, θ ∈ [0.5, 1], and k ∈
{1, 2, 3}. For large values of the AUC the sample size ratio for the binormal model approaches
infinity. This is an artifact of the Taylor series approximation; under both models the variance
of the AUC estimator converges to zero as θ approaches 1, but the binormal convergence is
(exponentially) faster. Hence the appearance of greatly increased efficiency at extremely high
AUCs. The figure indicates that if the underlying model is exponential then the maximum
sample size represents an increase ranging from 50%-100% when k=1. Under the equal
variance binormal model the smallest sample size ratio is approximately 1.3. It is known that
the biexponential model tends to give sample sizes that are too small [20,32] and Figure 1
indicates that those sample size projections can be quite optimistic (i.e., half of the maximum
possible). However, using a binormal model that assumes equal variance may not be much
better.

While the inclusion of multiple readers does not change these considerations, the resulting
standard errors will be much smaller and consideration of their absolute magnitude is very
important. Table 1 provides some examples of standard errors for comparison. The absolute
loss in efficiency is quite small and the difference can be mediated by adding readers.

5 Sample Size Projections for Comparing Two AUCs
The goal of many studies is to compare the accuracy of two tests by comparing their AUCs.
The approach for this case is similar to that already outlined concerning a single AUC; we
substitute for V ar[θ ̂ A − θ ̂B] its bounds in the two-sample versions of equations (4) and (5) to
derive the bounds on the projected sample size. The only caveat is that there are two sets of
bounds to choose from: The strict (and sometimes unachievable) bounds or the (achievable)
bounds that assume equal cluster correlations across modalities. We assume throughout the
same ratio of abnormal to normals for each modality (e.g., when both tests are run on each
subject or when both tests drawn from the same global population).

Most of these calculations must be done numerically, substituting the bounds for the actual
variance. However, if we are willing to assume equal cluster correlations, the upper bound on
the projected sample size for a CI is

(22)

Thus, a minimum of nmax observations in each groups will gaurantee a (1 − α)100% CI of
length L as long as cluster correlations are equal across modalities. Likewise the sample size
that provides 1 − β power for a α-sized hypothesis test of H0 : Δ0 = θA0 − θB0 versus H1 : Δ1
= θA1 − θB1 is given by the solution to

(23)

where Vi = V ar[θ ̂Ai − θ ̂Bi]. The upper bound on the sample size projection is the solution to
this equation when Vi is replaced with (12) (or (14) if we are willing to assume equal

Blume Page 9

J Stat Plan Inference. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correlations), while the lower bound is the solution when Vi replaced with (13) (or (15) if we
are willing to assume equal correlations). The binormal or biexponential models can also be
used calculate Vi via equations (11) and (2).

EXAMPLE 2a: Two assays are to be compared. Equal numbers of normal and abnormal
participants are available (i.e., k=1) and each participant will undergo both assays (say with
ρ = 0.3). An investigator guesses that the AUCs for assays A and B are 0.7 and 0.8 and would
like a 95% CI on their difference to have a margin of error of 0.075 (i.e., length of 0.15). The
maximum sample size is 209 abnormals or 178 if equal cluster correlations can be assumed.
The minimum sample size is 76 abnormals or 111 if equal cluster correlations can be assumed.
Projections under the biexponential and binormal model give 113 and 127 abnormals,
respectively. Compared with the bounds these projections appear optimistic.

EXAMPLE 2b: Same situation as example 2a, but the investigator wishes to conduct a
hypothesis test against the null hypothesis that the two assays have equal accuracy of 0.7. With
80% power and 5% type I error, the maximum sample size is 260 abnormals or 223 if equal
cluster correlations can be assumed. The minimum sample size is 101 abnormals or 139 if
equal cluster correlations can be assumed. Projections under the biexponential and binormal
model give 143 and 156, respectively. Here as well the binormal and biexponential models
appear optimistic.

A practical approach to balancing efficiency and robustness concerns might be to choose the
sample size given from the lower upper bound (i.e., assume equal cluster correlations) or to
select the midpoint of the sample size range (143 in example 2a and 181 in example 2b).

5.1 Multiple Readers and the Average Difference in AUCs
The arguments of §4.1 apply here directly. The empirical difference in average reader AUCs

is  Note the V ar [θ ̂dr] does not depend on r because
of our common accuracy and common cluster correlation assumption. Then we have

(24)

Here ρdr,diff represents the correlation between different readers on the difference in AUC
estimates. That is, it is the correlation of the empirical AUC differences among the readers.
Also, the quantity ρ from §5 will now be denoted by ρsr,dm (the correlation between the same
reader on different modalities). Just like before, accounting for multiple readers amounts to
nothing more than deflating the projected sample sizes and bounds. That is, the new upper
bound is  and the new lower bound is

. Likewise for projections under the binormal and
biexponential models.

5.2 Relationship to other Multireader Projections
Multireader designs typically specify three different correlation parameters: ρ1 (ρsr,dm in our
notation), the correlation between AUCs estimated by the same reader but in two different
modalities; ρ2 (ρdr,sm in our notation), the correlation between AUCs estimated by different
readers in the same modality; and ρ3 (ρdr,dm in our notation) is the correlation between AUCs
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estimated by different readers in different modalities [21,28]. So far, we have only encountered
ρsr,dm and ρdr,diff, but all are related. Expanding Cov[θ ̂dr, θ ̂ds] shows

(25)

This relationship depends on both group sample sizes, (m, n), through V ar(θ ̂), although this
expression is Op(1). When the true variances are in doubt (as is often the case) this relationship
cannot be calculated. However, the biexponential model can be used to calculate the variances
for comparison purposes.

Traditional approaches to multireader studies are based on a random effects ANOVA model
that works with the reader specific AUC estimates (see [31,21,28]). While these ANOVA
models may apply in principle to any large sample situation, they fail to incorporate
distributional assumptions that enter through the variance. Not unexpectedly, these projections
are highly sensitive to assumptions about the components of variance. Obuchowski [21] shows
that the ANOVA variance for the difference between two AUC estimates is

(26)

where  is the between reader variability;  is the within reader variability;  is variability
due to cases; ρb is the correlation between AUCs estimated by a set of readers under two
different modalities; the correlation parameters ρ1, ρ2, ρ3, discussed earlier; and J is the number
of replications (almost always J = 1). Technically, this ANOVA variance is unconstrained and
can produce standard errors much larger (or smaller) than even the absolute upper (or lower)
bound established earlier. However one vetted set of estimates from the radiology literature is:

, , ρb = 0.82, ρ1 = 0.44, ρ2 = 0.33, ρ3 = 0.29 [21]. The last component
of variance  is estimated as (V ar [θ ̂A ] + V ar [θ ̂B ])/2 assuming an biexponential model
[21].

For illustrative purposes, table 2 displays multireader standard errors under the ANOVA model
with the components of variance identified above and our bounds, under a variety of conditions
and sample sizes with five readers. The ANOVA standard errors under this set of variance
components fairs well for moderate sample sizes. They are close to the sharp lower bound for
smaller sample sizes and in some cases exceed the upper bounds (see table 2). Of course, small
changes in the assumptions about the variance components (e.g., say  or

) often cause relatively large changes in the ANOVA standard errors. While these
results are not generalizable, they most likely represent the best case scenario for the ANOVA
method (because we have chosen vetted estimates of the variance components from the
literature etc.). The point is that even if the variance components and correlations are chosen
wisely, the standard errors could still be too large or too small.

6 Considerations for Pooled AUCs
It might be of interest to assess the accuracy of the entire population of readers, taken as a
single unit. In this case, we are interested in how the group of readers performs as a whole and
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so the focus is on the AUC that results from pooling data across all readers. This is interesting
when there is little variability from reader to reader e.g., when the ‘readers’ are actually an
objective test, such as a blood test preformed at different centers.

A sample of test outcomes for the rth reader (r = 1, … , R readers), under modality A, will be
represented as XAr1, XAr2, … , XArm and YAr1, YAr2, … , YArn with CDFs FAr and GAr
respectively and AUC θAr = P(XAr < YAr). An additional level is added to account for the
population of readers. For outcomes from the ‘non-diseased’ population let FAr(X) = FA(X;
αr) be the reader specific CDF where αr has CDF HA(αr). Then the individual scores, XA, have

CDF . The key insight here is that this model considers all of
the X’s as being generated from a single population of ‘non-diseased’ scores comprised from
all readers. The one caveat is the this model assumes that all readers operate on the same scoring
scale, while the analysis of average reader AUCs in the previous section does not.

For the ‘diseased’ population, we have YAr with CDF GAr(Y) = GA(Y ; βr) where βr has CDF
WA(βr). Because HA(αr) and GAr(Y) = GA(Y ; βr) are not necessarily equal, reader variability
may differ depending on the population being scored, even though the readers remain constant.

The resulting convolution is . The AUC for modality A is θA
= P(XAk < YAl) (without reader subscript). As expected, the population AUC is a weighted
average of the reader specific AUCs, but the weights don’t add to one (see the appendix for
details and an example).

The pooled AUC is estimated by  where ZAkl = I(XAk < YAl) makes
no distinction between readers. The variance of θ ̂A follows from (2). Now the bounds on sample
size projections for comparing two AUCs (see §5) apply here by simply replacing m and n with
mR and nR respectively. This is easily adapted to designs that are not fully factorial by replacing
mR by Σrmi and nR by Σrni, where r indexes the readers and mi and ni represent the number of
non-diseased and diseased cases evaluated by rater i.

7 Comments
This paper outlines a method for bounding the projected sample sizes in studies that seek to
estimate or compare the area under ROC curves. These bounds provide an important
benchmark for assessing the sensitivity of projections to underling assumptions. The potential
efficiency loss from designing a study with the maximum sample size projection must be
balanced against the potential for not achieving the desired statistical objective. In multireader
studies, this efficiency loss can be offset by adding readers. In other situations, the midpoint
of the sample size range may represent an acceptable balance between efficiency and
robustness. Small studies or studies collecting an unequal number of disease and non-diseased
cases could substantially benefit from making some sort of distributional assumption, if that
assumption is indeed correct. However, in multireader studies, the absolute efficiency
difference is often quite small (because the standard errors themselves are already very small),
so there appears to be little advantage to making these distributional assumptions. Overall,
these bounds provide a nice complement to any model based approach.

A Appendix
The population AUC, θ, that is derived from pooling data across readers is a weighted average
of the reader specific AUCs, θr(αr, βr).
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While ∫αr h(αr)dαr = ∫βr, w(βr)dβr = 1, in general, ∫αr ∫βr h(αr) w(βr)dαrdβr ≠ 1. Hence θ is a
weighted average of the reader specific AUCs, but the weights do not necessarily add to one.
This allows θ to take values beyond the range of the reader specific AUCs. A similar situation
is encountered in Sukhatme [29].

For an example of this model structure, consider the rth reader under a Binormal model. We
have that  and . Variability in the population of readers
is characterized by  and , resulting in a model that implies

 where k = 1, … , Rm and  where l = 1, … , Rn. The accuracy
for this group of readers is

Thus the accuracy of the group may be significantly less than any individual reader depending
on the magnitude of .
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Figure 1.
Sample Size Ratios
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