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Abstract
Random disturbances of signals, termed ‘noise’, pose a fundamental problem for information
processing and affect all aspects of nervous-system function. However, the nature, amount and
impact of noise in the nervous system have only recently been addressed in a quantitative manner.
Experimental and computational methods have shown that multiple noise sources contribute to
cellular and behavioural trial-to-trial variability. We review the sources of noise in the nervous
system, from the molecular to the behavioural level, and show how noise contributes to trial-to-
trial variability. We highlight how noise affects neuronal networks and the principles the nervous
system applies to counter detrimental effects of noise, and briefly discuss noise's potential
benefits.

Variability is a prominent feature of behaviour. Variability in perception and action is
observed even when external conditions, such as the sensory input or task goal, are kept as
constant as possible. Such variability is also observed at the neuronal level1-4. What are the
sources of this variability? Here, a linguistic problem arises, as each field has developed its
own interpretation of terms such as variability, fluctuation and noise. In this Review, we use
the term variability to refer to changes in some measurable quantity, such as spike timing or
movement duration. Importantly, the term variability does not indicate that a particular
mechanism has generated the variability, and does not suggest whether the variability is
beneficial or detrimental. Trial-to-trial variability can arise from two distinct sources. The
first source is the deterministic properties of the system. For example, the initial state of the
neural circuitry will vary at the start of each trial, leading to different neuronal and
behavioural responses. The variability in the response will be exacerbated if the system's
dynamics are highly sensitive to the initial conditions. The second source of variability is
noise, which is defined in the Oxford English Dictionary as “random or irregular
fluctuations or disturbances which are not part of a signal […] or which interfere with or
obscure a signal or more generally any distortions or additions which interfere with the
transfer of information”.

Whereas previous reviews have focused on neuronal variability in general, we focus here on
work directly relating to noise. Noise permeates every level of the nervous system, from the
perception of sensory signals to the generation of motor responses, and poses a fundamental
problem for information processing5,6. In recent years the extent to which noise is present
and how noise shapes the structure and function of nervous systems have been studied. In
this Review, we begin by considering the nature, amount and effects of noise in the CNS. As
the brain's purpose is to receive and process information and act in response to that
information [FIG. 1], we then examine how noise affects motor behaviour, considering the
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contribution of noise to variability at each level of the behavioural loop. Finally, we discuss
the strategies that the nervous system uses to counter, compensate for or account for noise in
perception, decision making and motor behaviour. Given the many levels and systems that
are spanned, we cannot provide a comprehensive Review, but instead we pick out specific
examples that reflect in a more general manner the constraints and limitations that noise sets
in the CNS; the benefits of noise are discussed in BOX 1.

Sensory noise
External sensory stimuli are intrinsically noisy because they are either thermodynamic or
quantum mechanical in nature. For example, all forms of chemical sensing (including smell
and gustation) are affected by thermodynamic noise because molecules arrive at the receptor
at random rates owing to diffusion and because receptor proteins are limited in their ability
to accurately count the number of signalling molecules7,8. Similarly, vision involves the
absorption of photons that arrive at the photoreceptor at a rate governed by a Poisson
process. This places a physical limit on contrast sensitivity in vision, which is reduced at low
light levels — when fewer photons arrive at the photoreceptor9.

At the first stage of perception (FIG.1a), energy in the sensory stimulus is converted into a
chemical signal (through photon absorption or ligand-binding of odour molecules) or a
mechanical signal (such as the movement of hair cells in hearing). The subsequent
transduction process amplifies the sensory signal and converts it into an electrical one, either
directly or indirectly through second-messenger cascades. Any sensory noise that is already
present or that is generated during the amplification process (transducer noise10) wil will
increase trial-to-trial variability. Therefore, noise levels set perceptual threshold for later
stages of information processing, as signals that are weaker than the noise cannot be
distinguished from it after amplification11. This is rigorously underpinned by the data-
processing inequality theorem12, which states that subsequent stages of processing (even if
they are noise free) cannot extract more information than is present at earlier stages.
Therefore, to reduce noise, organisms often pay a high metabolic and structural price at the
first stage of processing (the sensory stage). For example, a fly's photoreceptors account for
10% of its resting metabolic consumption and its eye's optics make up over 20% of the flight
payload13.

Cellular noise
If neurons are driven with identical time-varying stimuli over repeated trials, the timing of
the resultant action potentials (APs) varies across the trials3,14-19. This variability is on the
order of milliseconds or lower14,15,20-25, but because cortical neurons can detect the
coincident arrival of APs on millisecond timescales26,27, the variability might well be
physiologically relevant. Indeed, the precision of single-neuron AP timing on the milli- and
sub-millisecond scale has been shown to be behaviourally relevant in perceptionn28,29 and
movement30. To what extent this neuronal variability contributes to meaningful processing
(as opposed to being meaningless noise) is the fundamental question of neural
coding4,19,31-33. A key issue is that neuronal activity might look random without actually
being random.

Neuronal variability (both in and across trials) can exhibit statistical characteristics (such as
the mean and variance) that match those of random processes. However, even when
neuronal-firing statistics match those of a random process, it does not necessarily follow that
the firing is generated by random processes. In fact, we know from Shannon's theory of
information5,12 that when optimal information encoding is used to maximize information
transmission, neural signals might look random 31. Furthermore, neuronal variability is not
equal in all neurons. The Fano factor is a simple measure of variability that ignores temporal
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structure and higher-order statistics. Neural responses without variability have Fano factors
of zero, whereas Poisson processes (which are highly variable) have a Fano factor of one.
Some cortical neurons are highly variable, with Fano factors of one or greater2,3,34,35,
whereas others have Fano factors that are closer to zero24,36,37. Similarly, there is a range
of variability in neurons in the mammalian24,38 and invertebrate18,39 visual pathways.
Moreover, high- and low-variability neurons are often observed in the same region, and a
single neuron can respond with different amounts of variability depending on the stimulus
conditions18,39.

Box 1

Benefits of noise

Noise is not only a problem for neurons: it can also be a solution to other information-
processing issues. Several strategies have been adopted to use noise in this fashion. For
example, stochastic resonance is a process by which the ability of threshold-like systems
to detect and transmit weak (periodic) signals can be enhanced by the presence of a
certain level of noise87,175. At low noise levels, the sensory signal does not cause the
system to cross the threshold and few signals are detected. For large noise levels, the
response is dominated by the noise. For intermediate noise intensities, however, the noise
allows the signal to reach the threshold but does not swamp it. For stochastic resonance
to be useful, positive detection of a sub-threshold input must be more desirable than a
failure to detect a supra-threshold input. Since its first discovery in cat visual neurons176,
stochastic-resonance-type effects have been demonstrated in a range of sensory systems.
These include crayfish mechanoreceptors177, shark multimodal sensory cells178, cricket
cercal sensory neurons179 and human muscle spindles180. The behavioural impact of
stochastic resonance has been directly demonstrated and manipulated in passive
electrosensing paddlefish181 and in human balance control182.

In addition, in spike-generating neurons, sub-threshold signals have no effect on the
output of the system. Noise can transform such threshold nonlinearities by making sub-
threshold inputs more likely to cross the threshold, and this becomes more likely the
closer the inputs are to the threshold. Thus, when it is averaged over time, this noise
produces an effectively smoothed nonlinea56. This facilitates spike initiation and can
improve neural-network behaviour, as was shown in studies of contrast invariance of
orientation tuning in the primary visual cortex183. Moreover, neuronal networks that
have formed in the presence of noise will be more robust and explore more states, which
will facilitate learning and adaptation to the changing demands of a dynamic
environment184,185.

Multiple factors contribute to neuronal trial-to-trial variability. These include changes in the
internal states of neurons and networks, and random processes inside neurons and neuronal
networks40,41. To what extent each of these factors contributes to the total observed trial-
to-trial variability remains unclear, especially as network [BOX 2] and other effects might
reduce variability despite the presence of noise. In general, the impact of noise on cellular
function will inescapably increase neuronal variability (but see BOX 1), and thus we can
compare the amount of variability that is produced by noise with the total observed
variability to give us an idea of the relative contribution of noise to trial-to-trial variability.

What are the sources of noise in neurons? In each neuron, noise accumulates owing to
randomness in the cellular machinery that processes information42 [FIG. 1b] and can further
increase as a result of nonlinear computations and network interactions [BOX 2]. At the
biochemical and biophysical level there are many stochastic processes at work in neurons.
These include protein production and degradation, the opening and closing of ion channels,
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the fusing of synaptic vesicles and the diffusion and binding of signalling molecules to
receptors. It is often implicitly assumed that averaging large numbers of such stochastic
elements effectively eliminates the randomness of individual elements. However, this
assumption requires reassessment. Neurons perform highly nonlinear operations that involve
high gain amplification and positive feedback. Therefore, small biochemical and
electrochemical fluctuations (when considering systems at the molecular level we use the
term fluctuation interchangeably with noise) can significantly alter whole-cell responses. For
example, when the membrane potential is near the firing threshold, the generation of an AP
becomes highly sensitive to noise43,44. Large neuronal structures, such as the squid giant
axon (which can measure up to 1 mm in diameter), have been used extensively to investigate
neural mechanisms42,45-48. Given the scale of these structures, they appear to function
deterministically, because large numbers of signalling molecules are involved and random
fluctuations are indeed averaged out. However, many neurons are tiny: cerebellar parallel
fibres have an average diameter of 0.2 μm; C-fibres, which are involved in sensory and pain
transmission, range between 0.1 and 0.2 μm in diameter; and the unmyelinated pyramidal-
cell axon collaterals, which form the vast majority of local cortico–cortical connections,
have an average diameter of 0.3 μm. Similarly, most (spiny- or bouton-type) CNS synapses
have sub-micrometer dimensions. At these small length scales the numbers of molecules
involved are small and the influence of noise is dramatically increased. Here we review the
main sources of noise in the nervous system at the cellular level and the consequences for
neuronal function.

Electrical noise and action potentials
The membrane potential is used both for local computation and to carry APs. Although
variability in resting membrane potential49,50 (membrane-potential fluctuations) and AP
threshold51 have been studied for a long time, the mechanisms that underlie these
fluctuations have only recently gained attention. Electrical noise in neurons causes
membrane-potential fluctuations even in the absence of synaptic inputs. The most dominant
source of such electrical noise is channel noise52-54 (FIG. 1b) — electrical currents
produced by the random opening and closing of voltage- or ligand-gated ion channels.
Stochastic models have shown that channel noise can account for variability in the AP
threshold at nodes of Ranvier55 and the reliability of AP initiation in membrane
patches43,56,57. Furthermore, patch-clamp experiments in vitro show that channel noise in
the dendrites and in the soma produces membrane-potential fluctuations that are large
enough to affect AP timing58-61. Both the initiation and the propagation of APs can be
affected by channel noise.

At the site of AP initiation — the soma or the axon hillock — channel noise can affect the
timing of APs (despite the comparatively large number of ion channels that are present at
these sites)44,55. Stochastic simulations have shown that it is not the number of ion
channels that are open at the peak of the AP that determines its timing precision, but the
much smaller number of ion channels that are open at the AP threshold. The resulting
variability in spike timing is larger for weaker driving signals, for which the likelihood of
the membrane potential reaching the AP threshold is more affected by channel noise54,62.
The effects of channel noise also increase dramatically as neurons become smaller63,
because the opening of an ion channel affects the membrane potential in proportion to the
membrane's input resistance, which increases rapidly with decreasing diameter64. In axons
of less than 0.3 μm diameter, the input resistance is large enough that spontaneous opening
of single Na+ channels at the resting potential can produce ‘Na+ sparks’ that can trigger APs
in the absence of any other inputs. These ‘rogue’ APs become exponentially more frequent
as axon diameter decreases, rendering axons below 0.08–0.10 μm diameter useless for
communication. This lower limit matches the smallest diameters of axons across species.
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Analogously, noise sets the lower limit for the diameter of excitable cell bodies to ~3 μm.
Thus, thermodynamic noise in individual ion-channel proteins sets an upper limit to the
wiring densities of the whole brain63.

Box 2

Noise build-up in networks

How can neural networks maintain stable activity in the presence of noise6? There are
several ways in which networks can affect overall noise levels. The figure illustrates this
with three simple examples in which graded-potential neurons linearly sum inputs. Part a
shows convergence of signals onto a single neuron. If the incoming signals have
independent noise, then noise levels in the postsynaptic neuron will scale in proportion to
the square root of the number of signals (N), whereas the signal scales in proportion to N.
If the noise in the signals is perfectly correlated, then the noise in the neuron will also
scale in proportion to N. Part b shows the passage of signals through a series of neurons.
In this case, noise levels increase in proportion to the square root of the number of
successive neurons. By contrast, parallel connections (not shown) do not augment noise
through network interactions. Part c shows that recurrence in networks results in the
build-up of correlated noise.

Other computational operations in each neuron can alter the build-up of network noise.
The linear operation of amplification leaves the signal-to-noise ratio unchanged.
Nonlinear operations, such as multiplication and thresholding, affect noise build-up
differently. In general, multiplication operations increase the coefficient of variation
(CV) of the output, whereas thresholding decreases the CV. Several studies have
examined how noise acts in neuron-like nonlinear systems186,187. The highly parallel
and distributed yet compact structure of the CNS might help to limit the amount of noise
that builds up.

Experimental evidence suggests that average neuronal activity levels are maintained by
homeostatic plasticity mechanisms that dynamically set synaptic strengths188, ion-
channel expression157 or the release of neuromodulators25. This in turn suggests that
networks of neurons can dynamically adjust to attenuate noise effects. Moreover, these
networks might be wired so that large variations in the response properties of individual
neurons have little effect on network behaviour189.

Furthermore, in many spiking neurons190,191, doubling the input results in less then
twice the output. This suggests that presynaptic noise and intracellular noise are
attenuated as the signal passes through the neuron. The fact that the noise remains so
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small suggests that neuronal networks can be organized in a way that prevents local noise
accumulating as neural signals propagate through them41. Thus, the analogue
(membrane-potential based) nature of local neural computation (computation within
neurons) and the more digital (action-potential based) nature of global information
transmission192,193 might be essential ingredients in building noise-robust
computational circuits194. Figure modified, with permission, from REF. 195 © (2001)
Wiley.

Channel noise also affects AP propagation in axons, producing trial-to-trial variability in AP
timing. This variability occurs whenever the input resistance of an axon is large enough that
small numbers of ion channels can support AP conduction63. Using biophysical theory and
stochastic simulations, it was shown that in CNS axons of 0.1–0.5 μm diameter, channel
noise introduces significant jitter in AP propagation65 (FIG. 2a). Thus, the variability in
postsynaptic responses that results from axonal channel noise will increase the longer and
thinner the presynaptic axon. Moreover, populations of ion channels can retain a memory of
axonal activity for several hundred milliseconds, owing to a complex interaction between
the internal states of ion-channel populations and the membrane potential. This history
dependency results in some patterns of spikes (such as bursts) being less affected by noise
than others65. Such ‘message-dependent’ noise has been observed in mammalian
neurons66,67; however, this effect is missed when models use stochastic approximations
(for example, the Langevin or Fokker–Planck models) or ignore spatial interactions. Despite
the evidence for the importance of variability in AP propagation for trial-to-trial variability,
this has tended to be overlooked by most experimental studies (except those of AP
conduction failure47), with postsynaptic variability being mainly attributed to synapses.

Why is AP propagation so sensitive to noise, contrary to previous claims42,44,47,68,69?
Detailed stochastic modelling has shown65 that the leading edge of AP propagation is
driven by a relatively small — and thus noisy — ionic current flowing inside the axon. This
causes jitter in the speed of the propagation of the AP and thus results in variability in AP
timing. By contrast, the current following the leading edge is large and therefore conduction
failures owing to channel noise are unlikely, even in very thin axons (where <3% of all APs
fail). Thus, axonal channel noise cannot account for the failure rates that have been reported
in much larger CNS axons (where 5–80% of APs fail70), and conduction failures that have
been observed in the nervous system are more likely to be due to computational mechanisms
that allow ‘editing’ of spike trains71 than to noise65.

Other electrical-noise sources include Johnson noise and shot noise, which are three orders
of magnitude smaller than channel noise in CNS neurons72,73. Moreover, variations in the
activity of nearby neurons could produce ‘cross-talk noise’ in the confined spaces of the
CNS. Such cross-talk can arise through ephaptic coupling70, large changes of extracellular
ion concentration after electrical signalling74, and spillover of neurotransmitters75 between
unrelated synapses.

Synaptic noise
If a presynaptic cell is driven repeatedly with identical stimuli, there is trial-to-trial
variability in the postsynaptic response76,77 (FIG. 2b). This variability could arise from
noise42,47 or from a deterministic process that is too complex to grasp and thus appears
random77,78. Here we discuss evidence for the considerable contribution of noise to
synaptic variability.

Many neocortical cells receive an intense synaptic bombardment from thousands of
synapses79-81, which is often referred to as ‘synaptic background noise’ (REFS 82,83).
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However, the rich set of dendritic mechanisms that allow individual synapses to interact
suggests that this ‘background’ activity is unlikely to be composed only of noise26,27,84,85.
Indeed, experimental evidence and computational arguments suggest that the synaptic
background activity contains meaningful structure16,85-87. Nevertheless, there are
microscopic sources of true noise present at each synapse that are also likely to contribute to
this synaptic background variability and influence neuronal firing42,47.

The classic manifestation of synaptic noise is the spontaneous miniature postsynaptic current
(mPSC) that can be recorded in the absence of presynaptic input. Katz and collaborators
interpreted mPSCs as being the result of spontaneously released neurotransmitter vesicles,
thus establishing the quantal nature of synaptic transmission46. This work remains an
exquisite example of how taking noise into account informs our understanding of neural
mechanisms.

Several sources of noise at synapses can influence information transmission and induce
variability (FIG 1b). mPSCs are caused by random events in the synaptic-transmission
machinery, such as the spontaneous opening of intracellular Ca2+ stores88,89, synaptic
Ca2+-channel noise, spontaneous triggering of the vesicle-release pathway48 or spontaneous
fusion of a vesicle with the membrane. Once vesicles are released they induce a postsynaptic
current, the amplitude of which shows considerable trial-to-trial variability (the coefficient
of variation on (CV) being typically >0.2 (REFS 90,91)). To what extent can this variability
in the postsynaptic response be attributed to noise? First, the same stochastic processes that
produce spontaneous mPSCs are also present during normal synaptic transmission, and will
alter the amplitude of the postsynaptic current. Second, the width (duration of channel
opening) of the presynaptic AP determines the size of the Ca2+ signal that drives vesicle
release and governs the number of vesicles that are released as well as the as the probability
of release and AP width variability can result from axonal channel noise, which becomes
significant for CNS synapses that are innervated by neurons with thin axons65.

Several additional factors have been shown to affect postsynaptic-response amplitude, each
of which relies on noisy biochemical mechanisms and involves small numbers of molecules
and is therefore subject to considerable thermodynamic noise. First, variability in the
number of neurotransmitter molecules released per vesicle (~2000) arises owing to
variations in vesicle size92 and vesicular neurotransmitter concentration93. Second, there is
variability owing to the randomness of the diffusion of a relatively small number of
molecules (CV = 0.16 (REF. 94)). Third, the location of vesicle release in the synaptic cleft
has an impact on the postsynaptic response (CV = 0.37 (REF. 94)). Vesicles are distributed
over the synaptic active zone and, as each AP will trigger the release of only one of them,
the location varies from event to event. Fourth, synaptic-receptor channel noise increases the
variability, especially if only a small number of receptors are involved95. Fifth, the
number96 and density97 of receptor proteins at any synapse might stochastically vary over
time, as the expression and degradation of proteins is limited by thermodynamic noise98.

In addition to variability in response amplitude, some CNS synapses release either one or no
vesicles in response to an AP. The vesicle-release probability at small and bouton-type
central synapses is typically low and is controlled by plasticity and adaptation
mechanisms91. The probability of release itself could constitute a signal for information
processing99. Therefore, the accuracy with which vesicle-release probability can be
controlled might be computationally important; however, this has not been adequately
quantified.

Summing up the effect on postsynaptic variability from the above synaptic noise sources, we
note that the total observed synaptic trial-to-trial variability in many synapses (CV >0.2) can
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be fully accounted for by noise. However, there might also be biochemical mechanisms that
reduce noise100.

Motor noise
We interact with the environment through movements, which are inherently variable from
trial-to-trial. To generate movement the signals from the CNS have to be converted into
mechanical forces in the muscle fibres (FIG 1c). The force that a single motor neuron can
command is directly proportional to the number of muscle fibres that it innervates. When
small forces are generated, motor neurons that innervate a small number of muscle fibres are
active. When larger forces are generated, additional motor neurons that innervate a larger
number of muscle fibres are also active. This is known as Henneman's size principle101.
Moreover, as whole-muscle force increases, the firing rates of the active motor neurons
increase, such that those that innervate a small number of muscle fibres have the highest
firing rate.

The variability in the force that is produced by a whole human skeletal muscle is
proportional to the average force that is produced by that muscle102,103. This has been
attributed to the physiological organization of the pool of motor neurons and their muscle
fibres103-106: each AP arriving at the muscle fibre induces a ‘twitch’. At low firing rates
these twitches are separated in time, but as firing rates increase the twitches fuse into one
smooth contraction. Whole-muscle force is determined by the number of active motor
neurons and the firing rates of these neurons. The motor neuron that innervates the most
fibres will have the lowest firing rate and will therefore induce unfused twitches in the
muscle fibres that it innervates. Thus, any variability in the force that is generated by the
muscle fibres that are innervated by this motor neuron will contribute most to whole-muscle
force variability.

Three mechanisms contribute to the variability in the force that is generated by muscle
fibres. First, even if a motor neuron fires perfectly periodically, there will be ‘ripples’ in the
force that is generated by its muscle fibres, owing to unfused twitches. This effect is further
enhanced by the synchronization of motor neurons through common mechanosensory
feedback107. Second, motor neurons are subject to the same sources of cellular noise as any
other neuron, making noise appreciable in AP timing in myelinated motor axons of 10 μm
diameter108 and at the neuromuscular junction109. The resulting AP timing variability will
reduce the periodicity of the force and thus increase its variability. Both of these factors will
contribute to overall muscle-force variability110. Third, each twitch triggered by a single
AP might also show trial-to-trial variability in its amplitude and duration, owing to noise in
the biochemical cascade that generates the twitch force. However, to our knowledge this has
not been quantified. In addition, as in thin axons, Ca2+-channel noise in muscle fibres111 or
stochastic processes in energy release and transport could also produce random twitches.
Furthermore, noise might result from unrelated electrical cross-talk between motor
neurons112,113 or muscle fibres114, which could recruit other muscle fibres by ephaptic
coupling.

Our present knowledge of force variability is based on isometric contractions (in which
muscle length does not change), and it is unclear how this translates to variability during
movement. The effect of single motor-neuron spikes on muscle movement has been
measured only in invertebrate systems, in which it was shown that variability in spike timing
(on the order of milliseconds) and in the number of spikes (±1) produces variability in
muscle length of up to 10%30,115-117. These invertebrate muscles are comparable in scale
to the human laryngeal muscles that control speech production, which have to operate with
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millisecond precision. However, little is known about the characteristics, activation and
reliability of such muscles118.

Human motor behaviour — from eye movements119-121 to hand trajectories119,122,123
— can be explained by optimal control models that generate movements in a way that
minimizes the impact of motor noise. It remains unclear how much of the observed trial-to-
trial movement variability is due to motor-neuron and muscle noise and how much is due to
other sources of variability in the (spinal) motor commands121,123.

Principles of how the CNS manages noise
In general, noise cannot be removed from a signal once it has been added. Furthermore, it is
important to note that in some cases it is not always desirable to remove noise, as noise can
have beneficial consequences for information processing (BOX 1). However, there are
several principles that can be used to minimize the negative consequences of noise. We now
review two key principles — averaging and prior knowledge — that the CNS applies at
multiple levels.

The principle of averaging can be applied whenever redundant information is present in the
sensory inputs to the CNS or is generated by the CNS. Averaging can counter noise if
several units (such as receptor molecules, neurons or muscles) carry the same signal and
each unit is affected by independent sources of noise (FIG. 2b). Averaging is seen at the
very first stage of sensory processing. For example, the stereocilia of auditory hair cells
capture sound vibrations and open mechanically gated ion channels. These stereocilia are
mechanically coupled and so they move together, averaging random fluctuations in the
movement of individual stereocilia124. Similarly, visual inputs are typically averaged over
photoreceptors with adjacent or overlapping receptive fields69. Moreover, hair cells and
photoreceptors are graded-potential neurons that do not use APs but instead communicate
their varying membrane potential through graded synapses. This makes noise removal
through averaging a straightforward operation for their postsynaptic membranes125.

Counterintuitively, divergence (one neuron synapsing onto many) can also support
averaging. When signals are sent over long distances through noisy axons, rather than using
a single axon it can be beneficial to send the same signal redundantly over multiple axons
and then combine these signals at the destination. Crucially, for such a mechanism to reduce
noise the initial divergence of one signal into many must be highly reliable. Such divergence
is seen in auditory inner hair cells, which provide a divergent input to 10–30 ganglion cells
through a specialized ‘ribbon synapse’ (REF. 126).

Prior knowledge can also be used to counter noise. If the structure of the signal and/or noise
is known it can be used to distinguish the signal from the noise. This principle is especially
helpful in dealing with sensory signals that, in the natural world, are highly structured
redundant127-129. By using prior knowledge about the expected structure, sensory
processing can compensate for noise. This is manifest in the notion that a neuron's receptive
field tells us what message the neuron is conveying130. Signal-detection theory shows that
the optimal signal detector, subject to additive noise, is obtained by matching all parameters
of the detector to those of the signal to be detected131: in neuroscience this is termed the
matched-filter principle132. Thus, the structures of receptive fields embody prior knowledge
about the expected inputs and thereby allow neurons to attenuate the impact of noise.

Simple averaging works best when each signal source is corrupted by a similar amount of
noise. Therefore, principles of averaging and prior knowledge are often combined in the
nervous system when the sources are affected by different amounts of noise. Prior
knowledge about the amount of noise for a given source allows for weighted averaging. In
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general, the less noisy (more reliable) inputs should contribute more to the averaging
process than more noisy (less reliable) inputs. This has been demonstrated in several
behavioural studies in which subjects were required to integrate inputs from different pairs
of sensory sources133-140. The studies showed that the weight given to each source was
proportional to its reliability (the inverse of the variance of the source), demonstrating that
the nervous system has prior knowledge about the variability of its senses. Moreover, the
observed behavioural variability in estimation tasks involving multiple sensory sources
could be predicted from the behavioural variability to the individual sources if the source
variability was mathematically treated as independent noise133-137. This strongly suggests
that most of the behavioural variability in such sensory tasks arises from noise rather than
from deterministic sources of variability. The motor system also applies a weighted
averaging mechanism of this type to reduce the consequences of noise. For example, when
redundant muscles can rotate a joint, the muscles are co-activated in a way that minimizes
total movement variability141.

Averaging is used in many neural systems in which information is encoded as patterns of
activity across a population of neurons that all subserve a similar function (for example, see
REFS 142,143): these are termed neural population codes. A distributed representation of
information of this type is more robust to the effects of noise. Many sensory systems form a
spatially-ordered population — that is, a map — in which neighbouring neurons encode
stimuli that share closely related features. Such spatially ordered populations support two
basic goals of neural computation: first, a transformation between different maps (such as
the direction of sounds into neck rotation) and, second, the combination of information from
multiple sources (such as visual- and auditory-cue combination)144. The information
capacity of a population of neurons is greatest when the noise sources across the population
are not correlated. Noise correlations, which are often observed in populations of higher-
order neurons, limit information capacity145,146 and have led to the development of
population-coding strategies that account for the effects of correlations147.

The principles of averaging and prior knowledge can be placed into a larger mathematical
framework of optimal statistical estimation and decision theory, known as Bayesian
inference148. Bayesian inference assigns probabilities to propositions about the world
(beliefs). These beliefs are calculated by combining prior knowledge (for example, that an
animal is a predator) and noisy observations (for example, the heading of animal) to infer
the probability of propositions (for example, animal attacks). Psychophysical experiments
have confirmed that humans use these Bayesian inferences to allow them to cope with noise
(and, more generally, with uncertainty) in both perception and action149,150. However, the
neural mechanisms that are involved in Bayesian computations are unknown. One idea is
that neurons encode probabilities or beliefs about the state of the world151,152, and this
concept has been incorporated into Bayesian models of neuronal population
codes144,153,154.

The above discussion has focused on the processing of information arriving simultaneously
from multiple neurons or sensory modalities. However, information is often acquired over
time, and in this case temporal averaging to be used to remove noise. For example, in signal-
transduction systems, biochemical reaction time-constants could be set to make the duration
of the reactions longer than the duration of the noise events — this would average-out
random fluctuations155. Averaging over time can take place at the cellular level because of
the temporal-integration properties of the membrane. These properties can be tuned by an
appropriate choice of neuronal geometry156 and ion channels157 so that the characteristic
bandwidth of the noise is strongly attenuated whereas the signal is not. Electrophysiological
studies in the monkey have shown that behaviourally relevant signals are averaged not only
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across neuronal populations but also over time in the formation of a behavioural
decision158.

In behaviour, temporal averaging is important when we need to estimate the current state or
configuration of our limbs. Both the motor commands acting on our body and the sensory
feedback containing information about the configuration of our body are noisy. Knowing the
motor command allows us to predict the expected body configuration using an internal
forward (predictive) model. However, such a prediction would deviate over time if sensory
feedback were not available. The Kalman filter159 is an algorithm that combines noisy
sensory feedback and the prediction from forward models to estimate the current
configuration of our body over time. Kalman filtering in the CNS was demonstrated in
behavioural studies of hand position160 and posture161.

In many cases the CNS has to choose a strategy by which it will achieve a goal through
interaction with the environment. For example, in reaching the motor system has to specify a
sequence of muscle activations to achieve a goal. However, there are many possible
strategies to achieve a goal, and each might have a different associated cost (error, energy or
time). Finding efficient strategies involves optimizing a cost function. For example, it has
been proposed that we choose to move in a way that reduces the detrimental consequences
of noise119. Stochastic optimal-control theory162 has emerged as a framework by which to
study sensorimotor control. This theory makes several predictions that have been
experimentally verified. For example, rather than specify a desired hand trajectory and use
feedback to keep you on that trajectory, this theory proposes that optimal feedback control
on task-relevant parameters is used: by allowing variation in parameters that do not affect
the task, the system can behave in a more optimal manner. Stochastic optimal-feedback
control is a beautiful example of how the principles of prior knowledge and averaging in
motor behaviour are put to use biologically. This framework has been able to explain
quantitative data from human and primate movements162-165. However, the neuronal
substrate and mechanisms of such optimal controllers remain unknown.

Humans also use strategies that appear to increase noise. Confronted with higher movement-
accuracy constraints (for example, when asked to rapidly point at small targets), people co-
contract their muscles166, which increases joint stiffness105,167. However, greater
activation of the muscles results in higher neuromuscular noise levels and is expected to
produce larger movement variability. The reason that this is not the case lies in the dynamic
properties of the muscles. In fact, movement variability decreases overall because the
positive stabilizing effect of enhanced stiffness exceeds the negative effects of the increased
force variability of the individual muscles105,167-169. Thus, human sensorimotor control
takes account of noise to increase behavioural precision.

Conclusion
Noise has recently emerged as a key component of a wide range of biological systems —
from gene expression98 to heart function89. In neuroscience, we have shown how noise is
introduced at all stages of the sensorimotor loop, from the level of a single signalling protein
to that of body movement. Noise has direct behavioural consequences, from setting
perceptual thresholds to affecting movement precision. Although there has been an
awareness of sensory noise for over half a century, cellular and motor noise have only
recently received significant attention.

The question of the extent to which noise generates variability in the CNS is likely to require
both experimental studies and stochastic modelling (in which each source of variability can
be controlled for). We are beginning to develop a bottom-up understanding of how noise
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that is present at the molecular level (channel noise in membranes and biochemical noise at
synapses) affects information processing at macroscopic levels (whole neurons, neuronal
networks and behaviour). At all of these levels a key advance has been the use of stochastic
models that can explain the experimentally observed variability and enable mechanisms to
be characterized in a more detailed and often simpler manner than deterministic models (for
example, see REFS 46,63,105,119,150). It has often been convenient to approximate noise
by some additive random processes, such as Poisson or Gaussian processes, in which higher-
order statistics beyond the mean (and the variance), as well as temporal structure, are
ignored. This simple approach often forms the best assumption when data is lacking, and it
simplifies the mathematical manipulation. However, it can result in noise levels being
underestimated by several orders of magnitude in many small structures of the CNS63.
Owing to the discrete nature of molecular noise and the nonlinearities that are present, noise
can have a complex temporal structure, such as abrupt and large changes in noise level63,
and spatial interactions can produce unexpected effects65,94. Advances in stochastic (Monte
Carlo) simulations have made it possible to investigate in silico the nature and effects of
noise in well known but previously deterministically described mechanisms (for example,
see REFS 63,65,94,119).

The amount of noise that can be tolerated for a task depends on the required internal (such as
long-term stability of memories) and behavioural (such as movement accuracy)
performance. Noise levels set both hard limits on the CNS, such as the degree of
miniaturization of the brain's circuits63, and soft constraints, such as the metabolic cost or
the amount of time that is required to complete a task. For example, APs are noisy but also
metabolically costly (mean neuronal firing rates in the cortex appear to be limited by energy
supply170). Therefore, although neuronal communication becomes more reliable by using
more APs, it also becomes more expensive. This trade-off has been observed in mammalian
visual systems171,172. Another trade-off involves noise and time. For example, in pointing
tasks, movement speed and pointing accuracy are inversely related (Fitt's law173), as faster
movements require greater muscle forces, which are more noisy119. Therefore, noise is an
integral part of the tradeoff between CNS resources (mass, size, time delays, et cetera) and
performance which might ultimately determine evolutionary fitness.

Noise is an inescapable consequence of brains operating with molecular components at the
nanometer scale, sensors that are sensitive to individual quanta and complex networks of
noisy neurons that generate behaviour. The presence of noise in nervous systems has
profound implications for their computational power174. Yet, despite significant noise
levels our brain appears to function reliably, presumably because it has evolved under the
constraints that are imposed by noise. Therefore, to understand the nervous system we have
to distinguish variability from noise by accounting for its sources and appreciate the way in
which it influences the brain's structure and function.

Glossary

Fluctuation A variation in a quantity from its spatial or temporal average.

Noise Random or unpredictable fluctuations and disturbances that
are not part of a signal.

Spike An action potential interpreted as a unitary pulse signal (that
is, it either is or is not present), the timing of which
determines its information content. Other properties of the
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action potential, such as its shape or depolarization levels, are
ignored.

Trial-to-trial
variability

The differences between responses that are observed when the
same experiment is repeated in the same specimen (for
example, in the same neuron or in the same subject).

Poisson process A random process that generates binary (yes or no) events for
which the probability of occurrence for any small time
interval is low. The rate at which events occur completely
determines the statistics of the events. Poisson processes have
a Fano factor of 1.

Muscle spindle Mechanosensory organ relaying muscle length and velocity.

Fano factor The ratio of the variance of a variable quantity to its mean.

Stochastic process
(random process)

A process that generates a series of random events.

Positive feedback Feedback that responds to a perturbation in the same direction
as the perturbation, thereby amplifying its effect.

Nodes of Ranvier Regularly spaced gaps in the myelin sheath that surrounds a
myelinated axon or nerve fibre. They expose the axonal
membrane to the extracellular fluid and contain large numbers
of voltage-gated ion channels and thus enable conduction of
the action potential.

Patch-clamp
technique

An electrophysiological method that allows the study of the
flow of current through a very small patch of cell membrane,
which can contain just a single ion channel.

Signal-to-noise
ratio

The ratio of how much power is contained in the signal over
the power of the noise, often measured as the variance of the
signal divided by the variance of the noise.

Axon hillock The anatomical part of a (cortical) neuron that connects the
cell body to the axon. Axon hillocks are the postulated
primary site of action-potential initiation.

Johnson noise
(thermal noise ,
Johnson–Nyquist
noise or Nyquist
noise)

The electronic noise that is generated by the thermal agitation
of the charge carriers (electrons and ions) inside an electrical
conductor at equilibrium, which happens regardless of any
applied of any applied voltage. Johnson noise is distinguished
from shot noise, which consists of additional current
fluctuations that occur when a voltage is applied to a
resistance and a macroscopic current starts to flow.
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Shot noise A type of noise that occurs at occurs when the finite number
of particles that carry energy in a system, such as electrons or
ions in an electrical circuit or photons in an optical device
such as the photoreceptor, is small enough to give rise to
detectable statistical fluctuations in a measurement.

Ephaptic coupling The coupling of very close or touching neurons, mediated by
the electrical fields the neurons generate during electrical
activity.

Coefficient of
variation(CV)

The ratio of the standard deviation of a variable quantity to its
mean.

Release
probability

The probability of a vesicle being released during a synaptic-
transmission event.

Redundancy The incorporation of surplus or duplicate information in a
message to reduce the likelihood that noise can corrupt the
message.

Gaussian noise
process

A random process that generates continuous events distributed
with a Gaussian distribution. The mean and variance
completely determines the statistics of events and there is no
temporal correlation between events. Also known as white
noise.
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Figure 1. Overvie of the behavioural loop and the stages at which noise is present in the nervous
system
a | Sources of sensory noise include the transduction of signals. This is exemplified here by
a photoreceptor and its signal-amplification cascade. b | Sources of cellular noise include the
ion channels of excitable membranes, synaptic transmission and network interactions (see
BOX 2). c | Sources of motor noise include motor neurons and muscle. In the behavioural
task shown (catching a ball), the nervous system has to act in the presence of noise in
sensing, information processing and movement.

Faisal et al. Page 24

Nat Rev Neurosci. Author manuscript; available in PMC 2009 January 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Examples amples of cellular noise
a | Channel noise as a source of trial-to-trial variability in action potential (AP) propagation.
Stochastic simulations of the response of a 0.2 μm diameter CNS axon (comparable with a
cerebellar parallel fibre) in response to repeated identical current stimuli and initial
conditions are shown. The only source of variability is the stochastic opening and closing of
a million individually simulated ion channels. Spike trains were triggered by a time-varying
current stimulus (top plot). Spike raster plots for each measurement site are shown, from the
soma (second-from-top plot) down to the most distal part (the axon; bottom plot). In each
raster plot, the precise timing of spikes is marked by dots, which are stacked over each other
for each repeated trial (there were 60 trials). The shift of the overall spike pattern across
rows reflects the average propagation speed of the APs. The raster plot of the somatic
measurement reflects spike-time variability from AP initiation. Owing to channel noise, the
spike-time variability rapidl increases the further the AP propagates, and it eventually
reaches millisecond orders. b | In vitro paired patch-clamp recordings demonstrate the trial-
to-trial variability of synaptic transmission in rat somatosensory cortex slices. Six
consecutive postsynaptic responses (black traces) to an identical presynaptic-stimulation
pattern (top trace) are shown, along with the ensemble mean response (grey trace) from over
50 trials. Part a modified from REF. 65. Part b modified, with permission, from REEF. 77 ©
(2006) American Physical Society.
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