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Abstract
Structural genetic variation, including copy number variation (CNV), constitutes a substantial
fraction of total genetic variability and the importance of structural genetic variants in modulating
human disease is increasingly being recognized. Early successes in identifying disease-associated
CNVs via a candidate gene approach mandate that future disease association studies need to include
structural genetic variation. Such analyses should not rely on previously developed methodologies
that were designed to evaluate single nucleotide polymorphisms (SNPs). Instead, development of
novel technical, statistical, and epidemiologic methods will be necessary to optimally capture this
newly-appreciated form of genetic variation in a meaningful manner.
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“When all you have is a hammer, everything begins looking like nails.”

Abraham Maslow (1908–1970)

Among the many important insights derived from completion of the Human Genome Project
was the recognition of the abundance of single nucleotide polymorphisms (SNPs) as a major
source of genetic variation, leading to speculation that the bulk of phenotypic variability in
human populations is due to single base changes. As a result, intense efforts were made to
develop high-throughput sequencing and SNP genotyping platforms, SNP databases, detailed
linkage disequilibrium maps (through the International HapMap Project), and statistical
methodologies for analyzing SNP genotype and haplotype data in mapping disease-
susceptibility genes. Until recently, the overwhelming majority of gene-mapping studies have
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focused exclusively on the role of SNPs in human diseases. Indeed, using population-based
studies to identify genetic determinants of common disease, dozens of SNP-based
susceptibility variants have been identified for human diseases as diverse as diabetes[1,2],
macular degeneration[3,4], cancer[5,6], asthma[7] and Crohn disease [1,8]. However, studies
over the past three years have resulted in increasing recognition of the critical role of structural
genetic variation (most of which appear to be in the form of copy number variation) in
modulating gene expression and disease phenotype. In fact, copy number variants (CNVs) are
now known to be a prevalent form of common genetic variation and represent a substantial
proportion of total genetic variability in human populations. Moreover, a few association
studies have already demonstrated the importance of CNVs as disease-susceptibility variants,
with specific CNVs found to confer differential risk to HIV infections [9], autoimmune disease
[10–12], and asthma [13–16](Table 1). Recently, genome-wide surveys have demonstrated
that rare CNVs altering genes in neurodevelopmental pathways are implicated in autism
spectrum disorder [17] and schizophrenia [18]. It is therefore becoming increasingly clear that
genetic studies of complex diseases must pay closer attention to the contribution of CNVs.

In contrast to the well-developed resources available for SNP association studies, we are still
in the very early phases of incorporating structural genetic variation in genome-wide
association studies. Nevertheless, we anticipate a burgeoning focus on structural genetic
variation in human disease over the next few years, and foresee the development of many tools
needed for such studies. In this commentary, we provide a very brief description of the presently
known landscape of structural genetic variation, review recent successes in identifying CNVs
associated with human diseases, and then address the current challenges of CNV association
studies, including the limitations of current genotyping platforms and available statistical
methods.

Presently known landscape of CNVs
Structural genetic variation refers to a class of genomic alterations of DNA that usually span
more than 1000 bases (reviewed in Freeman et al. 2006 and Feuk et al. 2006)[19,20]. It includes
quantitative (unbalanced) changes such as copy-number variants (CNVs), and less common
balanced variations involving chromosomal inversions, insertions, and translocations. Here,
we focus on CNVs, the most prevalent type of structural genetic variation.

Structural genetic variation has long been known to impact health, though until very recently
this impact was thought to be limited to rare genomic disorders. A handful of Mendelian
disorders, such as Williams-Beuren Syndrome (deletion at chromosome region 7q11.23) or
Charcot-Marie Tooth neuropathy Type 1A (duplications of peripheral myelin protein-22 at
chromosome region 17p11.2), are caused exclusively by recurrent DNA copy number changes
at critical loci. However, with the realization of the existence of widespread common structural
variation among otherwise healthy individuals [21–23], greater attention is now being focused
on whether this type of genetic variation influences more common human diseases.

The current map of structural variation in the human genome is far from complete [24]. While
several databases exist to catalog this newly-appreciated form of human genetic variation
(notably the Database of Genomic Variants - http://projects.tcag.ca/variation/ and the Human
Structural Variation Database - http://humanparalogy.gs.washington.edu/structuralvariation/),
quality control is lacking, and studies have differed in technological approaches, precise
boundary definition of CNVs, DNA quality, and even discrepancies in terminology [24].
Nevertheless, the latest compilation of data on structural genetic variation (The Database of
Genomic Variants - November 29, 2007) from 46 different articles over the past three years
indicate that as many as 4878 loci (comprised of 11,784 different CNV entries) have now been
identified. We anticipate that our understanding of the location and extent of CNV in the human
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genome will improve markedly in the next few years. Emerging technologies are more sensitive
for detection of CNVs and provide more precise definition of boundaries (e.g. Perry et al.
[25]). Undoubtedly, as a clearer map of human structural genetic variation emerges, we will
begin to more comprehensively include this type of genetic variation in genome-wide
association studies that attempt to elucidate the role of CNVs in human disease.

CNVs in health and disease
Several distinguishing features of CNVs support their role in disease pathogenesis. First,
though less abundant than SNPs, it has been suggested that CNVs account for more nucleotide
variation than do SNPs, on account of their sheer size [23] By spanning thousands of bases,
CNVs often encompass (and can sometimes disrupt) functional DNA sequences. Second, there
appears to be an enrichment of currently-known CNVs toward “environmental sensor” genes
– i.e. genes that are not necessarily critical for early embryonic development, but rather help
us to perceive and interact successfully with our ever-changing environment [22,23]. This
includes enrichment for olfactory receptors, immune and inflammatory response genes, cell
signaling and cell adhesion molecules, structural proteins, and ion channels. Third, like other
forms of genetic variation, both purifying and adaptive natural selective pressures appear to
have influenced the frequency distribution of selective CNVs, suggesting their functional
significance [26–29]. Lastly, a recent comparison of the relative impact of SNPs and CNVs on
gene expression noted that a substantial proportion (~18%) of gene expression variability was
attributable to known CNVs greater than ~40 kb in size [30]. Notably, 53% of genes whose
expression was influenced by CNVs had the corresponding CNV outside of the actual gene,
suggesting that many CNVs could affect important regulatory sequences that are situated at a
distance from the actual target gene.

Given these features, it is perhaps not surprising that early genetic association studies of known
CNVs have quickly produced promising results. Presented in Table 1 are recent examples of
copy-number-variable loci implicated in the pathogenesis of complex traits, where the
association has been observed in at least two independent populations. These loci share several
noteworthy features that may provide important insights into the role CNVs may play in
complex diseases. First, the copy number frequencies for all five loci are high – greater than
10% in all cases - confirming that the allelic spectrum of disease-related CNVs is not restricted
to rare variants. Second, with the exception of the CCL3L1 HIV/AIDS protective alleles, the
genetic risk conferred by these variants is quite high (relative to SNPs, particularly in the
context of polygenic, complex traits). Currently available data suggest that many CNVs confer
greater disease risk than SNPs and in some cases these CNV-based disease susceptibility
variants appear to increase risk by as much as 30%. Although we caution over interpretation
of these early estimates (given that risk tends to be overestimated in initial studies due to the
so-called “winner’s curse” [31,32]), these early returns do support an important role for CNVs
in the genetic etiology of common diseases.

These early studies also suggest that copy-number variable loci may exhibit copy-number
dependent genetic pleiotropy. We note that for two of the loci listed in Table 1, gains and losses
are associated with distinct phenotypes (HIV and Rheumatoid Arthritis for CCL3L1; Crohn’s
disease and Psoriasis for DEFB4) ([9,11,33,34]). These observations are reminiscent of
neuropathies associated with copy number variation at the Peripheral Myelin Protein 22
(PMP22) locus, where PMP22 duplication confers Charcot-Marie-Tooth Disease (PubMed ID:
1677316) and PMP22 deletions cause hereditary neuropathy with liability to pressure palsies
(also known as bulb diggers’ palsy) (PubMedID: 8422677). Whether this phenomenon will be
observed at other copy-variable loci is unclear.
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Another striking feature shared by the loci listed in Table 1 is that all are immune or
inflammatory-related genes. Though certainly a function of the diseases studied in these
surveys, this enrichment is consistent with the distribution of functional gene classes in CNV
regions, where inflammatory and immune-related genes were among the most overrepresented
[35].

It is important to recognize that all of these loci were identified using candidate gene approaches
rather than hypothesis-free, genome-wide surveys. It is therefore unclear whether the above
observations (relating to allele frequency distribution, effect sizes and functional class
representation) will continue to hold as novel loci are identified through genome-wide
association studies not predicated on prior biological knowledge. In one recent genome-wide
CNV-association study on autism spectrum disorder (ASD) [17], 264 families (including 165
families with autistic children and 99 control families) were screened for de novo CNV
mutations. In this study, the authors observed a disproportionate incidence of de novo mutations
in families with ASD (12 deletions and 2 duplications among affected families compared to 2
gains among controls). This represented an approximate 3-fold increase in de novo mutation
rate. All of the ASD-associated CNVs harbored at least one gene, several of which have been
implicated in clinical contexts to overlap with autism. A similar study [18] showed the
importance of rare CNVs at multiple sites in schizophrenia. In this study, the authors observed
that novel (that is, not present in the Database of Genomic Variants) microdeletions and
microduplications (> 100 kilobases) were present in 15% of schizophrenia cases, a frequency
three times that in controls. Notably, mutations in cases disproportionately affected genes from
signaling networks controlling neurodevelopment, including neuregulin and glutamate
pathways.

The early successes described above suggest that there will be a sharp increase in the number
of published CNV-association studies over the coming years. In anticipation of this, we stress
that there still remain considerable technical, methodological, and analytical challenges related
to CNV-based association studies that must be recognized and carefully addressed.

Technical Challenges in CNV studies
CNV-based association studies pose additional unique challenges, including choice of
genotyping platform (for a recent review, please see Carter 2007 [36]) and DNA quality control.
Three broad platform classes are currently available for genome-wide copy number surveys:
(1) Large insert clone-based comparative genomic hybridization (CGH), where differentially-
labeled test and reference samples compete for binding to DNA from large insert genomic
clones - such as BACs (e.g., Fiegler et al. 2006 [37]); (2) long, isothermic oligonucleotide-
based CGH arrays [38] (where differentially-labeled test and reference samples compete for
binding to 50 – 65mer oligonucleotides that are designed to have similar thermodynamic
kinetics); and (3) SNP-based arrays [39] (one-sample arrays where intensity values derived
from genotyping assays are used to infer copy number). Large insert clone-based CGH arrays
have the highest signal-to-noise ratios, but are limited in their use to association studies due to
their relatively low effective resolution (max. 15–35 kb). Conversely, SNP-based methods are
optimized for high-throughput studies, and the high SNP density on most current arrays provide
high resolution (~3 kb) in regions of the genome that are well represented. Furthermore,
genome-wide SNP data are already being generated from genome-wide association studies
(GWAS) across a variety of complex diseases, and thus it would be attractive to simply
reanalyze these existing data for preliminary genome-wide CNV surveys. However,
unfortunately, SNP-based arrays have the poorest signal-to-noise ratios (an order of magnitude
worse than CGH), and it remains unclear whether the convenience of data availability will
offset the high measurement error currently observed. Long oligonucleotide arrays offer both
intermediate resolution and performance, and can be useful for high-resolution CNV detection,
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validation and characterization. One adaptation of this platform, was used for the genome-wide
CNV autism screen described by Sebat et al [17], and also for the schizophrenia study [18].
Newer platforms have now been developed that strategically include many probes (that aim to
collectively detect CNVs, rather than SNPs) in a manner as to allow a single assay to effectively
capture both SNP and CNV data (e.g., the Affymetrix Human SNP 6.0 array and Illumina 1
million feature genotyping assay). Association studies using these platforms are ongoing and
therefore preclude comment on their performance at this time.

All of the currently available platforms rely on efficient DNA hybridization, which can be
significantly impaired by poor quality sample DNA. DNA sample quality is of particular
concern in case-control studies where genomic DNA being used is collected from different
sites and over long periods of time. As quantitative measures are sensitive to DNA degradation
or contamination, spurious evidence of association may arise if sample ascertainment and DNA
storage techniques differ between case and control samples. Similar bias can potentially be
introduced in family-based studies if samples from probands and parents are collected under
different conditions. Where possible, DNA samples from all sites should be handled uniformly,
and an assessment of the DNA quality (including OD measurements), estimates of sample
purity, DNA degradation and DNA concentration should be performed prior to genotyping.

Statistical challenges in analysis of CNV associations with human disease
Genetic epidemiology of CNVs is still in its infancy - so too are the statistical methods for the
analysis of CNV association with disease. As discussed above, genotyping platforms vary in
their signal-to-noise ratio and also in their ability to define precise CNV genotypes (i.e. discrete
copy-number). Current CNV typing technologies produce quantitative measures meant to
reflect total DNA amount in a given sample. In contrast to SNP genotyping, oftentimes the
distribution of these measurements is continuous, making it difficult to accurately estimate
DNA copy number. Currently only a small fraction of the known CNVs are genotypable.

Two main statistical methodologies can be employed for CNV analyses, and they differ in their
need for precise CNV quantification. The first involves a two-step procedure, based on first
inferring the underlying genotype and then performing a regular test of association [40,41].
Because it depends on “genotypable” markers, this class of statistical methodologies is
currently only applicable to a limited number of CNVs. Also, it is not immediately clear how
the uncertainty of CNV genotype calling should be incorporated in the analysis; when raw
measurements show a continuous distribution, forcibly classifying them into discrete copy
number classes (e.g. gain, no change, or loss) may result in the loss of substantial information
and statistical power relative to the raw measurements [42] (see also Figure 1). The second
methodology bypasses the genotype calling step and instead, directly analyzes the intensity
measurements which are thought to reflect the true underlying copy number. This strategy has
been advocated in several recent papers [30,42].

For case-control designs, classical statistical methods (e.g. parametric (t-tests), non-parametric
(Mann-Whitney U test) etc.) can be employed. Also, some of the methods that are already
available for SNP genotype data can potentially be adapted to the analysis of signal intensity
data (e.g. population stratification methods such as Eigenstrat, [43]). For family-based study
designs, a method extending family-based tests (FBATs) [44,45] to deal with copy number
variation has recently been proposed [46]. Like the FBAT method for SNP data, CNV-FBAT
is based on the covariance between offspring trait and offspring CNV data (adjusted for the
parental CNV data), where the CNV data here are represented by the normalized signal
intensity measurements. The robustness properties of the genotype FBAT-approach are
maintained and previously developed FBAT extensions (including FBATs for time-to-onset,
multivariate FBATs, and FBAT-testing strategies) can be directly transferred to the analysis
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of CNVs [44]. This methodology has the advantage of using as much data as possible, without
affecting power in a significant way. However, while signal intensity-based CNV data provide
valuable information and can be used directly to perform association tests, knowing the true
underlying genotype is important for validating the association signal and providing further
insight into the biological mechanisms by which a CNV influences the disease.

Failure to correct for biases in data collection or processing prior to performing the association
test may result in spurious associations with either of the statistical approaches. Therefore, it
is mandatory that disease associations be verified using alternate technologies and/or
independent datasets. This potential problem may be accentuated with the case-control design,
which depends on selection of a suitable control sample. As discussed above, the control sample
needs to come from a comparable population, with nearly identical DNA quality, preparation,
and handling among samples in the case and control populations. Family-based designs can
alleviate some of these problems, as the parents and other family members of the proband act
as well-matched controls. However, care needs to be taken that samples from family members
are collected and evaluated under similar conditions as the proband. A further advantage of
family-based study designs is their potential for discriminating between de novo and inherited
CNVs, once an association between a CNV and a phenotype has been established.

Epidemiologic challenges in the design of CNV-based association studies
The novelty of studying CNV should not obscure the need for meticulous attention to
epidemiologic study design. CNV association studies should employ the same rigorous
standards that have been used in conventional SNP-based genetic epidemiology studies. These
include assurance of adequate sample size to detect modest genetic effects, appropriate
adjustment of significance thresholds to adjust for multiple comparison testing, provision of
evidence for reproducible association in independent populations, and rigorous assessment and
adjustment for population stratification. This latter point warrants elaboration. Like SNPs, most
common CNVs are shared between populations and follow frequency distributions reminiscent
of other forms of genetic variation [28]. However, like SNPs, some CNVs demonstrate notable
between-population differences in allele frequency distribution (representing ~11% of the
variance in between population differences) [28]. As a consequence, CNV-association studies,
like SNP-association studies, are susceptible to bias from population stratification, whereby
spurious genetic association could be observed between marker and trait simply due to differing
ancestral composition (and hence genotype frequency distribution) between cases and controls
[28,47]. There are several methods for addressing population stratification, including stringent
sampling of cases and controls from homogenous ancestral groups, use of family-based
designs, and via analytic methods (including sequential screening for and quantifying
population stratification using random sets of markers with subsequent adjustment of
association test statistics by the degree of observed stratification [48]).

Conclusions
The study of structural genetic variation in human diseases is a new and rapidly evolving field.
The main limitations of this field of study relate to the lack of technological and statistical tools
dedicated to these efforts, and reliance on the “hammers” developed for the study of SNPs.
Over the next few years, a much more thorough understanding of the extent and precise location
of copy number variation will likely be available as new platforms become available to
accurately capture CNV information. This will allow us to more comprehensively understand
the role of these genetic variants in the pathogenesis of human diseases. However, in addition
to the development of better CNV genotyping platforms, we stress that rigorous attention to
study design and statistical analysis is critical so as not to relive past experiences of early disease
association studies that yielded “unreplicable” and all too often false-positive results.
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Whenever possible, initial reports of CNV-disease association should include independent
evidence of replication in other studies and populations. Generating such data will frequently
require collaboration between research groups, and may include sharing of DNA samples given
the current technical challenges of CNV genotyping and operator-dependence of quantitative
genotyping assays like qPCR. Despite the many obstacles yet to be overcome, we foresee CNVs
quickly taking their place alongside SNPs in genetic epidemiology studies. Once identified,
these loci can then be evaluated experimentally using animal models that recapitulate the
disease-associated molecular defect (e.g., knock-out mice for CNV losses and over-expressing
transgenic models for CNV gains) and the development of specific molecular therapeutics,
ultimately leading to novel therapies for our most common diseases.
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Figure 1. Raw copy number measurements vs. CNV calls for a CNV showing a continuous
distribution
Shown in this figure, on the left side, is the association between a normally distributed,
simulated phenotype and the intensity measurements at a single SNP position within a known
copy-number variable region on chromosome 21 using a dataset of approximately 1200
individuals (CAMP study [53]). On the right side, the association between the same phenotype
and the CNV calls (loss/no change) is shown. Losses were detected using a local false discovery
rate (locFDR) approach [54], applied to the intensity measurements. As can be observed, for
CNVs showing a continuous intensity distribution, forcibly classifying the raw measurements
into discrete calls may result in loss of power compared to the original measurements, as
illustrated by the drop in the R^2 value (the square of the correlation coefficient).
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