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Abstract
Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown
to be well described by a log normal distribution function (J Nucl Med 47, 6 (2006) 1049-1058) with
the aid of an autoradiographic approach. To ascertain the influence of Poisson statistics on the
interpretation of the autoradiographic data, the present work reports on a detailed statistical analyses
of these data.

Methods—The measured distributions of alpha particle tracks per cell were subjected to statistical
tests with Poisson (P), log normal (LN), and Poisson – log normal (P – LN) models.

Results—The LN distribution function best describes the distribution of radioactivity among cell
populations exposed to 0.52 and 3.8 kBq/mL 210Po-citrate. When cells were exposed to 67 kBq/mL,
the P – LN distribution function gave a better fit, however, the underlying activity distribution
remained log normal.

Conclusions—The present analysis generally provides further support for the use of LN
distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing
autoradiographic data on activity distributions to ensure that Poisson processes do not distort the
underlying LN distribution.

Keywords
Poisson; log normal; Poisson-log normal; Po–210; autoradiography; alpha–particle tracks; reduced
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INTRODUCTION
Autoradiography has been used for decades to quantify the distribution of radioactivity in
tissues following administration of radiochemicals (1-6). Recently, alpha particle track
autoradiography was used to determine the distribution of 210Po-citrate among a clonal cell
population of Chinese hamster V79 lung fibroblasts (7). Analysis of the data revealed a log
normal distribution of cellular activity, a distribution that can have a substantial effect on the
biological response of the cell population (7,8). To arrive at this distribution, the number of
alpha particle tracks per cell was scored in >1000 cells. However, it was necessary to limit the
number of counted tracks per cell to less than ten to ensure accurate scoring. The statistical
uncertainties associated with measuring these low numbers of tracks per cell can affect the
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measured track distribution and thereby potentially distort the underlying activity distribution
among the cell population (9,10).

As pointed out by Kvinnsland et al. (9), it is the statistical nature of radioactive decay that can
influence the measured distribution of alpha particle tracks, particularly at the low numbers of
tracks per cell studied by Neti et al. (7). Therefore, it may be necessary to “peel off” the
distribution associated with the statistics of radioactive decay in order to arrive at the underlying
activity distribution. It has been hypothesized that in radioactive decay, all atoms are identical;
independent; and the chance for an atom to disintegrate during a given time interval is the same
for all time intervals of equal size. Accordingly, after the discovery of radioactivity, initial
experiments suggested that the decay process, and particle counting associated with its
observation, are well approximated by simple Poisson processes. Subsequently, while studying
α–particle emission rates, a quantum self-interference phenomenon was proposed to account
for 1/f fluctuations (11). Experiments showed that α–emission is in fact not a simple Poisson
process, and particle counting is not adequately described by Poisson statistics (12). However,
there is also a report that 1/f fluctuations are not present in the decay of 210Po at decay
frequencies in excess of 10−6 Hz (13). The mean track numbers for the range of 210Po-citrate
concentrations discussed in the present report fall in the window of ~ 0.16 − 1.6 × 10−6 Hz.
Consequently, it is unlikely that 1/f fluctuations play a significant role in interpreting our
experimental alpha particle track data (7). Nevertheless, Poisson statistics may play a role.
Therefore, it is necessary to examine whether the log normal distribution obtained from
our 210Po alpha particle track data is influenced by the Poisson distribution associated with its
decay. Accordingly, in this report, we subject our α–particle track data to statistical tests with
Poisson (P), log normal (LN) and Poisson-log normal (P – LN) distribution functions (14).

METHODS
Summary of published experimental data and analyses

The methods used to obtain the α–particle track data that are statistically analyzed herein are
explained in detail in ref. (7). Briefly, cultured cells were labeled with 210Po-citrate, washed,
and coated with autoradiographic emulsion. Decays were allowed to accumulate for various
times to obtain scoreable track data that covered the entire range of cellular activities
encountered in a given labeled cell population. Accordingly, the emulsion was developed for
two or three different exposure times. For each emulsion exposure time, 500-1200 cells were
examined and the number of tracks in each cell was recorded. Cells with 0-9 tracks per cell
were scored as such. Cells with >9 tracks could not be accurately counted and were simply
scored as >9 tracks. The entire process was repeated for 210Po-citrate labeling concentrations
of 0.52, 3.8, and 67 kBq/mL that resulted in mean cellular activities of 0.054, 0.12, and 1.8
mBq/cell, respectively. The numbers of tracks per cell from the short exposure times were
decay corrected to the longest exposure time and then normalized. All data sets for a given
labeling concentration were then combined into a single convolved track distribution with the
longest exposure time data providing the distribution for the lower multiplicity of convolved
tracks and the short exposure time data providing the distribution of the higher multiplicity. A
nonlinear least squares fit of the resulting convolved track distribution was carried out with a
log normal function (7).

Experimental mean number of alpha particle tracks per cell
The arithmetic mean number of tracks per cell <n> can be calculated for the track data
corresponding to the shortest emulsion exposure times for each labeling concentration. These
data have no cells with > 9 tracks and therefore the mean is obtained by simply tallying the
total number of tracks and dividing by the number of cells. A different approach was required
to calculate <n> for the data sets corresponding to longer emulsion exposure times that

Neti and Howell Page 2

J Nucl Med. Author manuscript; available in PMC 2009 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



contained cells with > 9 tracks. Regardless of the mathematical nature of the track distribution,
the total number of tracks ntotal recorded in the cell population at time point t1 can be projected
to a later time point t2 according to Eq. (1),

(1)

where Tp is the physical half-life of the radionuclide (Tp = 138 d for 210Po). In the same manner,
<n(t1)> (shortest exposure time with all cells having < 9 tracks) can be used to calculate <n
(t2)> (longer exposure time with some cells having > 9 tracks).

Statistical distributions and analyses
Poisson distribution—It is generally accepted that if each cell in the population had the
same activity, one would anticipate a Poisson distribution of tracks per cell. There is evidence
to suggest that a 1/f distribution may be expected (12), however, there is a report indicating
that 1/f fluctuations are not present in the decay of 210Po for frequencies in excess of 10 − 6 Hz
(13), a frequency range that encompasses our data. Thus, in this report, the Poisson distribution
is assumed to adequately describe the statistical distribution associated with the decay
of 210Po. Given knowledge of <n> for each set of track distribution data, the Poisson probability
of n discrete tracks per cell is given by

(2)

For non-integer values of n, which may result due to decay correction (Eq. (1)), truncated values
are used to calculate the probability.

Log normal distribution—The log normal (LN) probability density function is given by,

(3)

where μn is the scale parameter, σ is the shape parameter, and g is a constant. The scale
parameter is related to the mean according to μn = ln<n> - σ2/2. The properties of this function
and its use in analysis of the distribution of tracks per cell are given in Ref. (7). Detailed
information on log normal distributions can be found in Refs. (15) and (16).

Poisson log normal distribution—The P – LN compound probability of obtaining a
realization n and all its possible Poisson realizations k is given by (17),

(4)
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Chi-square analyses—To quantitatively assess which of the above statistical distributions
best describe the observed track distribution data, a reduced chi-square analysis (χ̂2) was
performed. This quantity is given by Eq. (5),

(5)

where ni is the number of tracks per cell for the ith experimental datum, nexpected,i is the expected
value based on the assumed distribution, v is the degrees of freedom (v = imax − p − 1), and p
is the number of parameters in the assumed distribution.

Least-squares fit—Least squares (LS) fits of the data to a LN distribution function (Eq. (3))
were performed with Sigmaplot (Systat Software, San Jose, CA). The LS fit of the LN
distribution function to the data corresponding to emulsion exposure times where >9 tracks
were observed was carried out by two methods: 1) <n> was calculated by decay correcting
<n(t1)> to obtain <n(t2)>, and then <n(t2)> was constrained to obtain σ; 2) both <n> and σ were
allowed to vary. No constraints were placed on the LS fit of the LN distribution function to the
convolved data.

RESULTS
Statistical analysis for cells exposed to 0.52 kBq/mL

To study the effect of Poisson statistics on our analyses, the three discrete raw data sets from
Fig. 3A in Ref. (7) (0.52 kBq/mL) are first revisited. The three sets of track distributions were
acquired from autoradiographs that were developed at t = 7, 26, and 52 d, as shown in Figure
1A, 1B and 1C, respectively. Each set of track distribution data include the number of cells
scored with 0-9 tracks per cell, as well as the number of cells with an unscoreable number of
tracks (>9 tracks). The t = 7 d data have a maximum of 6 tracks in any given cell and there are
no cells having >9 tracks. The mean value for the t = 7 d data is 1.0 tracks/cell. The values of
<n> for t = 26 d and t = 52 d cannot be obtained directly from the respective data sets because
some of the cells have >9 tracks. Thus, the projected <n> values, obtained with Eq. (1), are 3.6
and 6.7 for the 26 d and 52 d data, respectively. Using these <n>, the Poisson probabilities for
each of 0-9 discrete tracks per cell are calculated at t = 7, 26, and 52 d. These probabilities can
be used to assess the extent to which our experimental data represent a Poisson distribution.
As shown in Figure 1A, the t = 7 d experimental data follow the general trend of a Poisson
distribution which suggests that Poisson statistics may have some impact on these data. The
t = 26 d (Figure 1B) and t = 52 d (Figure 1C) data sets do not follow a Poisson distribution,
although this does not rule out a Poisson component in these distributions.

To assess the possible Poisson component, we return to the t = 52 d data set. This is the primary
data set, covers the range of 0–9 tracks in our convolved data, and primarily dictates the shape
of the probability distribution. For the t = 52 d data, the χ̂2 values for the Poisson, LN, and P –
LN distributions were 149, 3.2, and 6.5, respectively. The latter two values were obtained via
a χ̂2 minimization procedure with respect to the shape parameter (σ). The values of σ were 0.81
and 1.1 for the LN and P – LN distributions, respectively. The lowest χ̂2 value was obtained
for the LN distribution as shown in Table 1, suggesting that Poisson corrections are not required
for the t = 52 d data. Furthermore, the σ obtained with the LN distribution corresponding to the
discrete t = 52 d data was the same as that obtained by LS fit of the convolved data which
included the t = 7, 26, and 52 d data.
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Now that the LN distribution has been firmly established with the primary t = 52 d data, we
return to the now ancillary t = 7 and 26 d data where the Poisson distribution may play a more
significant role. These data represent cells from the tail of the LN distribution and therefore
contain little information about the overall shape of the entire activity distribution in the cell
population. Accordingly, although a LN distribution with σ = 0.8 fits these data extremely well,
it is not appropriate to apply this distribution to this subset of data. For the same reason, the P
– LN distribution cannot be used to assess the significance of the Poisson distribution in these
data. This makes it difficult to tease the possible Poisson influence out of the underlying
distributions in the t = 7 and 26 d data sets. With this limitation in mind, it is worth revisiting
the convolved data where these distributions are applicable. The 52 d data were used for the
low multiplicity of convolved tracks/cell (1–9 tracks), the 26 d data were used for the middle
multiplicity (5–15 tracks), and the 7 d data were used for high multiplicity (10–32 tracks).
Importantly, within the overlapping regions (see Fig. 1D), there is considerable agreement
between the data points from independent data sets. Furthermore, a χ̂2 analysis of the convolved
data gives 7.7 × 107, 3.6, and 12 for the Poisson, LN, and P – LN, respectively. The difference
between the convolved data and the three predicted probability curves can be seen in the inset
of Figure 1D at very small probabilities. Again, the data are best described by the LN
distribution (Table 1). This suggests that the convolved t = 7 d and 26 d data follow the expected
trend of the LN distribution and any Poisson-component in these data has a negligible impact
on the overall distribution.

Statistical analysis for cells exposed to 3.8 kBq/mL
An approach similar to that described above was also applied to the two discrete data sets that
were obtained at a labeling concentration of 3.8 kBq/mL. The two sets of track distributions
were acquired from autoradiographs that were developed at t = 0.67, and 4 d, as shown in
Figure 2A and 2B, respectively. In this case, the t = 4 d data set is the primary data set, covers
the range of 0–9 tracks of convolved data, and primarily dictates the shape of the probability
distribution. The <n> for the t = 0.67 d data, where all cells have <9 tracks per cell, is 1.2
tracks/cell. The mean number of tracks per cell for the 4 d data can be obtained with Equation
(1) which results in <n> = 7.3. The Poisson probabilities for each of 0-9 discrete tracks per cell
are calculated for <n> = 1.2 (t = 0.67 d), and 7.3 (t = 4 d) (Figure 2A and 2B). The χ̂2 values
for the Poisson distribution are 96 and 25 for 0.67 and 4 d data sets, respectively. The χ̂2 values
for all three distribution functions are given in Table 1. Upon minimization of χ̂2 , the values
of σ were 0.64 and 0.60 for the LN and P – LN, respectively. The lowest χ̂2 value was obtained
for the LN distribution (Table 1), thereby again suggesting that Poisson corrections are not
required for the t = 4 d data. Furthermore, the σ obtained for the LN distribution corresponding
to the t = 4 d data was the same as that obtained by a LS fit to the convolved data. There is good
agreement between the data points within the overlapping regions of the convolved data sets
(see Fig. 2C). The arithmetic mean (<n>) value of 6.1 for the convolved data set was obtained
from a LS fit of the convolved data to the LN distribution. Furthermore, χ̂2 analysis of the
convolved data gives 1.2 × 107, 2.8, and 2.1 for the Poisson, LN, and P – LN, respectively. The
difference between the convolved data and the three predicted probability curves is shown in
the inset of Figure 2C. Again, the data is best described by the LS fit of the convolved data to
a LN distribution function (Table 1, χ̂2 =1.9).

Statistical analysis for cells exposed to 67 kBq/mL
Finally, the results are somewhat different at the highest labeling concentration 67 kBq/mL.
In this case, the two sets of track distributions were acquired from autoradiographs that were
developed at t = 0.25, and 1 d (Figs. 3A and 3B). The <n> for the t = 0.25 d data is 1.4 tracks/
cell and, using Equation (1), <n> = 5.7 for the 1 d data. The Poisson probabilities for each of
0-9 discrete tracks per cell are calculated with Equation (2) for each <n>. As shown in Figure
3A, the t = 0.25 d data set do not follow a Poisson distribution (χ̂2 = 91). However, the t = 1 d
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data are better described by the Poisson distribution (χ̂2 = 1.1) than the LN distribution (χ̂2 =
5.6). The P – LN distribution function provides the best fit to the data suggesting a significant
Poisson contribution (χ̂2 = 0.66). The values of σ were 0.54 and 0.28 for the LN and P – LN,
respectively. The σ obtained for the LN distribution corresponding to t = 1 d data was the same
as that obtained by LS fit for the convolved data (Table 1). Again, within the overlapping
regions, of the convolved data there is considerable agreement between the data points from
independent data sets (see Fig. 3C). Furthermore, χ̂2 analysis of the convolved data gives 9.6
× 106, 8.4, and 1.7 for the Poisson, LN, and P – LN, respectively. A comparison between the
convolved data and the three predicted probability curves is provided in the inset of Figure 3C.
The data are much better described by the LS fit of the convolved data to a LN distribution
function (Table 1, χ̂2 =6.3) than to a Poisson distribution (χ̂2 =9.6×106), but best explained by
the P – LN model (χ̂2 = 1.7).

DISCUSSION
As described above, a variety of approaches were used to analyze our 210Po alpha particle track
distribution data. These involve statistical analyses of both the raw track data and the convolved
track data using P, LN, and P-LN functions. The results, summarized in Table 1, indicate that
the P distribution alone does not adequately describe the observed track distributions as it
would if the cellular activity was distributed equally among all the cells in the population. In
fact, with the exception of the data corresponding to the highest concentration of 210Po, a pure
LN distribution generally provides the best description of the data. In the case of the highest
concentration (67 kBq/mL), the data are best described by the P-LN distribution which suggests
that the Poisson statistics associated with radioactive decay plays a significant role in the
analysis of this set of autoradiographic data. Nevertheless, the underlying distribution of
activity in this cell population is well described by a LN distribution.

It is interesting to more closely examine the conditions under which Poisson statistics play a
significant role in interpreting our alpha particle track data. Figures 1C, 2B, and 3B show that
the autoradiographic track data appear become more Poissonian as the concentration of 210Po-
citrate in the culture medium is increased. This is supported by the χ̂2 values for the Poisson,
LN and P – LN distributions. Notably, for the 1 d data set (67 kBq/mL), the corresponding
values are 1.1, 5.6 and 0.66, respectively (Table 1). The reason for the increased Poisson
influence at higher concentrations of 210Po-citrate may be related to a decrease in the time
interval for the observation (i.e. short emulsion exposure time). However, the χ̂2 values for
Poisson fits to the very short time interval 0.25 d data set (67 kBq/mL) and the 0.67 d data set
(3.8 kBq/mL) are 91 and 96 (data are not shown in Table 1). These high values are indicative
of a poor fit which suggests that the time interval may not be a significant factor.

It is also possible that the Poisson distribution plays a bigger role with increasing concentration
of 210Po-citrate because of a reduction in nonuniformity in the distribution of radioactivity
among the cell population. To further pursue this possibility, the value of the log normal shape
parameters (σ) obtained by the various methods described above are graphically compared in
Fig. 4. The dashed line connects what we believe are the best values for σ, where best is defined
as the lowest χ̂2 (Table 1). Based on the linearity of the three data points on a logarithmic scale,
the shape parameter is exponentially dependent on the extracellular concentration. A
decreasing value of σ implies more uniform distribution of radioactivity among the cell
population. This implies that the nonuniformity of the cellular uptake of 210Po-citrate decreases
with increasing extracellular concentration (7,8). Figure 6 in Ref. (7) shows that this will result
in a more exponential survival curve rather than the saturating dose response curves that are
expected for log normal distributions with large σ values.
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In our earlier article we used the convolution approach to analyze the experimental alpha
particle track data (7). Kvinnsland et al. expressed concern regarding the convolution approach
in relation to the impact of Poisson statistics on the resulting distribution (9). It is worth
emphasizing again here that the overlapping regions of convolved data from independent data
sets (Figs. 1D, 2C, 3C) suggest that the data can be convolved. The shape parameters obtained
by LS fit of the primary data set (1-9 tracks, t2 > t1) and the convolved data to a LN function
are also similar for the 0.52 and 3.8 kBq/mL cases which also supports the convolution
approach. However, as shown in Fig. 4, the convolution approach is not satisfactory for the 67
kBq/mL data sets. In this case, as described above, the underlying LN distribution must be
extracted from the measured distribution using the P-LN function. Thus, caution must be
exercised when implementing the convolution approach. With this in mind, it should also be
noted that the σ values obtained directly from the 52 d data and the 4 d data are very similar
to those obtained from the convolved data. Therefore, provided that one has a single
autoradiograph that covers most of the track distribution (e.g. Figs. 1C or 2B), one may be able
to obtain σ without resorting to convolution.

In order to test the potential use of LN distributions to describe the cellular uptake of other
radiochemicals within a population of cells, the data of Lehman et al. are revisited (18). Their
cells were labeled with 33P, an emitter of beta particles with a mean energy of 76.9 keV, under
unstirred and stirred conditions, and the frequency distribution of autoradiographic grains per
cell was measured. The authors noted that the distribution of background grains per cell was
adequately described by a Poisson distribution, but the experimental treatments (stirred and
unstirred mixtures) were not explained by a simple Poisson distribution. Consequently, they
employed a Neyman’s Type A distribution which consists of a composite of two Poisson
processes, one that describes grain counting statistics and the other process pertains to the
randomness of radioactive decay (19). They fit their data to this distribution and obtained χ̂2

values of 0.68 and 1.7 for the stirred and unstirred conditions, respectively. To assess the
capacity of the LN distribution to describe their data, the arithmetic mean (<n>) was calculated
for each mixture and a χ̂2 analysis was conducted for Poisson, LN, P – LN. Furthermore, an
unconstrained least squares fit of the data to a LN function was performed. The results of these
fits show that the LN, P-LN, and LS fit to LN generally yield similar values of χ̂2 and log normal
shape parameters (Table 2). Thus, the underlying distribution of radioactivity among the cell
population is well described by a log normal distribution.

The analyses above support the conclusion that the distribution of radioactivity in a cell
population can often be well represented by a LN distribution. Log normal distributions have
been shown to describe a variety of natural processes. Bulmer (20) fitted the species abundance
data which showed truncated, grouped LN distributions provided a satisfactory fit over the
logarithmic and P – LN models, omitting zero class. There are also other models that can be
useful for explaining data with a priori knowledge of the underlying distribution, such as
multivariate P – LN distributions (21), bivariate Poisson distributions (19), etc. However, log
normal distributions are ubiquitous and have been observed across many fields (22,23).

Finally, this exercise was undertaken to demonstrate the statistical significance of the log
normal distribution that was obtained for 210Po-citrate using an alpha particle track
autoradiographic approach (7). The reliability of this approach stems from its use of emitted
radiations to ascertain the distribution. Other experimental techniques, such as flow cytometry
(24,25), can also be used to derive the distribution. Because of the ubiquitous presence of
LN distributions, many investigators studying radiobiological responses to
radiopharmaceuticals and other radiochemicals may find this distribution useful to fold into
their dose response models (8,24,26). Its implementation is facilitated by a number of factors.
First, and foremost, it is an analytical function that is described by only two parameters (σ,
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μ). Second, the LN probability density function is provided in standard subroutine libraries
(e.g. National Algorithm Group (NAG)) for computational purposes.

CONCLUSIONS
Statistical tests show that the log normal distribution function is favored as a general form to
describe the distribution of cellular uptake of 210Po among a population of cells exposed to the
same concentration of 210Po-citrate. Furthermore, there is evidence to suggest that this
distribution is likely to be applicable to a variety of radiopharmaceuticals.
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Figure 1.
Statistical analysis of α-particle track distribution in V79 lung fibroblasts that were labeled in
culture medium containing 0.52 kBq/mL 210Po-citrate. The vertical bars with standard errors
in panels A, B, and C represent the experimental track distributions (discrete) when scored
after decays were allowed to accumulate for 7, 26, and 52 d, respectively (7). The data points
in Panel D represent a normalized convolution of the experimental track data obtained at 7 d
(▲), 26 d (■), and 52 d (●). Error bars represent standard errors. In each panel, the predicted
probabilities, based on Poisson, Poisson-log normal (P – LN), and log normal (LN) functions,
are given by the dashed step line, thick solid step line and solid curve, respectively. The
parameters of the three probability density functions are enumerated in Table 1. To compare
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the trends of these probability functions relative to the experimental data at high numbers of
convolved tracks, the inset in panel D plots the ordinate on a log scale.
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Figure 2.
Statistical analysis of α-particle track distribution in V79 lung fibroblasts that were labeled in
culture medium containing 3.8 kBq/mL 210Po-citrate. Decays were allowed to accumulate for
0.67 d (A) and 4 d (B). The data points in Panel C represent a normalized convolution of the
experimental track data obtained at 0.67 d (▲) and 26 d (●). Error bars, dashed step line, thick
solid step line, solid curve and the inset are all as explained in Fig. 1. The parameters of the
three probability density functions are also enumerated in Table 1.
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Figure 3.
Statistical analysis of α-particle track distribution in V79 lung fibroblasts that were labeled in
culture medium containing 67 kBq/mL 210Po-citrate. Decays were allowed to accumulate for
0.25 d (A) and 1 d (B). The data points in Panel C represent a normalized convolution of the
experimental track data obtained at 0.25 d (▲) and 1 d (●). Error bars, dashed step line, thick
solid step line, solid curve and the inset are all as explained in Fig. 1. The parameters of the
three probability density functions are also enumerated in Table 1.
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Figure 4.
Log normal shape parameters (σ) for the three different activity concentrations of 210Po-citrate.
The open squares (□) represent the values of σ obtained, when <n> was constrained, by least
squares fits of the experimental track data corresponding to the longest decay accumulation
times (i.e. t2>t1, Figs. 1C, 2B, 3B) to a LN distribution function. Standard errors of these fitted
σ values are indicated by the vertical lines. The corresponding σ values obtained for these same
data using the P–LN distribution function are shown as open circles (○). The open triangles
(△) correspond to least squares fits of the convolved data (Figs. 1D, 2C, 3C) to the LN function.
Finally, the dashed line passes through what are considered the best σ values as defined by the
lowest χ̂2.
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