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SUMMARY
The future utility of liquid chromatography-mass spectrometry (LC-MS) in metabolic profiling and
metabolomic studies for biomarker discover will be discussed, beginning with a brief description of
the evolution of metabolomics and the utilization of the three most popular analytical platforms in
such studies: NMR, GC-MS, and LC-MS. Emphasis is placed on recent developments in high-
efficiency LC separations, sensitive electrospray ionization approaches, and the benefits to
incorporating both in LC-MS-based approaches. The advantages and disadvantages of various
quantitative approaches are reviewed, followed by the current LC-MS-based tools available for
candidate biomarker characterization and identification. Finally, a brief prediction on the future path
of LC-MS-based methods in metabolic profiling and metabolomic studies is given.
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INTRODUCTION
Evolution of Metabolomics

Metabonomics, or metabolomics, is the latest and least mature (in terms of the approach but
not technology employed) of the systems biology triad, which also includes genomics and
proteomics. The distinction between metabonomics and metabolomics has oftentimes been
confusing and inconsistent in the literature. Nicholson et al. initially defined ‘metabonomics’
as the quantitative measurement of perturbations in the metabolite complement of an integrated
biological system in response to some stimuli, whereas ‘metabolomics’ was considered to be
these measurements in individual cells or cell types [1–4]. For the most part, these terms have
been used interchangeably by individuals reporting deviations in metabolite concentrations
both system-wide and on cellular levels due to disease, drug administration, or different growth
conditions. For the purposes of this review, the quantitative determination of time-related or
stimuli-dependent changes in the small-molecular weight complement of either an integrated
biological system, cell, or cell types will be termed ‘metabolomics’.
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Metabolomics has its origins in the early orthomolecular medicine work pioneered by Robinson
and Pauling [5–10], as well as in the metabolic flux and metabolic control analysis work of
Kacser [11–16] (additionally, the influence of metabolic profiling in the diagnosis and
screening for inborn errors of metabolism [17–19] cannot be ignored, but will not be discussed
here). Pauling defined orthomolecular medicine as both the preservation of optimum health
and the treatment of disease through variation of the concentrations of endogenous substances
required for health [5]. An essential component of orthomolecular medicine that directly relates
to metabolomics is orthomolecular diagnosis, or the process of determining the concentrations
of various substances in the human body and how they may relate to a given disease state [5].
The initial efforts of Robinson and Pauling focused on the design and implementation of
instrumentation for reliable quantitative measurements of volatiles in human urine and breath
[20–22], which were soon followed by generally untargeted and quantitative measurements of
as many substances as possible in a given analysis coupled with pattern recognition calculations
in order to assign individuals to various disease states [5–7] or age groups [9,10,23]. Their
untargeted analyses of low-molecular weight substances combined with pattern recognition
techniques to distinguish healthy from disease (or otherwise normal from perturbed states)
amounts to the current concept of metabolomics, as generally accepted today. Similarly, Kacser
has contributed to the overall understanding of the parameters and variables that should be
considered in properly designed metabolic control analyses [11]. Parameters, such as enzyme
Michaelis constants (Km), turnover numbers (kcat), and inhibition constants (Ki), represent the
constant constraints of a given system; others such as enzyme quantity and quality are
considered to be under the control (within limits) of the researcher. Alternatively, the variables
represent the levels of metabolites themselves, which are directly determined by a system’s
parameters [11]. Of particular importance was the insight that metabolite pools and their fluxes
were not only dependent upon those components of the pathway to which they were
traditionally thought to belong (eg. fumarate in the citric acid cycle), but also to any pathway
to which or from which they may contribute or be derived (eg. fumarate in tyrosine
metabolism). This thinking may have inspired Nicholson’s concept of the ‘superorganism’,
which describes the interactions between the metabolome of a complex animal with those of
the various microorganisms living symbiotically within that animal [3,24,25].

Despite the essential conceptualization of metabolomics by Robinson and Pauling, a number
of researchers have contributed in parallel to the refinement of that concept into a format that
is consistent with other major omics approaches. The laboratories of Laseter [26–28], Novotny
[29,30], and Sweeley [31] had also developed and applied gas chromatography-based methods
in comparative metabolic profiling studies of various biological samples during the same
timeframe. Similarly, the work of van der Graaf [32–34], among others [30,35], has furthered
the use of pattern recognition approaches (also known as ‘chemometrics’) to process data from
metabolic profiling experiments in order to differentiate among comparative samples. These
myriad efforts culminated in the first printed reference to the ‘metabolome’ [36] and the first
occurrence of the word in a title [37] in 1998. Fiehn has further clarified this field by defining
four basic types of metabolite analyses: 1) targeted metabolite analysis, 2) metabolic profiling,
3) metabolomics, and 4) metabolic fingerprinting [38,39]. Again, the terms describing these
types of metabolite analyses tend to be used interchangeably and often incorrectly (as defined
by Fiehn) in the literature. However, standardization of nomenclature is only one of the many
goals established by both the Metabolomics Society [40] and the U.S. National Institutes of
Health (at the recent Metabolomics Standards Workshop) [41], and it is expected that some
form of consensus will be reached in the next one to two years followed by implementation
into standard reporting requirements by journals. This review will consider only metabolic
profiling and metabolomics in the context of biomarker discovery.
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Metabolomics Technologies
The majority of pre-metabolomics and early metabolomics studies have utilized nuclear
magnetic resonance (NMR) spectroscopy- [1,2,42–48] and gas chromatography (GC)-based
approaches [6–10,20–23,26,29,31]. However, investigators have also applied high
performance liquid chromatography (HPLC) coupled with UV detection [49], pyrolysis-mass
spectrometry (MS) [50,51], and inductively-coupled plasma (ICP) atomic emission and ICP-
MS [52] among other techniques. Current metabolomics and metabolic profiling studies rely
almost exclusively on 1H NMR, GC-MS and LC-MS due to the technological maturity of the
corresponding instrumentation, the recent independent advancements made in all three fields,
and the realization by the instrumentation industry that these three approaches offer the most
potential for successful results.

NMR is a non-destructive analytical tool that can be used to study biological fluids and intact
biomaterials without intensive sample processing [2,4]. High-frequency NMR is moderately
sensitive (relative to MS-based approaches), and nearly all metabolites have unique NMR
signatures [2], allowing for the discrimination of metabolomic samples by their NMR
fingerprint. In addition, simple one-dimensional spectra take only a few minutes to acquire
with throughputs upwards of 200–300 samples per day now possible using automated systems
[4]. NMR provides chemical specificity for compounds containing elements with non-zero
(paramagnetic) magnetic moments such as 1H, 13C, and 15N. The necessity of paramagnetic
nuclei places somewhat of a restriction on metabolomics analyses by NMR. While 1H is the
most abundant (99.9%) isotope of hydrogen found naturally, 13C and 15N represent only 1.1%
and 0.37% of total carbon and nitrogen in nature, respectively, requiring stable isotopic labeling
of samples with 13C and 15N (or otherwise long acquisition times ) if these nuclei are to be
utilized for NMR experiments. Stable isotopic labeling is a facile and practical approach for
NMR analyses of cell cultures, but the incorporation of stable isotopes into an entire animal
requires the formulation of isotopically labeled food or water, which may or may not be
applicable due to high cost. However, recent technological developments have dramatically
improved both the sensitivity and throughput of the technique. For example, the utilization of
cryogenically cooled sampling probes can increase the signal to noise ratio (S/N) ~4-fold [4,
53,54] versus traditional NMR acquisitions, or, for the same S/N, can increase the acquisition
time ~16-fold [54,55]. The gain in S/N results from eliminating electronic noise by cooling the
RF coils and electronic components to ~20 K, while maintaining the sample at room
temperature [54,55]. In addition, the recent advent of magic angle spinning (MAS) NMR has
had a tremendous impact on the analysis of intact tissues, which are best described as semisolid
heterogeneous materials. 1H NMR spectra of intact tissues suffer from major line-broadening
contributions when acquired by traditional solution-based NMR approaches, due to a lack of
isotropic molecular motion [4,56]. The major line-broadening factors are dipolar couplings,
sample heterogeneity, and chemical shift anisotropy [4,56]. These line-broadening effects can
be averaged to zero by rapidly spinning (~4–6 kHz) the sample at the magic angle θ = 54.7°
relative to the applied magnetic field [4,56]. This results in very high quality NMR spectra of
whole-tissue or cell samples as well as spatial information of molecules within the sample.

GC as a front-end separation technique is unsurpassed in terms of speed, separation efficiency,
and reproducibility, although the debut of [57–60] and recent developments in [61] high-
pressure liquid chromatography show promise for this technique to perhaps be equal to current
one-dimensional GC in terms of separation efficiency in the near future. However, continued
advancements in GC should continue to place the technology above LC in terms of peak
capacity, sensitivity, and number of compound identifications. Robinson and Pauling had
realized and demonstrated the potential of GC coupled with flame ionization [7,9,20–22,62]
for metabolite fingerprinting analyses and disease classification in the early 1970s. The
utilization of GC-MS for metabolic profiling and metabolomics was a natural application,
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further improving the separation peak capacity through the addition of a second and orthogonal
dimension of separation. Moreover, the MS provides additional information on the detected
species in the form of both molecular and fragment ions. Further, the general standardization
of the electron ionization (EI) source to 70 eV by the GC-MS industry, coupled with the overall
high reproducibility of EI, has enabled the development and utilization of commercial [63,
64] and user [65,66] (a list of freely available databases is also provided in [67]) mass spectral
databases for metabolite identification in GC-MS data. Despite this advantage, early GC-MS-
based metabolite profiling studies in plants identified less than 25% of the detected features
[68,69]. This can likely be attributed to the large number (105) [39,70] of both primary and
secondary metabolites proposed to be present in plant systems, as well as the increased
complexity of chemically derivitized samples [67,71]. In addition, untargeted metabolic
profiling experiments utilizing either GC-MS or LC-MS, in general, are capable of generating
large amounts of data due to the increased dynamic range and sensitivity of these approaches,
and it is conceivable that the lower abundance metabolite features detected have not yet been
cataloged in commercial mass spectral databases. Nevertheless, GC-MS has been recently
utilized in successful metabolic profiling [72–77] and biomarker discovery [78,79] studies in
both plant and mammalian systems. In particular, Farag et al. [76] have reported the
identification of 28 previously uncharacterized volatiles (the majority of which were branched-
chain alcohols) from two strains of rhizobacterial Bacilli. Recent advances, such as fast GC
[80] and GC×GC [81,82] (both reviewed in [83] coupled with MS, have significantly improved
the throughput and coverage, respectively, of sample analyses. Mondello et al. recently
compared conventional GC and fast GC in fatty acid profiling analyses of fats and oils [84].
Thirty-nine peaks plus one triplet were resolved and identified in a 76 min GC analysis of
menhaden oil, compared to 36 peaks (plus three pairs and one triplet) resolved in a 180 s fast
GC analysis of the same sample. Such fast analyses are amenable for rapid metabolic profiling
studies of the volatile components of samples such as urine or microbial cultures; however,
the power of fast GC is minimized for samples requiring extensive derivitization such that the
sample preparation time far exceeds the sample analysis time, as well as for complex samples
where the reduced separation efficiency of fast GC is insufficient for effective separation of
the large number of sample components. In addition, fast GC separations, when coupled with
MS, will require instruments capable of fast scanning rates. Alternatively, Welthagen et al.
have demonstrated the power of GC×GC coupled with time-of-flight (TOF) MS in
metabolomic analyses of spleen tissue extracts from NZO obese and C57BL/6 mice [85].
Conventional GC-MS resulted in detection of 538 peaks versus 1227 peaks detected using
GC×GC-MS after deconvolution and artifact removal. Two sugar alcohols, an unknown
compound, and 1-methyl-glucoside were identified as potential biomarkers for obesity (p ≤
0.05). Of particular note is the fact that the unknown compound was completely unresolved
from ascorbate in the first dimension, illustrating the power of GC×GC for higher coverage of
the metabolome. Despite the recent advances in GC-MS, the approach is still not amenable for
the analysis of non-volatile and large biomolecules.

The utilization of soft ionization techniques has resulted in the application of LC-MS to
metabolic profiling and metabolomics studies. Similar to early metabolic profiling studies
utilizing GC-MS [86–90], early LC-MS applications focused on the identification and
quantification of compounds that were members of the same metabolic pathway or that were
similar in chemical class [91–93]. However, a recent trend has been observed in the literature
that refines the definition of metabolic profiling as an extension of functional genomics, i.e.
metabolic profiling may now be described as the untargeted analysis of comparative samples
using hyphenated approaches (typically chromatography coupled with mass spectrometry)
[94]. Thus metabolic profiling can now include the relatively targeted analysis of members of
given metabolic pathways or of similar chemical class, as well as the relatively untargeted
analysis of all the metabolites extracted in a given sample processing protocol and detected via
a given analytical platform. Regardless, LC-MS has been effectively utilized in both metabolic
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profiling and metabolomics studies. Huhman and Sumner [95] applied online LC-photodiode
array (PDA)-MS in metabolic profiling of triterpene saponins from Medicago sativa and
Medicago truncatula, tentatively identifying two new malonated saponins in M. sativa, as well
as confirming the identity of 27 saponins in M. truncatula. Similarly, Buchholz et al. [96]
applied LC-MS, among other approaches, in the metabolomic characterization of Escherichia
coli in culture and subjected to substrate pulse experiments, leading to dynamic modeling of
metabolic pathways. Alternatively, Saghatelian et al. [97] utilized LC-MS and metabolic
profiling to identify a structurally novel class of central nervous system lipids, N-acyl taurines,
as endogenous substrates of the enzyme fatty acid amide hydrolase (FAAH), which were
dramatically elevated in brain and spinal cord of FAAH knockout mice. These initial
applications of LC-MS together with subsequent work in metabolic profiling and metabolomics
studies initially raised the hope that this particular analytical platform would be of great utility
in the identification of novel biomarkers of disease, particularly through the development of
LC-MS-based metabolite libraries. However, the variety of soft ionization techniques
[electrospray ionization (ESI), atmospheric chemical ionization (APCI), atmospheric
photoionization (APPI); reviewed in [98]] together with the additional variety of LC stationary
phases and mobile phases has made the inter-laboratory comparison of metabolic profiling and
metabolomics data difficult. For example, both reversed-phase packed LC columns [99] and
monolithic silica-based columns have been used in metabolomics applications [100,101].
Among the various reversed-phase packing materials commercially available, are those that
utilize mixed-mode functionalities, as well as those that incorporate imbedded polar groups to
improve retention of small polar compounds. Further, hydrophilic interaction chromatography
(analogous to normal-phase chromatography) has been applied in the analysis of highly polar
plant metabolites [101,102], as well as in the separation and quantitation of water soluble
cellular metabolites [103]. The differences in separation scale (traditional analytical columns
of 4.6 mm, micro-bore columns of ≤ 2.1 mm, and capillary columns of ≤ 360 µm inner
diameters) and the concomitant variations in operating flow rates and ionization conditions
add additional complexity to LC-MS-based methods. In addition, unlike mass spectrometers
for GC-MS applications, which have been essentially standardized to use an ionization energy
of 70 eV, those for LC-MS applications are capable of variable ionization energies; in addition,
the ion sources and ion transmission optics differ between instrument manufacturers, which
further hampers the comparison of metabolic profiling and metabolomic data from different
laboratories. Thus, while commercial libraries of mass spectral data are available for GC-MS-
based approaches [63,64], analogous libraries do not yet exist for LC-MS-based methods. Still,
LC-MS offers unique capabilities for metabolic profiling and metabolomics studies, and the
future of LC-MS in these fields will be discussed within the context of biomarker discovery.

RECENT DEVELOPMENTS IN LC-MS
One of the leading disadvantages to utilizing atmospheric pressure ionization-based methods,
particularly ESI, for interfacing LC to MS in metabolic profiling and metabolomics studies is
the occurrence of ionization suppression [104–106]. This can result from co-elution of
compounds with dramatic differences in concentration, proton affinities, or surface activities
[104–107], as well as solvent matrix effects and erratic electrospray behavior as a result of
increased liquid conductivity from various salts and charged species [108]. The effect of
ionization suppression on analyte molecules can largely be minimized if not removed entirely
through improved front-end LC separations and reduced LC operating flow rates, both of which
lead to more efficient ESI. The following section will highlight the benefits of both improved
separation and ionization efficiencies.
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High-Efficiency LC Separations
The goal of untargeted metabolic profiling and metabolomics experiments is the detection and
quantitation of as many sample components as reasonably possible in order to identify those
candidate markers that can be used to describe a disease, growth condition, or other external
perturbation. Inherent to these two approaches is the high complexity present in metabolite
extracts when employing global extraction protocols. Thus, the front-end separation efficiency,
quantified by the separation peak capacity (the theoretical number of resolved peaks that can
be fit into the separation space [109]), determines the coverage and completeness of analysis
for such complex mixtures. Increased LC peak capacities allow highly complex samples to be
better characterized through reduction of co-eluting species, and therefore ionization
suppression, resulting in an overall increase in the dynamic range of the measurement. This
increase is generally due to improved detection of lower abundance species, which are
ultimately better resolved from species that are present either in higher abundance or have
higher proton affinities or surface activities. A direct approach for increasing the separation
peak capacity is through the inclusion of additional separation dimensions (reviewed in
[110]), although the incorporation of multiple separation dimensions can result in increased
analysis time and sample consumption. However, Stoll et al. [111] recently reported the
development of a high speed, comprehensive online 2D-LC-UV method based on the use of
ultra-fast, high temperature gradient chromatography and the application of this method to the
analysis of the low molecular weight components of maize seedlings. Using this 2D-LC
method, peak capacities of ~900 were achieved in 25 min. However, the final operating flow
rates of the second dimension reversed-phase gradient separation exceeded 1.0 mL/min, which
currently reduces the utility of this approach in direct coupling with MS as the detector due to
reduced measurement sensitivity, as will be discussed below. While a flow splitter may be
utilized to reduce the solvent flow delivered to the MS inlet to the µL/min regime or below,
care must be taken to avoid excessive dead volumes which would nullify the separation
efficiency achieved through 2D-LC.

As has been reported for LC-MS analyses of proteolytically digested proteins, separation peak
capacities on the order of 102 are typically viewed as moderate-efficiency, 103 as high-
efficiency, and 104 as ultra-high-efficiency [112,113]. Reversed-phase LC is the only 1D
format to date that has been reported to achieve high-efficiency separations of global metabolite
extracts: Shen et al. [99] recently reported LC peak capacities of ~1500 in analyses of the
Shewanella oneidensis metabolome utilizing reversed-phase capillary LC coupled with Fourier
transform ion cyclotron resonance (FTICR) MS, and Plumb and colleagues [61] described LC
peak capacities of ~1000 in a 1 h analysis of the rat urine metabolome applying ultra-
performance liquid chromatography (UPLC) in conjunction with elevated temperatures and
high linear mobile phase velocities. Both of these studies utilized small-particle packed
columns, which required operating pressures in excess of 10,000 psi in order to maintain the
optimum mobile phase linear velocity across the column. While both high and low pressures
can be used with LC to achieve high separation peak capacities, much longer analysis times
will be required with low-pressure systems in order to achieve comparable peak capacities.
Further, the use of small diameter (dP) packing materials provides increased LC separation
efficiency through a decrease in the height equivalent to a theoretical plate, HETP, resulting
in an increase in the number of theoretical plates, N, per column [114]. Alternatively, silica-
and polymer-based reversed-phase monolithic capillary columns have been utilized in
metabolomics applications [100,101] and have been reported to provide 105 theoretical plates
at a modest pressure drop in separations of standard compounds [115]. An example from work
in our laboratory illustrating the effect of high-efficiency (peak capacities of ~103) separations
on the number of metabolite “features” (characterized by m/z and retention time) detected
during LC-MS analysis is shown in Figure 1. All three chromatograms shown in Figure 1
correspond to reversed-phase capillary LC-FTICR MS analyses of the same S. oneidensis
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metabolome extract. The separation shown in Figure 1A produced a peak capacity of ~1500
over 30 h at a flow rate of ~70 nL/min and resulted in the detection of ~5000 features after
downstream data processing, including deisotoping of spectra and defining LC-MS features
using clustering algorithms (this data analysis approach as it applies to proteomics has been
reviewed in [116]). Decreasing the separation efficiency to peak capacities of ~500 (Figure
1B) and ~350 (Figure 1C) at similar flow rates resulted in concomitant decreases in the number
of detected features for the same sample, with ~2000 and 450 features identified, respectively,
after downstream data processing. It is apparent that, as the separation efficiency decreases,
the ion intensity for the detected features becomes less uniform due to decreased
chromatographic resolution and increased ionization suppression of co-eluting species; several
high-abundance species begin to dominate the chromatograms in Figures 1B and 1C, while
low-abundance species begin to recede to the baseline. While it is desirable to routinely achieve
separation peak capacities of ~103, the analysis times that may be required are not amenable
to high-throughput metabolic profiling and metabolomics experiments where tens to hundreds
of clinical samples might be available or necessary for study. To increase the throughput of
high-efficiency capillary LC separations, we have recently developed 2-column and 4-column
automated capillary LC systems for proteomic and metabolomic applications [117,118].
Alternatively, Plumb et al. [61] have addressed this issue through the use of UPLC and high
column temperatures, achieving high-efficiency separations in 1 h and moderate- to high-
efficiency separations (peak capacity of ~700) in as little as 10 min. However, the relatively
high flow rates (0.8 mL/min) used in this study may minimize the utility of this approach for
sensitive ESI-MS approaches, particularly in sample-limited situations where solvent-related
ions and ion clusters may contribute to MS background or otherwise suppress low-abundance
analyte ions.

Miniaturization of Ionization Sources
While high-efficiency front-end separations are necessary to minimize ionization suppression
and increase coverage of the detectable metabolome by LC-MS-based methods in biomarker
discovery applications, of equal importance is the use of low LC flow rates in order to increase
the ESI-MS efficiency (defined as the number of analyte ions recorded at the MS detector
divided by the number of molecules delivered to the ESI emitter [119]) and, therefore, the
overall sensitivity of the measurement [105,120,121]. The primary reason for increased ESI
efficiency is the production of smaller charged droplets at lower flow rates [122,123], enabling
more efficient solvent evaporation and requiring fewer Coulombic fission events to create gas-
phase ions. In addition, the electrospray current in cone-jet mode increases as the square root
of the volumetric flow rate [112,123], increasing the number of available charges per analyte
molecule as the flow rate decreases. Finally, smaller initial droplets and increased amount of
charge available per analyte molecule augment the ionization of less “surface active” analytes,
improving quantitation and reducing matrix suppression effects [105,106].

In order to better understand how ESI-MS sensitivity relates to LC flow rate, a brief overview
of the ESI process is required. Early work by Wilm and Mann [122] provided a theoretical
model for the electrostatic dispersion of liquid during ESI, which proposed that, at high flow
rates, a jet of liquid emerges from the tip of the Taylor cone and subsequently breaks up into
a series of droplets. When the flow rate is lowered, the liquid jet diameter becomes smaller and
the length shorter. This model was verified experimentally using an electrosprayed solution of
acetone, and the liquid jet was observed to extend one to two mm before dispersing into a fine
mist of droplets; at lower flow rates the liquid jet became very short such that the fine mist of
droplets appeared to originate directly from the Taylor cone [122] (the size of the charged
droplets emanating from the Taylor cone also decreases as the flow rate is reduced, and it has
been proposed to scale to the cube-root of the flow rate [123]). The generation of single ions
from this point in the ESI process is a matter of debate. Fenn [124] proposed that a charged
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portion of an analyte molecule penetrates the surface of a solvent droplet and subsequent
Coulomb repulsion forces eject the charged molecule directly out of the droplet (Ion
Evaporation Model). Alternatively, Dole et al. [125] proposed that the highly charged droplets
produced via ESI shrink through solvent evaporation. Repetitive Coulomb explosions
(essentially fission of the droplets) result in nanometer sized droplets that can contain a single
charged analyte molecule per droplet, and the solvent then evaporates away leaving the charged
analyte ion (Charged Residue Model). It has been suggested that both models probably occur
for various analytes/solvents; however, only the Charged Residue Model will be discussed
further.

Typical capillary LC separations utilize columns with inner diameters of 150–360 µm and
operating flow rates of 1–10 µL/min. The electrospray source coupled with such front-end
separations typically leads to droplets with an initial diameter of ≥1 µm [126], and Wilm and
Mann have calculated that such droplets contain more than 150,000 analyte molecules for
analyte concentrations of 0.5 µM [122]. The relatively large size of these initial charged
droplets require additional desolvation and fission events to produce gas-phase ions, which
leads to increased ion losses in the ESI interface and incomplete ion production. For example,
it has been estimated that only ~1 out of every 103–105 ions generated by ESI at atmospheric
pressure are actually detected using present instrument designs [127–129]. In preliminary
work, Wilm and Mann constructed a nanoelectrospray ESI (nano-ESI) source utilizing a gold
coated glass capillary with a spray orifice of 1–3 µm in diameter [122]. They approximated an
ESI efficiency of 10% (detection of 1 in 1300 peptide molecules in solution assuming a factor
of 100 from combined losses due to the detection system and the ion transmission efficiency
of the quadrupole) while electrospraying a 0.5 µM solution of peptide at <25 nL/min, which
represented a significant improvement in ESI efficiency at the time. In follow on work, Wilm
and Mann improved the ESI efficiency to detection of 1 in 390 peptide molecules utilizing a
similar nano-ESI source operating at ~20 nL/min [119]; in contrast, only 1 in 200,800
molecules were detected when using the conventional ESI source on the same instrument. They
highlighted several factors that contribute to the improved ESI efficiency when using the nano-
ESI source: 1) the analyte molecules are separated into distinct droplets, which prevents or
minimizes clustering, 2) the desolvation efficiency may be increased because the droplets are
small and uniformly dispersed, and 3) the overall charge-to-volume ratio is much higher than
for conventional ESI sources [119]. A cartoon depicting these factors is shown in Figure 2. In
conclusion, a key feature of the nano-ESI source is the resulting reduced ionization suppression
for equimolar mixtures of analytes, due to the factors outlined above. Thus, one can expect a
more uniform ion intensity for equimolar analytes with different proton affinities or surface
activities when electrosprayed at very low nano-flow rates. Indeed, this has been observed in
our laboratory for an equimolar mixture of metabolites electrosprayed in negative-ESI mode.
Figure 3 shows negative-ESI MS spectra acquired for a 10 µM mixture of threonine, aspartic
acid, pantothenic acid, reduced glutathione (GSH), oxidized glutathione (GSSH), and flavin
adenine dinucleotide (FAD) electrosprayed into an Agilent TOF MS at 250 nL/min (Figure
3A) and at 16 nL/min (Figure 3B). At higher flow rates, aspartic acid and pantothenic acid,
and to a lesser extent GSH, are preferentially ionized over threonine, GSSG, and FAD, which
can be explained in part due to differences in the acid dissociation constants of the acidic
functional groups (carboxylate and phosphate) of these molecules. At very low nano-flow rates,
more uniform ion intensities are observed for all 6 metabolites; in addition, background ions
formed from solvent clusters are greatly diminished in intensity. Thus, nano-ESI can effectively
minimize ionization suppression of co-eluting analytes.

When high-efficiency capillary LC separations are coupled with nano-ESI-MS, greatly
improved coverage of the detectable metabolome can be obtained. However, correct coupling
of capillary LC columns to nano-ESI emitters is critically important, as severe chromatographic
peak broadening can occur due to the introduction of post-column dead volumes [130]. While
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integrated columns (the ESI emitter is formed at the end of the fused silica capillary column)
can greatly minimize extra dead volumes that lead to chromatographic peak broadening
[131], they suffer from reduced lifetimes due to clogging of the ESI emitter. An alternative
approach is to connect a replaceable premade emitter to a pre-packed capillary column, which
requires that the connection unions have well aligned internal bores that are at least as small
as the capillary column inner diameter. We have developed and routinely utilize connection
unions having inner bore sizes as small as 5 µm with central alignment errors of 1 µm, which
have allowed high-efficiency LC-MS analyses of proteolytically digested proteins with packed
capillary columns of inner diameters as low as 15 µm [112]. To further improve ESI emitter
lifetime, we have transitioned from laser- or flame-pulled emitters [112] to chemically etched
emitters. In this process, a fused silica capillary is lowered into a solution of hydrofluoric acid,
while water is pumped through the capillary to prohibit the hydrofluoric acid from etching the
inside walls. The resulting ESI emitters have no internal taper (tip clogging is eliminated), very
thin walls at the orifice, and have demonstrated excellent longevity, electrospray stability, and
inter-tip reproducibility [132]. In addition, this process can be used to incorporate ESI emitters
directly on monolithic LC columns which completely eliminates post-column dead volumes
[133].

QUANTITATIVE METABOLIC PROFILING AND METABOLOMICS
High-efficiency LC separations coupled with sensitive ESI-MS are required in order to obtain
as complete coverage as possible of the detectable metabolome, particularly in biomarker
discovery applications where candidate markers are likely to be present as low abundance
species. Of equal importance is the quantitative approach employed; confounding factors due
to both sample processing and analysis [134] should be effectively removed, allowing for
accurate identification of those metabolite features that characterize the disease, culture
condition, or external stimuli of interest. In general, metabolic profiling and metabolomic
quantitative techniques can be grouped into two categories: stable-isotope labeling and label-
free approaches. Stable-isotope techniques, including isotopically labeled internal standards
and in vivo metabolic labeling of cell cultures, have the advantage of nullifying, to some extent,
slight changes in sample handling and instrumentation performance that may affect the
precision of abundance measurements. However, improvements in LC and MS technology, as
well as the application of statistical tools, have led to an increase in the use of label-free
techniques. Specific examples of both categories are reviewed below.

Stable-Isotope Labeling Techniques
Metabolite quantitation in traditional chromatography-MS-based targeted analyses has relied
on the use of stable-isotope dilution to effectively minimize the uncertainty in the measurement
(reviewed in [19,135–137]). In this approach, stable-isotope-labeled analogues (typically
labeled with 2H, 13C, or 15N) of the target analyte(s) are spiked into the sample prior to
treatment, in order to account for both systematic errors due to the sample processing approach
and systematic errors encountered during sample analysis by GC- or LC-MS. The assumption
here is that any detrimental effects imparted to the target analyte by either the sample processing
or analysis method will be experienced to an equal extent by the isotopically-labeled internal
standard. In general, the relative standard deviation of the analytical approach as a whole can
be reduced to less than 1% through the use of stable isotope dilution. The appropriate m/z for
both the analyte of interest and the isotopically labeled internal standard are monitored in either
single stage selected-ion monitoring or multiple stage selected-reaction monitoring
experiments, and the levels of the metabolites of interest in the sample can be absolutely
quantified through the use of a standard calibration curve. Care should be taken when
constructing the standard calibration curve, such that the linear range of the curve captures the
concentration of the metabolite of interest in the sample. The scientific literature is replete with
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papers describing the use of stable-isotope dilution for absolute quantitation of metabolites in
targeted analyses, and specific examples will not be cited here.

A related approach for the relative quantitation of metabolites in cells using traditional
metabolic profiling (i.e. analysis of a particular class of compound or members of a particular
metabolic pathway) is that based on in vivo labeling (discussed in [138]). The approach has
also been used extensively in metabolic flux analyses, but that application will not be discussed
in this review. The method takes advantage of the metabolic capability of cells in conjunction
with stable-isotopes to quantify relative differences between metabolites; one cell culture is
grown under altered conditions in a medium containing a “heavy” nutrient isotope essential
for growth, while the control cell state is grown in identical medium containing the “light”
nutrient isotope. For microbial cell cultures, the isotopic label is frequently introduced in the
form of 13CO2, 15NH4

+, and 15NO3
−, due to both the carbon- and nitrogen-fixing abilities of

these organisms; however, this approach is not applicable to mammalian cells, and isotopically
labeled amino acids are typically used instead. After labeling, harvested cells from both
conditions are combined and processed according to standard protocols for the metabolite(s)
of interest, followed by either GC- or LC-MS analysis; heavy and light metabolite ion pairs
are then identified, and measured abundances are used to calculate ion abundance ratios. This
approach has the advantage of being relatively straight forward, requiring no additional sample
manipulation nor additional GC- or LC-MS analyses of standards to generate standard
calibration curves. In addition, as with stable-isotope dilution, systematic errors that might
affect the accuracy of the quantitative comparison are equally applied to the combined heavy-
and light-labeled samples. A disadvantage to this method is that only relative quantitative
information can be obtained from ion abundance ratios unless a standard calibration curve is
constructed based on increasing concentrations of spiked reference compounds; however, in
biomarker discovery applications, relative quantitation is sufficient to identify those candidate
markers worthy of further study in more targeted analyses. Non-uniform labeling of
metabolites during cell growth is also a potential drawback (discussed in [138]); high isotope
enrichment and low atom numbers result in fully labeled isotope analogues, whereas low
enrichment and high atom numbers result in partial labeling and overlapping spectral peaks,
confounding data analysis and interpretation. Additional disadvantages include potential low
labeling efficiency, low purity of the nutrient isotope, and low measurement sensitivity (since
only half of the sample of interest can be analyzed due to sample mixing). Nevertheless, in
vivo labeling has been successfully applied in both targeted metabolite and metabolic profiling
analyses. Lafaye et al. [139] recently applied in vivo labeling with 15N in conjunction with LC-
MS to study the effects of cadmium on the glutathione biosynthesis pathway in Saccharomyces
cerevisiae in culture. Utilizing a standard calibration curve and absolute quantitation, they were
able to determine that cystathionine, γ-glutamylcysteine, and glutathione were dramatically
increased in the cadmium-treated cells. Kim and colleagues [140] grew Arabidopsis T87 cells
in K15NO3- and 15NH4

15NO3-containing media to enable relative quantitative measurements
of amino acids by LC-MS; the ion abundance ratios for 16 compounds were determined for
cells exposed to DL-propargylglycine, an inhibitor of cystathionine r-synthase. Similarly,
Engelsberger and coworkers [141] obtained relative quantitation of 14 amino acids in
Arabidopsis cell cultures grown in K15NO3-containing media and analyzed by GC-MS. While
the introduction of foreign isotopes may lead to various forms of anomalous cell physiology
[142], the method generally does not appear detrimental to cell growth and reliable relative (or
absolute if standard calibration curves are used) quantitative information can be obtained. The
utility of stable-isotope in vivo labeling is limited for untargeted metabolic profiling and
metabolomic studies, as it is difficult to predict the degree of incorporation, if any, of the
isotopic label without a priori knowledge of the empirical formulae of the detected species.
The use of mass spectrometers with high-mass measurement accuracy (MMA), such as FTICR
and TOF, can facilitate the determination of empirical formulae of unidentified metabolites,
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but mass accuracy alone has recently been shown to be insufficient for this purpose [143], as
will be discussed later.

Because the goal of untargeted metabolic profiling and metabolomic studies is to both detect
and quantify as many sample components as reasonably possible for biomarker identification,
it is both economically unfeasible and likely impossible to include a stable-isotopically-labeled
internal standard for every sample component present in a metabolite extract. To address this
issue, a surrogate standard (typically isotopically labeled) is added to biological extracts in
order to generate a calibration curve or to be used as a normalization factor during quantitative
data analysis [144−146]. While this is a viable approach, care must be taken when normalizing
metabolite feature abundances to one or more internal standards, as these standards will likely
be structurally unrelated to the majority of the detected features; the wide structural diversity
of the metabolome results in dramatic differences in ionization efficiency, particularly for ESI,
and leads to a wide range of MS sensitivities. For example, a low abundance analyte can cause
a larger signal than a high abundance standard if that analyte is more surface active or has a
higher proton affinity than the standard, impacting the linearity of signal versus concentration
plots [104–106]. Further, electrospray performance and stability during LC-MS can vary
significantly throughout the course of a gradient separation, as changes in the solvent
composition lead to changes in surface tension, dielectric constant, and electrical conductivity.
This is illustrated in Figure 4 for a solution of four peptides delivered to an ESI source and
mixed with a gradient solution typical in LC-MS analyses. Because a constant ESI voltage was
used, the electrospray performance was unstable early in the gradient (i.e. during high aqueous
content). This resulted in large fluctuations in signal intensity although the amount of analyte
delivered during the course of the gradient was unchanged. Later in the gradient, a higher
percentage of organic solvent stabilized the electrospray and the peak intensity increased for
two of the peptides, with an overall reduction in electrospray fluctuation. At ~55 minutes, a
drop in peak intensity was observed for all four peptides, which was caused by a change in the
electrospray from a preferred cone-jet mode to a multi-jet mode. In summary, the signal
intensity of an internal standard depends upon where in the gradient it elutes, and a global
calibration or normalization can not be assumed to be effectively applied to all species in the
sample. This example shows only the result of changing electrospray conditions and does not
take into account structurally unrelated species and ionization suppression, which will further
produce variations in reported signal intensities for internal standards. These points are further
illustrated for two secondary metabolites of Catharanthus roseus identified by LC-MS as
significantly increased during stress response, based on intensity normalization to a surrogate
internal standard [146]; the variability in the measurement of ajmalicine, tabersonine, and the
internal standard itself were quite different and may be due to either differences in ionization
efficiency between analytes and the internal standard or differences in ion intensity variability
based on the region of elution. Bijlsma et al. [145] have addressed the latter issue in LC-MS
analyses of plasma lipid profiles by including three internal standards covering as many lipid
classes (eg. triglyceride, saturated phospholipid, and unsaturated phospholipid). Detected
metabolite features were normalized to the internal standards based on retention time area:
features with scan numbers below 500 were normalized to the internal standard eluting in that
region; features with scan numbers between 500 and 900 were normalized to the next eluting
internal standard; and features with scan numbers above 900 were normalized to the last eluting
internal standard. Using this approach, the relative standard deviations (RSDs) for the various
identified lipids ranged from <6% to <25% [145]; however, these numbers may be misleading,
as they do not include values for any unidentified features. Similarly, Nordstrom et al. [147]
utilized 6 spiked standards to normalize 1619, 2034, 2125, and 2709 metabolite features during
replicate LC-MS analysis of a human serum extract utilizing either a 10-min HPLC, 10-min
UPLC, 30-min HPLC, or 30-min UPLC analysis, respectively. On average, 93% of detected
features from all four LC conditions were observed to have an RSD between 5% and 25%,
indicating good reproducibility of the method. However, the standards were spiked into the
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sample after extraction of the metabolome and evaporation of the extract; thus, only the
reproducibility of the standard spiking and the LC-MS analyses can be determined.

A relatively new quantitative approach related to in vivo labeling is chemical derivatization for
relative quantitation (discussed in #119}). In this approach, one or more functional groups of
metabolites that otherwise exhibit poor response by ESI are chemically derivatized to increase
their ESI efficiency, through either increased hydrophobicity [148] or by imparting a charge
on the reaction product [149]. Relative quantitative information can be obtained for
comparative samples by derivatizing a reference sample with unlabeled derivatizing agent and
derivatizing a second sample exposed to some perturbation with isotopically-labeled
derivatizing agent. As with in vivo labeling, equal parts of the two samples are then mixed and
analyzed by LC-MS. Disadvantages of this approach may include partial derivatization,
formation of adducts between reactive metabolites, and increased sample complexity;
however, enhanced structural elucidation of unknown metabolites may be obtained based on
incremental increases in m/z, depending on the number of target functional groups present on
the analyte molecule.

Label-Free Techniques
A general disadvantage of quantitation based on in vivo labeling or chemical derivatization of
samples is that the mass of metabolites analyzed by MS from the combined labeled and
unlabeled sample is one-half that if each sample were to be analyzed separately. Consequently,
metabolites in relatively lower abundance for one of the paired samples are often below the
dynamic range of detection, resulting in lower coverage of the available metabolome. The
trade-off between coverage of the metabolome and the accuracy of quantitation for biomarker
discovery has led to increased interest in quantitative metabolic profiling and metabolomics.
Often described as “label-free” quantitation, this technique is not without controversy,
particularly for comparison of data from complex samples. Much of the debate surrounding
this approach is related to the stability of MS instrument performance, the use of suitable
controls for assessing run to run variability, and the linear dynamic range in relation to the
ionization source; however, the foremost and latter points can be partially addressed through
the use of high-efficiency LC separations and improved ESI-efficiency, as discussed above.

Label-free quantitation using measured peak intensities assumes that measured signal
intensities from multiple analyses of samples containing metabolites in differing amounts
reflect actual differences in the abundances of those metabolites relative to each analysis. For
this assumption to be valid, the ionization source used to generate metabolite ions should give
a linear response to increased metabolite abundance, as has been demonstrated with ESI-MS
for low concentrations of simple peptide mixtures [150,151]. Expanding on these
demonstrations, Wang et al. [152] compared peptide abundance ratios, calculated from direct
peak intensities, to expected ratios for three sets of simple protein mixtures; a median
coefficient of variability (CV) of 25.7% was reported for 2700 peptides observed across
replicates. In the same work, the median CV for the serum metabolome was 23.8% for 730
metabolite features reproducibly observed [152]. Although ion suppression effects were
observed, they were reported to not have been problematic for quantitation based on peak
intensities. Similarly, our unpublished results based on an approach similar to that of Wang
and colleagues [152] resulted in median CVs of 16% each for 963 and 888 metabolite features
of Cyanothece sp. ATCC 51142 detected in replicate (n = 4 and 5) on each column of a dual-
column capillary LC system after multiple dataset alignment and intensity normalization; a
log-log intensity scatter plot and intensity ratio histogram plot for 784 Cyanothece metabolite
features detected reproducibly (n = 9) on both capillary columns is shown in Figure 5.
Decreasing the downstream data processing signal-to-noise threshold from 65 to 7 resulted in
an increase in median CVs to ~25% with an increase in reproducibly detected species to ~4000
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for each column of the dual-column system across replicates (again, n = 4 and 5). The increase
in CVs is likely due to the increase in features derived from chemical noise during electrospray,
which results in an increase in the width of the intensity distribution for all detected features
in a given dataset. As shown in the cluster intensity plot of Figure 5, the variability in intensity
for detected features is highest during the first half of the LC separation (the features are plotted
in order of elution from left to right), further illustrating the dependence of electrospray stability
on the composition of the LC solvent during gradient elution for constant ESI voltages.
However, the utility of the label-free quantitation approach is evident as highly reproducible
data can be obtained through utilization of sophisticated normalization algorithms.

In both our data processing pipeline (reviewed for proteomics in [116] and the approach utilized
by Wang et al. [152], LC-MS datasets are reduced at several points to facilitate visualization
and human interpretation. The datasets are processed by first deisotoping the raw spectra,
essentially converting the data to tables of masses and spectrum number (or elution times),
followed by identification of LC-MS metabolite features characterized by monoisotopic mass
and elution time, i.e. peak-picking. Identified features are then saved in tab-delimited format
and opened with the in-house developed software MultiAlign for subsequent retention time
alignment and intensity normalization. MultiAlign is a stand-alone program that incorporates
the LCMSWARP algorithm [153] for non-linear chromatographic alignment of multiple LC-
MS datasets. Features reproducibly observed in multiple analyses are grouped by single linkage
clustering in two dimensions, mass and normalized elution time (NET), based on user-defined
options. A single dataset is arbitrarily chosen as a baseline for alignment and multiple dataset
alignment is generally accomplished in under 1 min. After chromatographic alignment,
intensity normalization is applied using the expectation maximization algorithm. Briefly, this
algorithm analyzes the histogram of log ratios of intensities of features common to two or more
datasets and finds the peak apex of this distribution by assuming that the histogram is a mixture
of a normal density corresponding to unchanged features and uniform density background
corresponding to changed features. The expectation maximization algorithm is used for
calculating the normal part and uniform part of the histogram, and the shift in intensity is applied
to all features in the aligned dataset. Graphs are produced showing the alignment of the alignee
(s) to the baseline and the log ratio intensity histogram of the count of features present in the
alignee versus the log of alignee(s)/baseline (see Figure 5 for an example); the normalized
output (cluster #, mass, NET, and intensity) for aligned features can then be exported in tab-
delimited format for subsequent data processing in programs such as Excel or MatLab.

Other normalization approaches have recently been reported for both proteomic and
metabolomic data. As mentioned above, Wang et al. [152] utilized the intensities of tryptic
peptides from proteins or metabolites known to be present in equal amounts across comparative
samples for proteomic and metabolomic datasets, respectively. This label-free approach can
be described as performing normalization on a local scale. Alternatively, normalization can be
performed for both proteomic and metabolic profiling or metabolomic datasets by utilizing all
of the peptide or metabolite intensity information available in the entire dataset. Callister and
colleagues [154] recently investigated central tendency, linear regression, locally weighted
regression, and quantile techniques for normalization of peptide abundance measurements
obtained during label-free proteomics experiments. Prior to normalization using all four
methods, replicate datasets from the same sample were observed to be statistically different;
application of global normalization to the same datasets reduced systematic bias and eliminated
the statistical difference. In general, normalization based on linear regression ranked either
first or second for the model datasets evaluated. Similarly, Katajamaa and Orešič have
incorporated a linear normalization approach for comparative analyses of LC-MS-based
profiling data into the novel software, MZmine, freely available at
http://mzmine.sourceforge.net/ [146]. Appropriate normalization techniques applied to label-
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free metabolic profiling and metabolomics datasets will facilitate the identification of candidate
biomarkers.

STRUCTURAL ELUCIDATION OF BIOMARKERS UTILIZING LC-MS-BASED
METHODS

Advances in instrument design and overall technology are increasingly enabling deeper
coverage of the metabolome. In a single LC-MS analysis of a metabolite extract, several
thousand features may be detected, depending on the ion intensity or signal-to-noise thresholds
in place for downstream data processing. The challenge is to identify each one of these in a
high-throughput manner to obtain relevant biological information from comparative samples,
particularly in the context of biomarker discovery. In a recent study of Cyanothece sp.
ATCC 51142 metabolite extracts, 784 features were reproducibly observed across both
columns of a dual-column capillary LC system, but only 12 of these (1.5%) were structurally
identified in a 150 min separation (unpublished data). This illustrates both the strength and
weakness of LC-MS based metabolic profiling and metabolomic studies for biomarker
discovery, i.e. high-efficiency separations coupled with sensitive ESI-MS enables deep
coverage of the metabolome and the detection of many candidate biomarkers. However, the
structures of candidate biomarkers may not be easily elucidated, particularly if they are novel
and published work on the compound class is unavailable or a priori information is lacking
otherwise. Thus, the increasing sensitivity of today’s technology allows for deeper delving into
the metabolome, but also results in a higher percentage of features remaining structurally
unidentified. The following section highlights the tools available for the structural elucidation
of candidate biomarkers utilizing LC-MS-based approaches.

Accurate Mass Measurements
Mass spectrometers with relatively low mass resolution, such as single and triple quadrupole
MS, generally measure the mass to charge ratio of an ion to the nearest whole number. However,
instruments such as TOF, Orbitrap™, and FTICR MS (reviewed in [155] and [156]) are capable
of mass resolutions of 10,000, 60,000, and 105–106 [157], respectively, and can result in mass
measurement errors ≤ 3 ppm, 1 ppm, and 0.1 ppm, respectively, during infusion-based analyses
in conjunction with internal calibration. From such accurate mass measurements, candidate
empirical formulae of detected species may be determined based on the mass defect, or the
difference between the masses of the individual isotopes for a given element and the nominal
mass (which is equivalent to the number of protons and neutrons combined) [158]. One or
more empirical formulae may be generated for each metabolite feature, based on the achieved
mass measurement accuracy (MMA) and the mass of the detected species; larger m/z result in
a higher number of candidate empirical formulae, as more combinations of elements can be
combined to achieve the target mass [143].

Aharoni et al. recently utilized APCI and ESI in positive and negative modes coupled with
FTICR MS in untargeted metabolic fingerprinting studies of strawberry fruit development and
identified changes in the levels of known fruit metabolites [159]. Metabolite extracts were
introduced without chromatographic separation, and data was acquired over 100 – 1,000 m/z
with internal mass calibration, resulting in the identification of over 5000 unique monoisotopic
masses. Empirical formulae were calculated after downstream data processing to yield
chemically meaningful combinations of C, H, O, N, P, and S with mass errors < 1 ppm, and
empirical formulae were queried against a compound database for possible metabolite
identification. Similarly, Oikawa and colleagues introduced metabolite extracts in both positive
and negative ESI modes into FTICR MS in a metabolic phenotyping study of Arabidopsis
seedlings exposed to various herbicides [160]. Of 1560 unique monoisotopic masses identified
in the study, 284 were tentatively assigned metabolite identifications following queries of
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candidate empirical formulae against a metabolite species database. Tentative identifications,
such as shikimic acid 3-phosphate (Δm 2.8 ppm), trihydroxy flavanol (Δm −2.5 ppm), and
icaritin-3-rhamnoside (Δm −1.3 ppm), were confirmed or refuted through targeted MS/MS
studies utilizing sustained off resonance irradiation-collision induced dissociation [160]. It
should be noted that the MMA obtained in FTICR MS studies is determined in part by the
instrument scan speed, which is dependent on the target ion-population set in the FTICR cell.
For infusion-based studies, the scan speed is not an issue and can be several seconds long.
However, for LC-based studies, the target ion-population should be set such that scan speeds
are sufficiently long enough to maintain high MMA but not so long that only a few scans are
obtained for low-abundance species; FTICR MS should not be coupled with fast LC
separations, where LC peak widths of only a few seconds are typical [161]. Such metabolic
fingerprinting studies described above are very high throughput, requiring only a few minutes
to collect data per sample; however, because the sample constituents were not separated prior
to introduction to the MS, ionization suppression may limit the coverage of the metabolome.
In addition, a single empirical formula could be assigned to only half of the detected
monoisotopic masses in the former study, and positive metabolite identities were more easily
assigned to monoisotopic masses up to 300 m/z, due to multiple empirical formulae at higher
mass values [159]. Despite the high mass resolution, the remaining masses could not be
unambiguously assigned to metabolites, although their putative empirical formulae provided
insight into the chemical class to which they may belong (eg. C6H12O6 assigned as only a
hexose). The authors point out that while the empirical formula of an unknown metabolite is
a powerful and specific clue to its identity, it cannot provide unambiguous identification due
to the possibility of structural isomers and that orthogonal and complementary data are required
[159]. Indeed, our own tentative metabolite identifications in human plasma (Table1) are a
result of complementary data from accurate mass measurements, targeted MS/MS studies, and
comparison of elution times and mass spectra to authentic standards, as applicable. Accurate
mass measurements should therefore be considered as one piece of the puzzle when authentic
standards for otherwise tentatively identified metabolites are unavailable.

Isotopic Distribution Information
Zubarev et al. have previously reported that a MMA of approximately ±1 ppm is sufficient for
determining the unique elemental composition of peptides up to 700–800 Da and for
determining the amino acid composition for peptides up to 500–600 Da [162]. Peptides are
essentially linear polymers of 20 possible monomers (in the unmodified state), and such
determinations are exercises in mathematics with finite answers. In contrast, metabolite
structures are constrained only by the physical and chemical laws determining the stability of
a particular structural conformation. It is possibly incorrect to discuss the “chemical
complexity” of the metabolome; an examination of the KEGG Ligand database content in 2003
(~10,000 entries) showed that the average composition of a metabolite,
C16.55H22.77N1.434O5.948S0.1539P0.2342, is not terribly different from that of a peptide
C4.938H7.758N1.358O1.477S0.0417 (when considering only C, H, N, O, S, and P) or
C4.938H6.793N0.4279O1.774S0.04590P0.06987 when normalized such that C = 4.938. The only
significant differences are found in the nitrogen and phosphorous content; both nitrogen and
phosphorous provide a negligible contribution to the M+1 isotope at 0.03% and 0%,
respectively. Thus, it is likely better to speak of the “functional complexity” of the metabolome,
as the elements typically comprising a metabolite may be arranged in any manner of
functionalities. It is this functional complexity that results in the difficulties associated with
assigning unique metabolite identifications based on accurate mass measurements alone.

Kind and Fiehn recently performed a rigorous in silico evaluation of the level of mass accuracy
required for unique elemental composition prediction for detected metabolites, enforcing strict
chemical constraints in the determination of all chemically possible empirical formulae
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between a molecular mass of 20 and 500 Da [143]. Their calculations indicate that the upper
mass limit for determining the unique elemental composition of a metabolite with 1–3 ppm
MMA is only 126.0000 Da. Importantly, the number of putative empirical formulae increases
rapidly above this mass value, and they propose that additional constraints are needed to limit
the number of unique formulae that may correspond to a given mass measurement [143]. Such
evaluations are enlightening in the context of LC-MS-based metabolic profiling and
metabolomic studies for biomarker discovery, where hundreds to thousands of metabolite
features may be tracked among comparative samples, depending on the front end separation
efficiency and ESI sensitivity. It is conceivable that tens to hundreds of candidate biomarkers
may be discovered out of such datasets, and that automated, high-throughput analysis of LC-
MS data geared towards structural elucidation of biomarkers would be required to assign
biological significance to the results. The processing of large datasets from high resolution
mass spectrometers to reduce detected metabolite features to lists of monoisotopic masses is
becoming more common and specific examples have been briefly described above. Less
common are automated software packages geared towards producing candidate empirical
formulae from these lists of monoisotopic masses. As discussed by Kind and Fiehn, additional
information other than accurate mass measurements is required to constrain the list of candidate
empirical formulae to a manageable number. They demonstrate that 64 empirical formulae are
possible at a molecular mass of 500 when determined at a MMA of 3 ppm (the MMA of most
commercial TOF MS utilizing internal calibration); further, 1045 empirical formulae can be
generated for a molecular mass of 900 (the upper mass limit in metabolite profiling and
metabolomics experiments is typically 1000 m/z) at the same MMA [143]. However, when
applying an orthogonal isotopic distribution filter (i.e. matching the theoretical isotopic
distribution of each candidate empirical formula for a given monoisotopic mass to the
experimentally determined isotopic distribution) with 2% accuracy, the number of possible
empirical formulae are reduced to 3 and 18 for molecular masses of 500 and 900, respectively,
at a MMA of 3 ppm [143]. Although not determined in that study, the number of possible
empirical formulae may be further reduced to as few as 1 depending on the molecular mass at
lower MMA. While the computational burden of generating putative empirical formulae for
candidate biomarkers may not be significantly reduced through the incorporation of an isotopic
distribution filter into automated software algorithms already utilizing accurate mass
information, the downstream task of searching compound databases using empirical formulae
can be significantly improved through the sheer reduction in numbers. An example in the use
of isotopic distribution to aid metabolite structure elucidation is shown in Figure 6 for four
metabolites tentatively identified in human plasma extracts.

Targeted MS/MS Studies and De Novo Structural Elucidation
The use of high-resolution mass spectrometers in conjunction with isotopic distribution
filtering can significantly reduce the number of candidate empirical formulae, as discussed
above. Assuming that the empirical formulae are determined from the M+H species of the
detected metabolites and not based on ions derived from in-source fragments or adducts (eg.
sodium, potassium, or ammonium), then the formulae may be queried against available
metabolite and compound databases such as the Kyoto Encyclopedia of Genes and Genomics
(KEGG) Ligand database (http://www.genome.jp/kegg/ligand.html), the U. S. National
Institutes of Health PubChem database
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=pccompound), or the
Chapman & Hall/CRC Dictionary of Natural Products
(http://www.chemnetbase.com/scripts/dnpweb.exe?search+nbCQhALmG71) database. Such
an approach may lead to successful identifications for those metabolites that have been
previously characterized, but may prove fruitless for novel biomarkers. Researchers then have
the option of formulating chemical structures from the filtered (based on accurate mass and
isotopic distribution) list of empirical formulae, which would be a laborious task without
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automated software. Benecke et al. [163] have previously developed software, MOLGEN, for
the automated generation of all the stereoisomers of a given empirical formula; Kind and Fiehn
recently utilized MOLGEN in an in silico evaluation of an empirical formula query against
common metabolite and compound databases, and the various databases queried returned 2 to
181 matches for the molecular formula C15H12O7 (corresponding to a pentahydroxyflavone)
[143]. However, MOLGEN generated 788,000 stereoisomers for the same molecular formula
[143], highlighting the difficulties faced when trying to structurally identify a novel biomarker
that may have been previously uncharacterized. For such biomarkers, targeted MS/MS analyses
may be required to augment accurate mass and isotopic distribution information, in order to
arrive at more accurate identifications. The majority of LC-MS instruments with MS/MS
capabilities employ collision-induced dissociation (CID) for molecular fragmentation, during
which intra-molecular vibrational energy redistribution occurs prior to bond cleavage. Thus,
the weakest bonds in the target molecule tend to dissociate preferentially, resulting in product
ions corresponding to neutral losses of water, amine, or carbon dioxide in MS2 experiments.
While such functional group information is important for identifying metabolite features,
multiple stage MS experiments (MS3, MS4, etc.) may be required to generate sufficient data
for complete structural elucidation. While alternative fragmentation approaches such as
electron ionization (EI), electron capture dissociation (ECD), and electron transfer dissociation
(ETD), are available, they either are not easily coupled with LC (in the case of EI) or are not
amenable to the analysis of singly charged metabolite ions (in the case of ECD and ETD).
Thus, the success rate of determining metabolite structures based on CID fragmentation data
will ultimately depend on the experience of the individual investigator, the availability of in-
house [164] or public fragmentation libraries of the same or similar class of compounds, and
the chemical nature of the metabolite itself, in terms of the richness of the fragmentation data
produced. Indeed, there are relatively few success stories in the literature concerning the de
novo structural elucidation of candidate biomarkers without a priori knowledge of the chemical
class of the target molecule.

CONCLUSION
Advancements in front end LC separations and ionization efficiency are enabling increasingly
sensitive LC-MS-based metabolic profiling and metabolomic measurements. Higher and more
reproducible coverage of the metabolome is being achieved, resulting in the detection of larger
numbers of candidate biomarkers characterized by measured masses and retention times, or
alternatively by measured masses, retention times, and calculated empirical formulae, as
applicable. However, the functional complexity of the metabolome presents challenges to the
cost-effective structural elucidation of previously uncharacterized biomarkers; months of time
and thousands of dollars may be dedicated to resolving the identity of a candidate biomarker,
with mixed results. The field of proteomics has exploited the polymeric nature of peptides
through the development of various algorithms capable of interpreting MS/MS peptide
fragmentation spectra in a high-throughput manner, yielding putative peptide identifications
with corresponding correlation or probability scores. The functional complexity of the
metabolome has precluded the development of analogous algorithms for the high-throughput
interpretation of LC-MS-based MS/MS fragmentation spectra. Thus, the future of LC-MS in
metabolic profiling and metabolomic experiments for biomarker discovery may lie in more
targeted analyses based on biologically-driven hypotheses, where multiple known metabolites
will be expected to be perturbed based on the disease state, culture condition, etc., resulting in
a multi-metabolite panel to be used as a conglomerate biomarker. In this regard, LC-MS-based
measurements will likely serve as one key to the puzzle, together with other analytical
platforms, and provide complementary data to achieve the common goal of elucidating the
metabolic pathways activated in a disease or stress response. This is not to say that LC-MS
cannot be effectively utilized in untargeted, discovery based metabolic profiling and
metabolomics studies, but it is unlikely that LC-MS-based methods alone will be able to support
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the complete cycle of biomarker discovery, from accurate and reproducible detection and
quantitation in comparative samples to structural characterization for assigning biological
significance. In this respect, efforts in our own laboratory are transitioning from solely LC-MS
to include offline NMR analyses of fractions collected from scaled-up LC separations for
structural characterization of those metabolite features displaying interesting behavior during
sensitive capillary LC-MS analyses. Such experiments may be considered analogous to
relatively low throughput tandem MS/MS analyses of peptide digests to create a database of
identified peptides for subsequent high throughput FTICR MS analyses of the same or similar
samples [116]; while relatively low throughput, the target metabolites only need to be
structurally identified once and their chemical structures used to annotate in-house LC-MS
databases.

FUTURE PERSPECTIVE
The next 5–10 years will inevitably witness increased inter-laboratory cooperation in order to
collate as much LC-MS-based metabolite data as possible. In-house MS/MS libraries will
likely become more available to interested collaborators with similar model samples and
instrumentation, increasing the knowledge base of all participating laboratories. The
integration of NMR to LC-MS-based metabolic profiling and metabolomic studies will likely
increase, either through the offline analysis of collected LC fractions or through hybrid LC-
NMR-MS instrumentation. In contrast, GC-MS is unlikely to become an integrated component
to an LC-MS strategy, due to the fundamental differences in the two techniques and the inherent
difficulty in utilizing such complementary information for unknown biomarker
characterization. However, GC-MS will remain a tool for quantifying those metabolites not
amenable to LC-MS analysis due to relatively poor ionization efficiencies. New informatics
tools for the combined automated generation of candidate empirical formula and stereoisomer
generation for detected metabolite features may become available, as well as algorithms
designed to predict the chemical structure of unknown metabolites based on CID MS/MS
fragmentation spectra. However, the functional complexity of the metabolome has so far
precluded the development of the latter.

EXECUTIVE SUMMARY
Evolution of Metabolomics

• Metabonomics or metabolomics?
• Inspired by initial work of Robinson, Pauling, and Kacser
• Developed and refined into current “omics” ideology by Nicholson
• Further differentiation: targeted metabolite analysis, metabolic profiling,

metabolomics, and metabolic fingerprinting

Metabolomics Technologies
• NMR is non-destructive and very high throughput, although sensitivity is moderate

relative to MS-based methods
• GC-MS is unsurpassed in separation efficiency and exploits commercial

fragmentation libraries for metabolite identification; however, the method requires
chemical derivatization and is not amenable to larger, non-volatile molecules

• LC-MS can detect biomolecules in their native forms without chemical derivatization;
however, non-standardization of ionization and fragmentation sources makes sharing
of information difficult
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High-efficiency LC Separations and Miniaturization of Ionization Sources
• Improved front end separations minimize ionization suppression due to co-eluting

species
• Small inner diameter capillary columns require less sample and utilize reduced flow

rates
• Miniaturization of ionization sources result in increased ESI efficiency and overall

sensitivity

Quantitative Approaches
• Methods based on stable isotopically labeled internal standards can effectively reduce

systematic bias during sample processing and analysis, but may be more applicable
in targeted metabolic profiling studies

• Surrogate internal standards may be used to minimize variation, but may be
susceptible to variability in ESI during gradient elution

• Label-free approaches require no internal standards but provide only relative
quantitation and require sophisticated software

Structural Elucidation of Biomarkers
• High-resolution mass spectrometers provide accurate mass measurements and can

lead to predicted empirical formulae for unidentified biomarkers
• Utilization of isotopic distribution filters can significantly minimize the number of

candidate empirical formulae for unidentified biomarkers
• Targeted MS/MS experiments may provide sufficient information for structure

elucidation, but the degree of information obtained is compound specific
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Figure 1. Analysis of the Shewanella oneidensis metabolome utilizing reversed-phase capillary LC
coupled with FTICR MS
Cells of S. oneidensis were lysed via bead-beating and the metabolome extracted using cold
(−20°C) acetone with concomitant protein precipitation and removal via centrifugation. The
supernatant containing the extracted metabolome was dried in vacuo and reconstituted in
Nanopure water prior to sample injection. The LC conditions were as follows: operating
pressure of 20,000 psi; mobile phase A consisted of 0.2% acetic acid + 0.05% trifluoroacetic
acid in water; mobile phase B consisted of 0.1% trifluoroacetic acid in 90% acetonitrile + 10%
water; gradient elution was by exponential gradient as a result of constant pressure operation.
The MS detector consisted of an 11 Tesla FTICR MS utilizing home-built ion transmission
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optics, which was operated in the mass range of 100–1500 m/z. Reversed-phase C18 capillary
columns: (A) 50 µm i.d. × 2 m, 3 µm dP, (B) 50 µm i.d. × 50 cm, 2 µm dP, (C) 50 µm i.d. ×
20 cm, 1.4 µm dP. Peak-capacities of ~1500, ~500, and ~350 were calculated for the separations
shown in A, B, and C, respectively. Figure 1A reproduced with permission from Anal.
Chem. 2005, 77, 3090–3100. Copyright 2005 American Chemical Society. Figures 1B and 1C
unpublished data.
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Figure 2. Cartoon depicting the various factors leading to improved ESI efficiency during nano-
ESI as compared to conventional-ESI
Note: The ions depicted represent analyte ions only; typically, each droplet would also contain
many counter ions from the LC solvent.
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Figure 3. Comparison of ion intensities for a metabolite mixture analyzed by two nano-ESI flow
rates
An equimolar mixture (10 µM) of threonine, aspartic acid, pantothenic acid, reduced
glutathione (GSH), oxidized glutathione (GSSG), and flavin adenine dinucleotide (FAD) in
water:acetonitrile (50:50, v/v) was electrosprayed in negative-ESI mode. (A) flow rate of 250
nL/min, (B) flow rate of 16 nL/min. The MS utilized was an Agilent TOF. Unpublished data.
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Figure 4. MS total ion chromatogram and peak intensities for a four peptide mixture during the
course of an LC solvent gradient
The peptide solution was continuously delivered to a mixing tee at 0.2 µL/min and combined
with the LC solvent gradient flowing at 2.0 µL/min. The mixed solution was analyzed by ESI-
MS using a single quadrupole mass spectrometer. A linear gradient was created using an
Agilent 1100 LC system and two different mobile phases (A and B). Mobile phase A consisted
of 0.2% acetic acid and 0.05% TFA in water, and mobile phase B consisted of 0.1% TFA in
90% acetonitrile and 10% water. The bottom frame shows the percentage of mobile phase B
as a function of time. Unpublished data.
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Figure 5. Reproducibility of dual-column capillary LC-MS analyses of Cyanothece sp. ATCC 51142
metabolite extract
An in-house constructed dual-column capillary LC system was coupled with an LTQ-Orbitrap
MS and utilized in replicate analyses of the same Cyanothece metabolite extract. Five replicates
of the same sample were analyzed on both columns, and nine datasets were used for
comparative analyses (Column 1, Rep D was excluded from the data analysis due to the
presence of air bubbles during injection). The upper panel illustrates the agreement between
intensity measurements for individual features in the aligned and baseline datasets. The lower
panel illustrates agreement between intensity measurements in the aligned and baseline
datasets, in terms of an intensity ratio histogram. The dataset corresponding to Column 1, Rep
A was arbitrarily selected as a baseline for both chromatographic alignment and intensity
normalization. Unpublished data.
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Figure 6. Comparison of theoretical and experimental isotopic distributions for four human plasma
metabolites
The analysis of human plasma was conducted as described in the legend for Table 1. The
theoretical isotopic distributions (blue) for (A) tryptophan (205.0977 Da), (B)
palmitoylglycerophosphatidylcholine (496.3403 Da), (C) bilirubin (585.2713 Da), and (D)
riboflavin (377.1461 Da) are overlaid with the experimentally measured isotopic distributions
(green). Further validation of tentative identifications was made using accurate mass
measurements (see Table 1) targeted MS/MS data and comparison to authentic standards, as
applicable. Comparison of theoretical and experimental isotopic distributions was performed
using the Molecular Weight Calculator available at
http://ncrr.pnl.gov/software/MWCalculator.stm. Note that the Molecular Weight Calculator
software does not generate isotopic distributions with resolution comparable to the obtained
via Orbitrap MS. Unpublished data.
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Table 1
Mass measurement accuracy of tentatively identified human plasma metabolites
Metabolites were extracted from human plasma using cold (−20°C) methanol (4:1, v/v) with concomitant protein
precipitation and removal via centrifugation. Extracts were dried in vacuo, reconstituted in water, and analyzed using
capillary LC coupled with Orbitrap MS detection over a mass range of 100–1000 m/z. Metabolite masses were
determined by averaging the mass spectra across the full-width at half-maximum for the corresponding LC peaks.
Further validation of tentative identifications was made by comparison of theoretical and observed isotopic distributions
(see Figure 6) and by using targeted MS/MS data and comparison to authentic standards, as applicable. Unpublished
data.

Metabolite Observed m/z Predicted m/z Mass error (ppm)
Tryptophan 205.0971 205.0977 2.9
Riboflavin 377.1456 377.1461 1.3

Tetradecanoylglycerophosphatidylcholine 468.3090 468.3090 0.0
Pentadecanoylglycerophosphatidylcholine 482.3245 482.3246 −0.3
Hexadecenoylglycerophosphatidylcholine 494.3255 494.3246 −1.7
Hexadecanoylglycerophosphatidylcholine 496.3394 496.3403 1.8
Heptadecenoylglycerophosphatidylcholine 508.3414 508.3403 −2.2
Heptadecanoylglycerophosphatidylcholine 510.3558 510.3559 0.3

Octadecatrienoylglycerophosphatidylcholine 518.3260 518.3246 −2.6
Octadecadienoylglycerophosphatidylcholine 520.3393 520.3403 1.9

Octadecenoylglycerophosphatidylcholine 522.3566 522.3559 −1.3
Octadecanoylglycerophosphatidylcholine 524.3711 524.3716 0.9

Eicosapentaenoylglycerophosphatidylcholine 542.3246 542.3246 0.0
Eicosatetraenoylglycerophosphatidylcholine 544.3387 544.3403 2.9
Eicosatrienoylglycerophosphatidylcholine 546.3549 546.3559 1.9

Docosahexaenoylglycerophosphatidylcholine 568.3396 568.3403 1.2
Docosapentaenoylglycerophosphatidylcholine 570.3574 570.3559 −2.5

Bilirubin 585.2701 585.2713 2
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