
Rod and Rod-driven Function in Achromatopsia and Blue Cone
Monochromatism

Anne Moskowitz, Ronald M. Hansen, James D. Akula, Susan E. Eklund, and Anne B. Fulton
Department of Ophthalmology, Children’s Hospital and Harvard Medical School, 300 Longwood
Avenue, Boston, MA 02115

Abstract
Purpose—To evaluate rod photoreceptor and postreceptor retinal function in pediatric patients with
achromatopsia (ACHR) and blue cone monochromatism (BCM) using contemporary
electroretinographic (ERG) procedures.

Methods—Fifteen patients (age 1 to 20 years) with ACHR and six patients (age 4 to 22 years) with
BCM were studied. ERG responses to full-field stimuli were obtained in scotopic and photopic
conditions. Rod photoreceptor (Srod, Rrod) and rod-driven postreceptor (log σ, Vmax) response
parameters were calculated from the a-wave and b-wave. The ERG records were digitally filtered to
demonstrate the oscillatory potentials (OPs); a sensitivity parameter, log SOPA1/2, and an amplitude
parameter, SOPAmax, were used to characterize the OP response. Response parameters were
compared to those of 12 normal control subjects.

Results—As expected, photopic responses were non-detectable in patients with ACHR and BCM.
In addition, mean scotopic photoreceptor (Rrod) and postreceptor (Vmax and SOPAmax) amplitude
parameters were significantly reduced compared to those in normal controls. The flash intensity
required to evoke a half maximum b-wave amplitude (log σ) was significantly increased.

Conclusions—The results of this study provide evidence that deficits in rod and rod mediated
function occur in the primary cone dysfunction syndromes, achromatopsia and blue cone
monochromatism.

Achromatopsia refers to a group of congenital, stationary retinal disorders in which there is an
absence or paucity of functioning cones.1–3 Complete achromatopsia (ACHR), also called rod
monochromatism, is an autosomal recessive condition characterized by reduced visual acuity,
photophobia, nystagmus, deficits in color discrimination, and paradoxical pupillary
constriction to dark.1–5 Hyperopia is common 1, 6, 7, although a broad distribution of
refractive errors has been reported.8 Fundus appearance is typically normal 1–5, although
exceptions have been reported.9, 10 Blue cone monochromatism (BCM) is an X-linked
condition that shares many of the characteristics of autosomal recessive achromatopsia,
sometimes exhibited with reduced severity.1–3, 11, 12 Refractive error, however, is typically
myopic.8, 11, 13–15 Clinically, the Berson plates discriminate patients with BCM from
patients with ACHR.16–18

In ACHR, rods are the only functional photoreceptor type, while in BCM, both rods and short
wavelength sensitive cones are functional.12, 19 ACHR and BCM are typically regarded as
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stationary conditions, but in both there have been reports of adults with progressive retinal
disease.10, 20–26

Achromatopsia is understood to be a channelopathy of the cone photoreceptors. The most
common molecular causes are mutations in the cGMP-gated cation channel genes CNGA3
(OMIM600053) and CNGB3 (OMIM605080).7, 27–31 Less frequently, a mutation in the
transducin protein GNAT2 (OMIM139340) has been associated with achromatopsia. 32, 33
The most common molecular causes of BCM are mutations in the opsin gene array of long and
medium wavelength sensitive cone visual pigments located adjacently on the X-chromosome.
(OMIM303700).25, 34

In both ACHR and BCM, cone and cone-driven electroretinogram (ERG) responses to full-
field stimuli are markedly attenuated or non-detectable, whereas rod and rod-driven responses
are typically reported to be normal or near normal.4, 6, 8, 9, 21, 26, 27, 35–40 Recently,
however, abnormal rod-driven ERGs have been reported in some patients with CNGB3
achromatopsia 10 and BCM.23

Our own clinical observations also indicated abnormalities in rod and rod-driven ERGs in
pediatric patients with achromatopsia and blue cone monochromatism. Therefore, we
undertook an analysis of rod photoreceptor and postreceptor ERG components. Our goal was
to identify possible mechanisms underlying the abnormalities.

Methods
Subjects

Twenty one patients (Table 1), 15 with complete achromatopsia (ACHR) and six with blue
cone monochromatism (BCM), who had been followed in the Department of Ophthalmology,
Children’s Hospital Boston were studied retrospectively. ACHR patients exhibited typical
features of achromatopsia, including low visual acuity; photophobia; low amplitude, high
frequency, “jelly-like” nystagmus; and paradoxical pupillary constriction to dark. All patients
had normal fundus appearance. ACHR patients #1 and #8 are siblings. The clinical presentation
of the patients with BCM was similar, although the photophobia often appeared less severe.
All were male and all passed the Berson test;16 that is, unlike patients with ACRH, they were
able to distinguish a purple-blue (Munsell Color System 7.5 PB; dominant wavelength 468
nm) arrow from blue-green (5.0 BG; 491 nm) arrows. Two males who were classified as ACHR
(ACHR #4 and #7) were too young to do color vision testing. Median age at ERG was 2.7
years (range 1 to 20 years) for the ACHR patients and 8.0 years (range 4 to 22 years) for the
BCM patients.

Visual acuity was measured in dim room light using age appropriate tests (Teller Acuity Cards,
HOTV, Lea, Feinbloom, or ETDRS). Refractive error was measured using cycloplegic
retinoscopy.41 The most recent visual acuity and spherical equivalent values for each patient
are reported in Table 1. Acuity was below normal for age in all patients. Twelve of the 15
ACHR patients were hyperopic; nine were outside the 99% prediction limit of normal for age.
41, 42 Two of the three myopic ACHRs were also outside the normal limit. All six BCM
patients were myopic; four were outside the 99% prediction limit of normal for age.

Dark adapted, rod mediated visual thresholds, obtained in 11 ACHR patients and five BCM
patients, were normal 43 in all but one (ACHR #7), who showed a mild (1.18 log units) but
statistically significant threshold elevation. Four patients had repeated measurements with a
1.5 year (ACHR #5), a 6.8 year (BCM #21), a 7.8 year (ACHR #9), and a 9.0 year (ACHR
#12) interval between tests, and none showed a change in threshold, suggesting a stationary
condition.
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ERG responses in the patients with ACHR and BCM were compared to responses in 12 healthy
control subjects (median age 23 years; range 8 to 41 years). ERG response parameters in normal
subjects at the ages of our patients with ACHR and BCM (1 to 22 years) do not differ
significantly from those in adults.44 All of the control subjects had normal ocular structures
and corrected visual acuity of 20/25 or better; median spherical equivalent was −0.50 D (range
−4.75 to +0.88 D).

The patients had been referred for examination and testing in an attempt to diagnose their eye
and vision problems. Analysis of the patients’ data was done retrospectively with the approval
of the Children’s Hospital Committee on Clinical Investigation (CCI). Written, informed
consent was obtained from the control subjects after explanation of the nature and possible
consequences of the study. The control study conformed to the tenets of the Declaration of
Helsinki and was approved by the Children’s Hospital CCI.

Electroretinography
Pupils were dilated with 1% cyclopentolate hydrochloride, and the patient was dark adapted
for 30 minutes. All 12 control subjects and seven patients (four ACHR, three BCM) were tested
awake (Table 1); fifteen patients (11 ACHR, three BCM) had ERG testing under light
inhalation anesthesia which has no significant effect on the ERG parameters studied herein.
45 Following dark adaptation, 0.5% proparacaine was instilled and, under dim red light, a
bipolar Burian-Allen electrode (Hansen Ophthalmic Development Laboratory, Coralville, IA)
was placed on the cornea. A ground electrode was placed on the skin over the mastoid.
Responses were recorded from both eyes of the patients and from one eye of the control
subjects. In patients, the eye with the larger scotopic amplitudes was selected for analysis.

Thirteen of the patients (10 ACHR, three BCM) and all 12 control subjects were tested using
a Compact 4 system (Nicolet, Madison, WI) and eight (five ACHR, three BCM) using an
Espion system (Diagnosys, Lowell, MA). Despite differences between the two recording
systems in the spectral composition of the stimuli (described below) and in data acquisition
(2,564 Hz digitization rate for the Nicolet; 2,000 Hz for the Espion), a previous comparison
46 of rod and cone photoresponse parameters in normal adult subjects obtained using the
Espion system (N=7) and obtained earlier using the Nicolet system (N=13) 44, 47 showed no
significant differences. Therefore, the data obtained using the two systems have been
combined.

Responses were differentially amplified, displayed, digitized, and stored for analysis. A voltage
window was used to reject responses contaminated by artifacts. Two to 16 responses were
averaged in each stimulus condition. The inter-stimulus interval ranged from 2 to 60 seconds
and was selected so that subsequent b-wave amplitudes were not attenuated.47

Full-field stimuli were presented in an integrating sphere. Stimulus intensity was measured
using a calibrated photodiode (IL1700; International Light, Newburyport, MA) placed at the
position of the subject’s cornea. The troland values of the stimuli were calculated by taking
each subject’s pupillary diameter into account. To test rod function, after dark adaptation,
responses to brief (<3 ms), short wavelength stimuli ranging from those that evoked a small
b-wave (<15 μVolts) to those saturating the a-wave were recorded. In the Nicolet system, a
Wratten 47B filter (λ<510 nm) was used; in the Espion system, a 470 nm LED (half bandwidth
30 nm) was used. Flashes were presented over a >4 log unit range, starting with the dimmest
and increasing in 0.3 log unit steps. The maximum intensity flash produced approximately 3.0
log scotopic troland seconds (scot td sec) for an 8 mm pupil.
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To isolate rod function in the control subjects, dark adapted responses to photopically matched
long wavelength flashes (Wratten 29 filter, λ>610 nm) were recorded and subtracted from the
responses to the corresponding short wavelength flashes.48

Cone function was tested using long wavelength flashes. In the Nicolet system, a Wratten 29
filter (λ >610 nm) was used; in the Espion system, a 630 nm LED (half bandwidth 30 nm) was
used. A 1.8 log unit range of red flash intensities was presented on a steady, rod-saturating
background (~3 log phot td). The maximum intensity flash produced approximately 3.2 log
photopic troland seconds (phot td sec) for an 8 mm pupil. Seventeen of the 21 patients were
also tested with a 30 Hz flickering white stimulus (2.4 log phot td sec).

The rod photoresponse characteristics were estimated from the a-wave by means of the Hood
and Birch formulation 49 of the Lamb and Pugh model 50–52 of the biochemical processes
involved in the activation of rod phototransduction. A curve fitting routine (MATLAB, fmins
subroutine; The MathWorks, Inc, Natick, MA) was used to determine the best fitting values
of Srod [(scot td)−1 sec−3], Rrod (μVolts), and td (a brief delay, sec) in the following equation:

Eq. 1

In this equation, I is the flash in scotopic troland seconds. Assuming that the number of
isomerizations of rhodopsin produced by the stimulus is known, the term Srod is related to the
amplification constant, A, in the molecular models.50–53 In these models, A summarizes the
kinetics of the series of processes, initiated by the photoisomerization of rhodopsin, that result
in closure of the channels in the plasma membrane of the photoreceptor. Rrod is an estimate
of the amplitude of the saturated response. Fitting of the model was restricted to the leading
edge of the a-wave or to a maximum of 20 ms after stimulus onset.

The b-wave responses to short wavelength flashes were also analyzed. The stimulus/response
function

Eq. 2

was fit to the b-wave amplitudes of each subject. In this equation, V is the b-wave amplitude
produced by flash intensity I, Vmax (μVolts) the saturated amplitude, I the stimulus in scot td
sec, and σ the stimulus that evokes a half-maximum b-wave amplitude. The function was fit
only up to those higher intensities at which substantial a-wave intrusion occurred (~+1.0 log
scot td sec).54

As established by Granit, the ERG waveform represents the algebraic sum of photoreceptor
and postreceptor retinal responses.55, 56 The isolated rod photoresponse, called P3, is modeled
by Equation 1. To evaluate postreceptor function, designated P2, a putatively “pure”
postreceptor response was isolated from the intact ERG by digital subtraction of P3 from the
record. P2 represents primarily the bipolar cell response.57–61

For P2, the relation between flash intensity and the elapsed time between stimulus presentation
and the instant at which the response reaches an arbitrary criterion voltage will be linear on a
log-log plot with slope −0.2 in normal retina, consistent with three stages of integration in the
rod photoreceptor and three stages of integration in the rod bipolar cell.59 Departures from
this relation indicate dysfunction of the ON bipolar cells’ G-protein cascade.59, 60 We selected
a 50 μVolt criterion and noted the latency at which the rising phase of P2 reached that criterion.
For a family of P2 waves, we plotted the latency versus intensity relationship. To test for
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dysfunction, regression lines were fit and the slope of the regression line (P2 slope) in patients
was compared to that in control subjects.

Oscillatory potentials (OPs) were extracted from the derived postreceptor response (P2) as
described previously.62 In brief, P2 was digitally filtered using a fifth-order Butterworth filter
(MATLAB; butter subroutine; The MathWorks, Inc, Natick, MA) with bandpass 75 to 300 Hz.
63 The amplitude (μV) of each OP wavelet was defined as the difference between the peak
and the trough immediately preceding it. To characterize the OPs, the summed amplitude of
the OPs (SOPA) at each intensity was plotted as a function of stimulus energy and the
Michaelis-Menton equation

Eq. 3

was fit to the data. In this equation, SOPA(I) is the summed amplitude (μV) of the OPs in the
response to a flash of I intensity, SOPAmax is the saturated amplitude (μV) of the OPs, and
SOPA½ is the intensity at which the summed amplitude of the OPs is half SOPAmax.

Statistical Analyses
Preliminary analyses showed no significant difference between ACHR and BCM patients on
any of the ERG parameters (Srod, Rrod, log σ, Vmax, log SOPA1/2, SOPAmax, and P2 slope;
t-tests: df=19; P >0.2 on all tests). Furthermore, for each parameter, the range of values for
ACHR and BCM patients was similar. Therefore, data from the two patient groups were pooled
and individual, independent samples t-tests for each ERG parameter were used to detect
differences between patients and control subjects. The significance level for all tests was
P<0.01.

Results
In Figure 1, sample ERG records from an ACHR patient obtained in scotopic (Fig. 1A) and
photopic (Fig. 1B) conditions are shown. In all patients with ACHR or BCM, scotopic activity
was observed over a ≥3 log unit range of intensities, while photopic activity was absent or
markedly attenuated (<5% of normal mean amplitude). Figure 1C shows sample fits of the
model (Eq. 1) of the activation of rod phototransduction 49–52 to the a-wave. Figure 1D shows
the fit of Eq. 2 for determining the postreceptor (b-wave) response parameters. Note that lower
values of log σ indicate greater sensitivity; that is, a lower intensity produces the half maximum
response.

Figure 2 shows P2 responses derived from the records in Figure 1A and a plot of the latency
versus intensity relationship. Scotopic OP records extracted from the P2 responses shown in
Figure 2 are displayed in Figure 3; OPs from a control subject are also shown.

The rod photoreceptor and postreceptor response parameters for the patients with ACHR and
BCM and for control subjects are summarized in Figure 4. The amplitude parameters for the
rods, Rrod (t = −7.484, df=31, P<0.001), and for postreceptor activity, Vmax (t = −6.821, df=31,
P<0.001) and SOPAmax (t = −10.755, df=31, P<0.001), were significantly lower in patients
than in controls, with little overlap. For all sensitivity parameters (Srod, log σ, and log
SOPA1/2), there was substantial overlap between patients and controls. However, b-wave log
σ in patients differed significantly from that in controls (t = 3.152, df = 31, P = 0.0036); in
patients, a higher intensity was needed to evoke a half maximum response. In prior study of
young, healthy subjects with myopia (as high as −10 diopters), we found no differences in rod
and rod-driven postreceptor response parameters between myopes and controls.64
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The mean slope of regression lines fit to P2 latency versus intensity plots was −0.19 (SD=0.04)
in the 12 control subjects and −0.20 (SD = 0.04) in the ACHR and BCM patients. These values
were not significantly different from each other or from the normal mean slope of −0.2.59,
60, 65

Discussion
In these young patients with achromatopsia (ACHR) and blue cone monochromatism (BCM),
we have demonstrated significant deficits in rod and rod-driven function. Specifically, mean
photoreceptor (Rrod) and postreceptor (Vmax and SOPAmax) amplitude parameters were
reduced relative to those in normal controls (Figure 4). Sensitivity parameters (Srod, log σ, and
log SOPA1/2) were less affected; only b-wave log σ differed significantly from normal.

While rod photoreceptors are not directly affected by the genetic mutations causing ACHR
and BCM, it has been suggested that alterations in rod structure occur. High resolution adaptive
optics imaging of the photoreceptor mosaic in a subject with CNGB3 achromatopsia showed
increased diameter of rod inner segments, possibly due to rods expanding into space that would
normally be occupied by cones.66 In this subject, the density of rods at 10° eccentricity was
reduced by about a third compared to normal.66, 67 Thus, the low values of Rrod in our ACHR
and BCM subjects may be due to a decrease in the total number of rods. Shorter rod outer
segment length would also reduce Rrod. To our knowledge, rod outer segment length has not
been measured in ACHR or BCM.

To our knowledge, only one other study 10 quantitatively investigated rod activation in patients
with ACHR. Khan and colleagues evaluated four adults with CNGB3 achromatopsia who
showed macular atrophy in middle age. Their rod photoreceptor and postreceptor amplitude
parameters fell within the range of values observed in our patients. Our patients, however, were
younger than theirs (Table 1) yet the majority showed greater deficits. We have observed
neither fundus abnormalities nor progressive worsening in visual acuity or dark adapted visual
thresholds in our patients. We wonder, therefore, if the alterations in rod and rod-driven
function may indicate anomalies in rod pathway signaling rather than rod disease. Individuals
with ACHR and BCM prefer dim environments, which would increase the metabolic load
placed on the rods. This, in turn, would result in more circulating current, which would require
more energy with possible adverse long term effects on rod function.

Thus, the low calculated values of Rrod could be due to fewer rods, shorter rod outer segments,
or defective rod functioning.

In addition to the significant deficit in rod photoresponse amplitude, we observed deficits in
postreceptor response parameters (Vmax, log σ, and SOPAmax). According to an explicit
model, changes in Rrod are predicted to alter b-wave sensitivity (log σ) but to have little effect
on Vmax.58, 68 In our patients, mean log σ and mean Vmax are both approximately half that
in controls. The low Vmax could be caused by too few rod-driven bipolar cells. Although we
are unaware of any anatomic evidence that the number of rod bipolar cells is reduced in ACHR
or BCM, the reduced rod density found in the subject with achromatopsia 66 may be
accompanied by a proportionate reduction in rod bipolar cell density. In another system
(immature simian central retina), the numbers of cones and cone bipolar cells are
proportionately decreased.69 Another possible explanation for the reduction in Vmax that is
consistent with the explicit model 58, 68 is a postreceptor change resulting from abnormal
function of rod bipolar cells. However, the normal P2 latency versus intensity slope (Figure 2)
indicates that, at the least, the G-protein amplification cascade in the rod bipolar cell was
operational.
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Our data do not allow us to exclude the possibility that there is some alteration of the rod-driven
circuitry in ACHR and BCM. Reorganization of the postreceptor retina is a well documented
consequence in a number of photoreceptor disorders.62, 70–73 The normal scotopic pathway
is dominated by the rod-specific hyperpolarizing bipolar cell.74 In addition to this primary
pathway, there are anatomical connections between rods and cones and some between rods
and depolarizing cone bipolar cells.75–81 We speculate that the latter contacts may be more
numerous in cone-deficient ACHR and BCM retinas. This would allow substantial rod input
to cone depolarizing bipolar cells with consequent reduction in the apparent postreceptor
response from the primary rod pathway in both ACHR and BCM. In a CNGA3−/− mouse model,
anomalous synapses between rods and cone bipolar cells are documented.82

The oscillatory potentials are affected by inputs from both rods and cones.83, 84 In ACHR and
BCM retinas, cone input is absent or greatly diminished, possibly accounting for the dramatic
attenuation in SOPAmax observed in our patients.

Whatever the actual mechanisms, the ERG data reported herein add evidence that deficits in
rod and rod mediated function occur in the primary cone dysfunction syndromes,
achromatopsia and blue cone monochromatism. While it is well established that cones are
adversely affected in primary rod disorders,82, 85–91 there has been less evidence that rods
are affected in disorders with primary cone dysfunction.10, 23, 92

Each of the possible mechanisms for abnormal retinal function considered above leads to
hypotheses that can be tested by further ultra-high resolution imaging of individuals with
ACHR and BCM and by study of animal models.82, 92–94 The new knowledge obtained will
bolster efforts to design and evaluate effective therapies for cone dysfunction syndromes.95,
96
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Figure 1.
Sample ERG results from an achromatopsia patient (ACHR #9) whose scotopic amplitudes
are near the mean for patients. A. Dark-adapted ERG responses to a series of short wavelength
flashes. For clarity, the stimulus intensity in log scot td sec is shown only for every other trace.
B. Light-adapted ERG responses to two long wavelength flash intensities, +3.2 and +2.4 log
phot td sec, and to 30 Hz flickering white light (+2.4 log phot td sec). The calibration bar
pertains to panels A and B. C. The first 40 milliseconds of the ERG (solid lines) and the fit of
Eq. 1 (dashed lines) to the leading edge of the a-wave. The parameters Srod and Rrod for the
model fit to the data are indicated. D. B-wave amplitude plotted as a function of stimulus
intensity. Eq. 2 was fit up to ~+1.0 log scot td sec, indicated by the closed circles; parameters
Vmax and log σ are indicated.
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Figure 2.
A. Sample P2 records from ACHR #9. The derivation of P2 is shown in the inset. B. Latency
at the 50 μVolt criterion plotted as a function of log stimulus intensity. The regression line has
a slope of −0.20.
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Figure 3.
Scotopic oscillatory potentials for a series of flash intensities from ACHR #9 (left) and for a
control subject (right). For clarity, the stimulus intensity in log scot td sec is shown only for
every other trace. Note that the achromatopsia patient’s records are plotted at twice the gain
of the control subject’s.

Moskowitz et al. Page 14

Invest Ophthalmol Vis Sci. Author manuscript; available in PMC 2010 February 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Rod photoresponse parameters, Srod and Rrod, and postreceptor parameters, log σ, Vmax, log
SOPA1/2, and SOPAmax. Amplitude parameters (Rrod, Vmax, and SOPAmax) are shown on
the top and sensitivity parameters (Srod, log σ, and log SOPA1/2) on the bottom. Log values
are plotted for all parameters. Data for control subjects (triangles), patients with ACHR (filled
circles), and BCM (open circles) are shown in each graph. The horizontal lines indicate the
mean for each group.
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