

NIH Public Access

Author Manuscript

Neuroreport. Author manuscript; available in PMC 2009 January 28.

Published in final edited form as:

Neuroreport. 2007 November 19; 18(17): 1761-1764. doi:10.1097/WNR.0b013e3282f13e7a.

Association between SORL1 and Alzheimer disease in a genomewide study

Yan Meng^{1,*}, Joseph H Lee³, Rong Cheng³, Peter St George-Hyslop⁴, Richard Mayeux³, and Lindsay A Farrer^{1,2}

1 Department of Medicine (Genetics Program), Boston University Schools of Medicine and Public Health, Boston, Massachusetts 02118, USA

2 Departments of Neurology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts 02118, USA

3 The Taub Institute on Alzheimer's Disease and the Aging Brain and The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; and Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA

4 Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; and Toronto Western Hospital Research Institute, Toronto, Ontario, M5S 3H2, Canada

Abstract

Several studies [1–3] have reported an association of Alzheimer disease (AD) with polymorphic markers in *SORL1*. Data from a recently published genome wide association study in AD [4] have been made publically available. We tested the association of AD with *SORL1* in this dataset (TGEN), which included 31 *SORL1* SNPs, 8 of which overlapped the original study [1]. Six SNPs, near the 3' region of *SORL1* containing SNPs which were strongly associated with AD in previous studies, showed significant association in the TGEN dataset. These results provide an independent replication of the association between AD and *SORL1*.

Keywords

Alzheimer disease; SORL1; association; genome-wide association study

Introduction

Rogaeva et al.[1] reported an association between Alzheimer disease (AD) and several SNPs in the gene encoding the sortilin-related receptor, low-density lipoprotein receptor class A repeat–containing protein - *SORL1* (11q23–q24) in four different ethnic groups (Caucasians, African Americans, Israeli-Arabs and Hispanics) analyzed separately. Although the precise identity of the genetic effectors in *SORL1* remains to be determined, this initial study pointed to two clusters of SNPs in distinct regions of the gene, implying the existence of multiple allelic variants associated with AD in different populations. Two positive replications have been

Address for correspondence and reprints: Dr. Lindsay A. Farrer, Boston University School of Medicine, Genetics Program L-320, 715 Albany Street, Boston, MA 02118; Phone: (617) 638-5393; Email: farrer@bu.edu.

^{*}Current affiliation: Center for Human Genetic Research, Massachusetts General Hospital, Boston; Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA

The authors declare that there are no conflicts of interest.

reported [2,3]. Recently, results of a genome wide association study in AD was published [4] with a focus on a novel association of SNPs in the *GAB2* gene with AD. This report however did not mention any results for *SORL1*. We were therefore interested to test whether the association of AD with *SORL1* is replicated in this dataset (TGEN) which is publicly available.

Methods

Subjects

The TGEN dataset [4] was obtained from from the website

http://www.tgen.org/neurogenomics/data. Although both the original study by Rogaeva et al [1] and the study by Reiman et al describing the TGEN dataset [4] included subjects ascertained at the Mayo Clinic in Rochester, Minnesota, the Mayo subjects in the TGEN data set and the Mayo subjects included in Rogaeva et al. study are independent. Consequently, we analyzed *SORL1* data for 1,408 subjects in the TGEN database which included 1,044 autopsied individuals (641 cases, 403 controls) and 364 clinically examined subjects from the Mayo Clinic (218 cases and 146 controls).

Statistical analyses

SNP marker data were assessed for deviations from Hardy-Weinberg equilibrium using Haploview [5] software. Single point allelic and genotypic tests were performed using PLINK [6]. Marker genotype distributions in cases and controls were compared in several ways: (1) a genotypic test with two degrees of freedom, models assuming (2) dominant and (3) recessive inheritance, and (4) the Cochran-Armitage trend test.

Linkage disequilibrium

The LD structure among the *SORL1* SNPs was examined using Haploview[5]. Haplotype blocks were defined using the confidence intervals algorithm. The default settings were used in these analyses, which create 95% confidence bounds on D' to delineate SNP pairs in strong LD.

Results

There were 31 *SORL1* SNPs in the TGEN database, and eight of those overlapped the 29 SNPs in the by Rogaeva et al study [1]. These 31 SNPs are referred to by their sequential order on the physical map in TGEN database, i.e. T.1, T.2, T.*n*, T.31. Therefore, a total of 52 unique SNPs were analyzed in these two studies (Table 1). All SNPs are in Hardy-Weinberg equilibrium in control samples. The LD structures of SNPs in the 5' and 3' regions are similar in the north European family data [1] and TGEN data [2] (Figure 1).

Six SNPs (T.17, T.19, T.20, T.21, T.26, T.27) showed nominally significant association (0.01 \leq p <0.05) with AD under at least one model (Table 2). These six SNPs span a region of approximately 35 kb including SNPs 21–25 near the 3' end of *SORL1* which were strongly associated with AD in the Rogaeva et al. study. TGEN SNPs T.17 and T.19 are located between SNPs 20 and 21, TGEN SNPs T.20 and T.21 are between SNPs 22 and 23, and TGEN SNPs T.26 and T.27 are between SNPs 24 and 25 (Table 2). Haplotype analysis strengthened the association signal in the region including the two SNPs between SNPs 22 and 23 (global p-value = 0.005, data not shown).

Discussion

The results from analysis of the TGEN data provide an independent replication of the association between AD and *SORL1*. We recognize that the magnitude of the significance of

Neuroreport. Author manuscript; available in PMC 2009 January 28.

these results would not survive correction for multiple testing in a hypothesis-generating study (e.g., genome-wide association study); however a p-value of less than 0.05 is sufficient to confirm a previously reported association between variants within a specific gene and disease. Furthermore, although the particular SNP associations in this study are novel, a Bonferroni or similar correction is not appropriate or justified because all of the associated SNPs are within the region of and in LD with SNPs implicated in previous investigations[1–3], and therefore these are not truly independent tests.

Conclusion

While the precise identity of genetic effectors in *SORL1* remains unknown, the TGEN data support the hypothesis that at least one disease risk enhancing allele is located near the 3' end of *SORL1*.

Acknowledgements

This work was supported by grants from the US National Institute on Aging: R01-AG09029, R01-AG25259, R01-AG17173, and P30-AG13846 (LAF); R37-AG15473 and P01-AG07232 (RM); the Canadian Institutes of Health Research, Howard Hughes Medical Institute, Alzheimer Society of Ontario, Canada Foundation for Innovation, Ontario Research and Development Challenge Fund, Ontario Mental Health Foundation, Genome Canada (PSGH); the Blanchett Hooker Rockefeller Foundation and Charles S. Robertson Gift from the Banbury Fund (RM); and Fonds de la Recherche en Santé (YM). This research was conducted using the Boston University Linux Cluster for Genetic Analysis funded by an NCRR Shared Instrumentation grant (RR163736).

References

- Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T, Zou F, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007;39(2):168–177. [PubMed: 17220890]
- Lee JH, Cheng R, Schupf N, Manly J, Lantigua R, Stern Y, et al. The association between genetic variants in SORL1 and Alzheimer disease in an urban, multiethnic, community-based cohort. Arch Neurol 2007;64(4):501–506. [PubMed: 17420311]
- Lee JH, Cheng R, Schupf N, Honig LS, Vonsattel GJ, Clark L, et al. The Association Between Genetic Variants in SORL1 and Autopsy-Confirmed Alzheimer's Disease. Neurology. 2007In press
- 4. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer's risk in APOE epsilon4 carriers. Neuron 2007;54(5):713–720. [PubMed: 17553421]
- Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005;21(2):263–265. [PubMed: 15297300]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tools set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007:81.

Meng et al.

Figure 1.

Linkage disequilibrium (LD) structure of SORL1. Relative locations of SNPs included in each dataset are shown on two parallel stick diagrams, with LD maps for the TGEN dataset located above and the north European familial AD dataset studied by Rogaeva et al. [1] below the gene structure. The measure of LD (D') among all possible pairs of SNPs is shown graphically according to the shade of red where white represents very low D' and dark red represents very high D'. High D' estimates associated with a large confidence interval (most likely due to one of the alleles being rare) are denoted by blue squares.

Neuroreport. Author manuscript; available in PMC 2009 January 28.

	TGEN	0.39	0.49	0.57	0.55	$0.28 \\ 0.57$	0.33	0.32	000	0.83			0.25	0.17		0.14	0.49	0.48	0.78		0.045	0.30		0.021	0.20	0.42 0.44	5	0.09 0.26	0.07	0.049		0.19 0.70	0.56	
	Israeli Arab	0.18 0.08 0.08	0.07	0.046	0.29		0.041	0.021	0.07	0.030	0.56	0.43 0.12	0.36	0.0026	0.20	0.17	11.0			0.0082			0.001	16.0			0.00073	0.64		19.0	0.80	0.96		0.09 0.06
	NE FAD	0.20 0.07 0.32	0.12	0.27	0.64		0.15	0.52	0.57	0.22	0.014	0.69	0.61	0.41	0.0057	0.08	00.0			0.031			0.41	0.00			0.0031	0.020		0.09	0.07	0.010		$0.07 \\ 0.20$
	TGEN order	T.1	T.2	T.	T.4	T.5 T.6	T.7	T.8	Ē	6.1			T.10	T.11		T.12	T.13	T.14 T.15	T.16		T.17	T.18 T.19		T.20	T.21	1.22 T.23		T.24 T.25	T.26	T.27 T 28		T.29 T 30	T.31	
	Orig order	- α ω .	4	S	9		L	хo	10	11	12	14 14	15	16	17	81	01		:	19 20	2		21	77			23	24		25	26	27		28 29
Table 1 the TGEN dataset.	SNP Type	Upstream of 5' UTR intron intron	intron	intron	intron	intron intron	Н269Н	intron	intron	intron	intron	intron	intron	intron T833T	intron	intron	intron	intron	intron	S1187S intron	intron	intron	(-18) 5' of exon 26	N1246N intron	intron	intron	A1584A	intron intron	intron	intron	intron	intron	intron	downstream of 3'UTR downstream of 3'UTR
iginal study and in	Distance (bp) from Previous Marker	1,723 4,382	1,095 11,279	8,878 10.154	1,619	1,432 1.687	3,623	295 3 199	9,845	1,906 6.631	3,724	458 13,024	7,768	836 10.643	252	663 1 181	3,202	4,625 2,000	4,359	1,542	3,743	14 711	1,498	2,813 7,126	858	0,445 207	2,324	1,174 1.862	2,449	1,531 463	6,015	3,585 1 026	3,857	3,871 990
ormation in the or	Physical Map Location (bp)	120,826,964 120,828,687 120,833,069	120,834,164 120,845,443	120,854,321 120,864,475	120,866,094	120,867,526 120.869.213	120,872,836	120,873,131	120,886,175	120,888,081 120,894.712	120,898,436	120,898,894	120,919,686	120,920,522 120,931.165	120,931,417	120,932,080	120,939,766	120,944,391	120,951,758	120,953,300 120,953,300	120,957,136	120,957,150 120,957,861	120,959,359	120,962,172	120,970,156	120.978.808	120,981,132	120,982,306 120.984.168	120,986,617	120,988,148 120,988,611	120,994,626	120,998,211	121,003,094	121,006,965 121,007,955
SORLI SNP info	dbSNP rs Number	rs4935774 rs578506 rs582446	rs661057 rs676160	rs11218304 rs676759	rs560573	rs985421 rs593769	rs12364988	rs668387	rs641120	rs11218313 rs4935775	rs12285364	rs11600231 rs11600231	rs2276346	rs10502262 SORL1-T833T	rs556349	rs7131432 re11218340	rs10892756	rs11218346	rs11218347	rs2070045 rs3824966	rs1699103	rs7116734 rs11218350	SORL1-18ex26	rs1099102 rs10892759	rs1792113	rs11216500 rs7128608	rs3824968	rs1629493 rs2282649	rs726601	rs1784931 rs1010159	rs1784933	rs1614735 rs17125558	rs10892761	rs1133174 rs1131497
	SNP order	- 0 m	4 v	9	~ ∞	9 10	: = :	12	54;	c1 16	17	18	20	21 22	23	24 25	26 26	27	29	30 31	32	33 34	35.	30 37	38	40 40	41	42 43	44	45 46	47	48 49	50	51 52

Neuroreport. Author manuscript; available in PMC 2009 January 28.

Meng et al.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Notes: The nominal *P* values for allelic association with AD are shown for each dataset. NE FAD – north European familial AD dataset; Israeli-Arab – Israeli-Arab case-control dataset, and TGEN – TGEN dataset. Boldface rs number indicates that the SNP was genotyped in both Rogaeva et al. [1] and Reiman et al. [4] studies. Bold face p-value indicates that the SNP is nominally associated with AD in the original study. Bold face p-value with white font, black background refer to significant results from analyses of the TGEN data.

_
_
_
_
_
-
0
~
-
-
~
-
<u> </u>
–
-
_
\sim
0
_
•
_
~
>
-
a)
~
_
-
_
0
~
\mathbf{O}
\simeq
_ .
_
0

Table 2

	Sin	gle-SNP association results in the T	GEN dataset.								
order	SNP	interval of SNPs in the original paper	Minor Allele	FA	F_U	OR	Allele.P	Geno.P	DOM.P	REC.P	TREND.P
T.1	rs4935774	1	1	0.215	0.201	1.09	0.39	0.54	0.54	0.29	0.38
T.2	rs676160	4~5	2	0.100	0.092	1.10	0.49	0.78	0.50	0.73	0.48
T.3	rs676759	2~9	2	0.389	0.378	1.05	0.57	0.35	0.88	0.19	0.57
T.4	rs560573	9	2	0.386	0.374	1.05	0.55	0.40	0.95	0.21	0.55
T.5	rs985421	L~9	2	0.016	0.022	0.74	0.28	NA	NA	NA	0.27
T.6	rs593769	L~9	1	0.385	0.374	1.05	0.57	0.48	0.98	0.25	0.57
T.7	rs12364988	L	2	0.496	0.477	1.08	0.33	0.56	0.61	0.28	0.34
T.8	rs668387	8	2	0.430	0.411	1.08	0.32	0.57	0.52	0.31	0.32
T.9	rs11218313	10~11	2	0.088	0.086	1.03	0.83	0.92	0.78	0.82	0.83
T.10	rs2276346	15	1	0.351	0.372	0.91	0.25	0.22	0.10	0.95	0.24
T.11	rs10502262	15~16	1	0.288	0.312	0.89	0.17	0.33	0.14	0.60	0.17
T.12	rs7131432	17~18	2	0.016	0.024	0.67	0.14	NA	NA	NA	0.14
T.13	rs10892756	18~19	1	0.075	0.068	1.11	0.49	0.40	0.65	0.18	0.49
T.14	rs11218346	18~19	1	0.085	0.078	1.11	0.48	0.60	0.55	0.37	0.47
T.15	rs1790213	18~19	2	0.375	0.393	0.93	0.33	0.34	0.17	0.99	0.33
T.16	rs11218347	18~19	1	0.076	0.073	1.04	0.78	0.94	0.81	0.78	0.78
T.17	rs1699103	20~21	1	0.404	0.442	0.85	0.045	0.13	0.07	0.14	0.043
T.18	rs7116734	20~21	1	0.399	0.419	0.92	0.30	0.42	0.61	0.19	0.29
T.19	rs11218350	20~21	2	0.215	0.248	0.83	0.040	0.11	0.11	0.07	0.045
T.20	rs10892759	22~23	1	0.325	0.368	0.83	0.021	0.040	0.011	0.35	0.020
T.21	rs1792113	22~23	1	0.351	0.375	0.90	0.20	0.06	0.041	0.68	0.21
T.22	rs11218360	22~23	1	0.027	0.032	0.83	0.42	NA	NA	NA	0.41
T.23	rs7128608	22~23	1	0.044	0.038	1.17	0.44	0.75	0.45	0.84	0.45
T.24	rs1629493	23~24	2	0.356	0.388	0.87	0.09	0.20	0.15	0.14	0.08
T.25	rs2282649	24	2	0.289	0.309	0.91	0.26	0.52	0.31	0.43	0.26
T.26	rs726601	24~25	2	0.296	0.329	0.86	0.07	0.12	0.038	0.56	0.06
T.27	rs1784931	24~25	1	0.377	0.415	0.86	0.049	0.12	0.049	0.24	0.046
T.28	rs1010159	25	1	0.336	0.363	0.89	0.14	0.32	0.21	0.24	0.14
T.29	rs1614735	27	2	0.479	0.505	0.90	0.19	0.27	0.11	0.58	0.18
T.30	rs17125558	27~28	2	0.020	0.022	0.90	0.70	NA	NA	NA	0.70
T.31	rs10892761	27~28	2	0.411	0.422	0.96	0.56	0.07	0.10	0.32	0.56
Notes:	F_A: Minor allele	a frequency in cases; F_U: Minor allele frequenc	cy in controls; OR: es	stimated odd	ds ratio for /	AD of mino	r allele; Allel€	e.P: p-value f	or allelic associ	ation; Geno.P.	p-value for

Neuroreport. Author manuscript; available in PMC 2009 January 28.

genotypic (2 df) test; DOM.P: p-value for genotypic (1 df) test with dominant model; REC.P: p-value for genotypic (1 df) test with recessive model; TREND.P: Cochran-Armitage trend test; NA: Not available (allelic, genotypic and dominant/recessive tests require that each cell has a frequency of 1 or greater). SNPs studied by both Rogaeva et al. [1] and Reiman et al. [4] are indicated in boldface.