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Abstract
The metabolic syndrome is a common and complex disorder combining obesity, dyslipidemia,
hypertension and insulin resistance. It is associated with a high cardiovascular risk that can only
partially be explained by its components. There is evidence that low-grade inflammation and high
oxidative stress add to this risk. Oxidized LDL, a marker of lipoprotein-associated oxidative stress,
is an emerging cardiovascular risk factor. In this review, we demonstrate that the metabolic syndrome
exacerbates oxidized LDL in a feedback loop. We introduce molecular mechanisms underlying this
loop. Finally, we demonstrate that weight loss and statin treatment lower metabolic syndrome factors
associated with a reduction of oxidized LDL. The current data warrant further investigation into the
role of lifestyle and therapeutic interventions that inhibit tissue-associated oxidation of LDL in the
prevention of the metabolic syndrome.
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The metabolic syndrome is a common and complex disorder combining obesity, dyslipidemia,
hypertension and insulin resistance [1–4]. It is a primary risk factor for diabetes and
cardiovascular disease [2,5–12]. Typically, Type 2 diabetes begins with insulin resistance; only
very few Type 2 diabetics go on to insulin deficiency [13]. Obesity and insulin resistance, and
the interaction between these two components, are associated with a high cardiovascular risk
[14,15]. Obesity-related Type 2 diabetes is a leading cause of morbidity and mortality in
Western societies, and is quickly approaching pandemic proportions [16]. The prevalence of
obesity continues to increase, with more than 50% of Europeans currently classified as
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overweight and up to 30% as clinically obese [17–19]. In the WHO report on integrated
management of cardiovascular risk, it was estimated that each year, approximately a quarter
of a million deaths in Europe, and more than 2.5 million deaths worldwide, are weightrelated,
with cardiovascular disease as the leading cause. The recent rapid increase in childhood
overweight and obesity will lead to a further increase in the prevalence of metabolic disease
and its associated high cardiovascular risk.

Although insulin resistance and Type 2 diabetes are associated with increased coronary heart
disease (CHD) risk, the severity of hyperinsulinemia and hyperglycemia during the diabetic
phase can only explain this increased risk to a minor extent. In addition, traditional risk factors
do not fully explain this excess risk, and other nontraditional risk factors may be important
[20]. Therefore, the European Innovative Medicines Initiative gives priority to the
identification of emerging risk factors that are targets for prevention and treatment.

One of the emerging risk factors is subclinical chronic low-grade inflammation [20].
Population studies demonstrated a strong correlation between proinflammatory biomarkers
(such as C-reactive protein, IL-6 and TNF-α) and perturbations in glucose homeostasis, obesity
and atherosclerosis [21,22]. Adipocytes contribute to this inflammation by producing
proinflammatory adipokines. In addition, macrophages that frequently infiltrate the adipose
tissue of obese persons produce inflammatory chemokines [23,24].

Another emerging risk factor is oxidized LDL (ox-LDL), which activates circulating
monocytes, thereby increasing their ability to infiltrate the vascular wall. This increased
infiltration is a primary stage in atherogenesis [25]. Recent data suggest that increased oxidative
stress in adipose tissue is an early instigator of the metabolic syndrome and that the redox state
in adipose tissue is a potentially useful therapeutic target for the obesity-associated metabolic
syndrome [26].

Our aim is to discuss the relation between ox-LDL and the metabolic syndrome. We will outline
mechanisms through which the metabolic syndrome can be related to the oxidation of LDL
and give examples of interventions that lower metabolic syndrome factors and ox-LDL in
experimental models. We will discuss assays for measuring circulating ox-LDL and give an
overview of population data highlightling the association between ox-LDL and the metabolic
syndrome. Furthermore, we will introduce mechanisms through which ox-LDL could be
involved in the pathogenesis of the metabolic syndrome.

Relationship between metabolic syndrome & oxidized LDL: findings in
mouse studies

Recently, we obtained a mouse model of the metabolic syndrome that allowed the study of
molecular mechanisms, explaining the relationship between the metabolic syndrome
components and increased oxidative stress. Indeed, we found that mice with combined leptin
(ob/ob) and LDL-receptor deficiency (LDLR-/-; double knockout [DKO] mice) are obese and
exhibited severe hypertriglyceridemia, hypertension and insulin resistance and diabetes. This
combination of metabolic syndrome components was associated with accelerated
atherosclerosis due to an increased accumulation of macrophages in association with
endothelial dysfunction evidenced by increased expression of VCAM-1 and ICAM-1 in the
aorta of DKO mice [27]. Increased macrophage accumulation was associated with elevated
plaque ox-LDL. The latter could be partly attributed to increased myeloperoxidase production
by plaque macrophages. In addition, impaired HDL-associated antioxidant activity in the blood
[28] was associated with more ox-LDL in the plaques. By means of adenovirus-mediated gene
transfer, we demonstrated that over-expression of human paraoxonase (PON)-1 significantly
decreased the amount of ox-LDL and the number of macrophages in the plaques, thereby
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reducing total plaque volume. Interestingly, Hansel and colleagues demonstrated that the
metabolic syndrome is associated with dysfunctional dense HDL particles and elevated
oxidative stress [29]. The group of Mackness, who collaborated in the PON gene transfer study,
later showed a decrease in PON activity that was associated with a defective metabolism of
oxidized phospholipids by HDL from patients with Type 2 diabetes [30].

We then further investigated the relationship between metabolic syndrome components and
the oxidation of LDL by assessing the effect of weight loss. We selected this intervention
because it had been demonstrated that CHD risk factors in obese persons vary as a function of
being insulin-resistant or insulin-sensitive; and weight loss is effective in reducing CHD risk
in insulin-resistant, obese persons [31]. Figure 1 demonstrates that weight loss in obese mice
was associated with a decrease of metabolic syndrome components resulting in reduced
inflammation and oxidative stress. Ultimately, these changes led to inhibition of atherosclerosis
and an improvement of cardiac function [32].

The inhibition of atherosclerosis was due to a decreased accumulation of macrophages and
deposition of ox-LDL. The latter was partly due to improved balance between pro-oxidant and
antioxidant enzymes in the adipose tissue. First, weight loss was associated with a reduction
of the expression of arachidonate-5-lipoxygenase and of its activating peptide, which catalyzes
LDL oxidation. Second, weight loss was associated with increased production of superoxide
dismutase (SOD)3, which prevents LDL oxidation [32]. We demonstrated that induction of
PPARs in visceral adipose tissue after weight loss correlated positively with SOD3 expression.
Decreased ox-LDL in the aorta was also caused by induction of the peroxisome proliferator-
activated receptors (PPARs), which correlated with the expression of SOD1 in the aortic arch
[32].

We then determined whether those molecular mechanisms were shared with other interventions
that were known to decrease insulin sensitivity and the oxidation of LDL. It has previously
been demonstrated in man that statins reduce insulin resistance [33–36] and inhibit lipid and
lipoprotein oxidation [37–39]. Therefore, we investigated the effect of rosuvastatin on their
occurrence in relation to protection against atherosclerosis and sought common mechanisms
with weight loss [40]. The selected daily dosage of 10 mg/kg had no effect on weight,
cholesterol levels or lipoprotein distribution. However, it reduced triglyceride and free fatty
acid levels and decreased glucose and insulin resulting in an increase of insulin sensitivity.
Rosuvastatin decreased plaque volume and plaque-ox-LDL. It increased the expression of
SOD1, CD36 and LXR-α, ABCA-1 and PPAR-γ, but not of PPAR-α. The expression of
PPAR-γ correlated with the expressions of SOD1, LXR-α, ABCA-1 and CD36, which correlated
inversely with plaque-ox-LDL. The rosuvastatin-associated increase in SOD1 mRNA
expression in the aorta was associated with an increase in SOD1 protein, which was inversely
related to the amount of ox-LDL in the plaque. Therefore, we hypothesized that the induction
of SOD1, possibly through induction of PPAR-γ, is an important mechanism for preventing
oxidation of LDL in the arterial wall. We tested this hypothesis by investigating the effect of
rosuvastatin on PPAR-γ and SOD1 expression in endothelial cells in vitro. We demonstrated
that rosuvastatin increased PPAR-γ and SOD1 expression in isolated endothelial cells. Both
GW9662, a PPAR-γ-specific antagonist, and siRNA raised against PPAR-γ abrogated
rosuvastatin's effect [41]. Recently, we demonstrated that rosiglitazone (a PPAR-γ agonist),
but not fenofibrate (a PPAR-α agonist), increased SOD1 expression and reduced ox-LDL.

Common mechanisms that explain the similar antiatherogenic effects of weight loss and
rosuvastatin treatment in the aorta are presented in Figure 2. We identified SOD1 as a
potentially important mediator of the prevention of ox-LDL accumulation within
atherosclerotic plaques. The observed induction of PPAR-γ in the aorta and the inverse relation
with ox-LDL in the plaque adds to its important role in regulating oxidative stress and
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inflammation. Our observations in mouse models prompted us to investigate the relationship
between the metabolic syndrome and ox-LDL in humans. Those studies required sensitive and
specific assays for measuring ox-LDL in the blood.

Assays for measuring oxidized LDL
Three groups developed assays for oxidation specific epitopes on plasma LDL. The DLH3 and
EO6 assay uses antibodies against oxidized phospholipids [42,43]; our assay uses the
monoclonal antibody 4E6 directed against an oxidation-dependent epitope in the ApoB100
moiety of LDL [44,45]. Figure 3 is a schematic representation of a sandwich-type and a
competition ELISA using the monoclonal antibody 4E6. Both types of assays are commercially
available (Mercodia, Uppsala, Sweden). The tremendous advantage of the competition ELISA
is that detection of ox-LDL depends on the highly specific antibody only. We observed good
agreement between the original laboratory competition ELISA and Mercodia's competition
ELISA [46]. The configuration of the DLH3 assay is similar to that of the 4E6 sandwich-type
assay; DLH3 is immobilized. A limitation of the DLH3 assay is that LDL fractions have to be
isolated from plasma preventing mass analysis of plasma samples. The E06 assay is also a
sandwich-type ELISA. However, the anti-ApoB100 antibody MB47 is the capturing antibody;
the monoclonal antibody EO6 is the tagging antibody. This antibody reacts with oxidized
phospholipids not only in LDL but also in other lipoproteins, such as Lp(a) [47]. Recent data
by Witztum's group point to Lp(a) as a preferential carrier of oxidized phospholipids. This
means that for a proper appreciation of the presented clinical data, the levels of Lp(a) have to
be taken into account [48].

It is generally believed that fully oxidized LDL does not exist in the circulation; blood is rich
in antioxidants. In addition, such highly oxidized particles would be rapidly cleared in the liver
via scavenger receptors [49]. In contrast, circulating minimally oxidized LDL, in which
oxidative modification has not been sufficient to cause changes recognized by scavenger
receptors, was demonstrated [50]. Therefore, all assays for ox-LDL presumably detect
minimally oxidized LDL. This ox-LDL is only a minor fraction of LDL ranging from 0.001%
in healthy controls [51] to approximately 5% in patients with acute coronary events [44]. Since
LDL is the substrate for oxidation, concentrations of ox-LDL correlate with LDL
concentrations and, in turn, with the cholesterol within LDL. In addition, concentrations of ox-
LDL depend on the sensitivity of LDL particles to oxidation; small dense LDLs contain smaller
amounts of antioxidants and are, therefore, more prone to oxidation [52]. Figure 4 demonstrates
that various mechanisms lead to the oxidation of LDL, indicating that various interventions
will be needed to block it efficiently.

Metabolic syndrome is associated with elevated levels of circulating oxidized
LDL & high risk of myocardial infarction

In the Health ABC cohort, comprising 3033 participants aged 70–79 years, we demonstrated
that ox-LDL was elevated in persons with high predicted CHD risk (according to adjusted
Framingham scoring) before any events [53]. High predicted CHD risk, as defined according
to the third report of the National Cholesterol Education Program Expert Panel on Detection,
Evaluation and Treatment of High Blood Cholesterol in Adults (ATP III), was a 10-year risk
for a CHD event above 20% by Framingham scoring, or diabetes or the occurrence of
noncoronary forms of cardiovascular disease. The odds ratio (OR) for high predicted CHD risk
status for persons in the highest quintile of ox-LDL, compared with those in the lowest quintile
and adjusted for age, gender, ethnicity, smoking, LDL-cholesterol (LDL-C)and C-reactive
protein, was higher than three. Addition of ox-LDL to the established risk factors may improve
cardiovascular risk prediction [45]. We then demonstrated that the metabolic syndrome in this
cohort was associated with a higher cardiovascular risk [54]. Therefore, our objective was to
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establish the association between the metabolic syndrome and ox-LDL and to determine the
risk for CHD in relation to the metabolic syndrome and ox-LDL.

Metabolic syndrome components were defined according to ATP III [1]:

• Waist circumference greater than or equal to 102 cm in men and greater than or equal
to 88 cm in women;

• Fasting triglycerides greater than or equal to 150 mg/dl (1.70 mmol/l);

• HDL-cholesterol (HDL-C) less than 40 mg/dl (1.03 mmol/l) in men and less than 50
mg/dl (1.29 mmol/l) in women;

• Blood pressure greater than or equal to 130/85 mmHg or on antihypertensive
medication;

• Fasting-glucose greater than or equal to 100 mg/dl (5.55 mmol/l) or on antidiabetic
medication.

Persons with at least three of these components were defined as having metabolic syndrome
[1–4].

Compared with participants without the metabolic syndrome, the OR for high ox-LDL (>1.90
mg/dl) in participants with the metabolic syndrome was 1.82, after adjusting for age, sex,
ethnicity and smoking status. No interaction with sex and ethnicity was observed. After further
adjustment for LDL-C, the OR was 2.01. When ox-LDL was expressed as the percentage of
LDL, the adjusted OR for high ox-LDL (>1.58%) was 2.56. Higher waist circumference and
levels of triglycerides, insulin, glucose and HbA1c (adjusted for glucose and insulin) and lower
levels of HDL-C were associated with higher adjusted prevalence of high ox-LDL. No
significant association between blood pressure and ox-LDL was observed [55]. The prevalence
of cardiovascular disease was higher in individuals with the metabolic syndrome and with
higher levels of ox-LDL. It was the highest in persons with the metabolic syndrome combined
with elevated ox-LDL (Figure 5).

We determined the relative risk of myocardial infarction (MI) in relation to the metabolic
syndrome and ox-LDL, adjusted for age, sex, ethnicity and smoking status. Those with the
metabolic syndrome had a twofold higher risk. We also divided the cohort into five groups by
levels of ox-LDL. The risk ratio for persons in the highest quintile was 2.25 (95% CI: 1.22–
24.15). After adjusting for the metabolic syndrome, the risk ratio for persons in the highest
quintile of ox-LDL was 1.9 (95% CI: 1.1–3.5).

In summary, we demonstrated in a population cohort that the metabolic syndrome is associated
with a higher fraction of ox-LDL and, thus, with higher levels of circulating ox-LDL. As
expected, dyslipidemia (low HDL-C and high triglycerides) was associated with high levels
of ox-LDL. It had been demonstrated in healthy, nondiabetic volunteers that plasma glucose
and insulin levels correlate with a higher susceptibility of ex vivo oxidation of LDL. Here, we
demonstrated that hyperinsulinemia and impaired glycemic control, independent of lipid
levels, are associated with increased in vivo LDL oxidation, as reflected by the higher
prevalence of high ox-LDL. This association was consistent across sex and ethnicity. Our data
further support the importance of identifying individuals with the metabolic syndrome as a
high-risk group for developing CHD. Finally, our study identified the oxidation of LDL as a
potential mechanism explaining the increased risk for MI among those with the metabolic
syndrome.

Interestingly, we confirmed the relationship between the metabolic syndrome components and
the increase in circulating ox-LDL in the Multi-Ethnic Study of Atherosclerosis (MESA)
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cohort, and demonstrated that ox-LDL is associated with subclinical cardiovascular disease by
its relationship with many cardiovascular risk factors [56]. The association between the
metabolic syndrome and elevated levels of ox-LDL has been confirmed in European and
Japanese cohorts [57–59]. In addition, two recent studies indicated that levels of circulating
ox-LDL predict future cardiovascular events, even after adjustment for traditional
cardiovascular risk factors and C-reactive protein [60,61].

Circulating oxidized LDL is associated with high risk of the metabolic
syndrome

We determined the longitudinal association of ox-LDL and incident metabolic syndrome in
1889 participants of the Cardiovascular Risk Development in Young Adults (CARDIA) study
[62,63]. Participants were recruited between 1985 and 1986 at four clinical sites in the USA:
Birmingham, Alabama; Chicago, Illinois; Minneapolis, Minnesota; and Oakland, California.
The studied CARDIA sample was balanced by age (45% aged 33–39 years, 55% aged 40–45
years), race (52% African–American, 48% white), gender (46% men, 54% women), and
education (40% having completed ≤12 years of education, 60% having completed >12 years).
Figure 6 shows that elevated ox-LDL, but not elevated LDL-C, was associated with a higher
risk of future metabolic syndrome. The adjusted ORs for incidence of dichotomous components
of the metabolic syndrome in the highest quantile of ox-LDL compared with the lowest were
2.1 (95% CI: 1.2–3.6) for abdominal obesity, 2.1 (95% CI: 1.1–4.0) for high fasting glucose
and 2.4 (95% CI: 1.5–3.8) for high triglycerides [64].

Mechanisms underlying the relationship between oxidized LDL & the
metabolic syndrome

A possible explanation for the relationship between ox-LDL and obesity is that ox-LDL may
be associated with the increase of adipose tissue. This is in agreement with experimental
findings that ox-LDL induces adipocyte proliferation either directly [65] or indirectly by
increasing the infiltration of inflammatory monocytes/macrophages that increase adipogenesis
[66]. The increase in adipose tissue mass may also be explained by a cellular hypertrophy due
to an increased lipid accumulation in the pre-existing adipocytes rather than an increase in cell
number or differentiation. Indeed, ox-LDL increases triglyceride production by inducing the
expression of lipoprotein lipase [67] and by inducing the accumulation of fatty acids in
adipocytes [68]. Interestingly, fatty acids stimulate the accumulation of ceramide, which
contributes to inflammation that, as discussed above, is associated with adipose hyperplasia.
Ox-LDL was also found to decrease the production of adiponectin that, in contrast with other
adipokines, is reduced in obese persons and suppresses excess reactive oxygen species
production under high-glucose conditions – an effect that has implications for vascular
protection in diabetes [69]. The observed relationship between obesity and ox-LDL and
between ox-LDL and the metabolic syndrome, are important to understand the association
between obesity and the metabolic syndrome [70].

The association between ox-LDL and hyperglycemia could be due to ox-LDL reducing insulin
signaling [71] and glucose uptake [72]. Moreover, ox-LDL causes death of islet β-cells in the
pancreas [73]. Hyperglycemia is associated with increased LDL oxidation as glucose impairs
the antioxidant properties of serum albumin [74].

Finally, the association between ox-LDL and hypertriglyceridemia could be due to impairment
of triglyceride storage and secretion by ox-LDL [75]. Hypertriglyceridemia is associated with
higher levels of small dense LDL [76], which is particularly prone to oxidation and has been
proven to be more atherogenic than larger LDL particles [77–80].
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Lifestyle & therapeutic interventions that lower oxidized LDL
Several studies demonstrated that the relationship between obesity and ox-LDL and weight
loss was associated with a decrease of circulating ox-LDL [81–86]. Information concerning
the effect of aerobic exercise and dietary supplements is too sparse to draw firm conclusions.
Small studies suggest that a gluten-free diet [87], dietary supplementation with grape juice and
vitamin E [88] and a cocktail of antioxidants containing a thiol-containing antioxidant (N-
acetylcysteine 600 g/d), a bound antioxidant (vitamin E 300 g/d) and an aqueous phase
antioxidant (vitamin C 250 mg/d) [89], reduce concentrations of ox-LDL. However, the
relationship with the progression of metabolic syndrome remains to be determined.

Some studies demonstrated that statin treatment reduced concentrations of circulating ox-LDL
[90–94]. As yet, it is unclear whether this reduction is independent of cholesterol lowering or
reduction of metabolic syndrome components as insulin resistance and whether this antioxidant
effect is different for different statins. To our knowledge, there are no large studies of the effect
of the PPAR agonists on the oxidation of LDL in relation to their capacity to decrease the
severity of metabolic syndrome components.

Although numerous in vitro and animal studies have supported the role of ox-LDL in
atherosclerosis, and epidemiologic cohort studies with large numbers of men, women and
diverse populations have been largely supportive of this hypothesis, interventional trials of
isolated antioxidant compounds have been controversial, with some positive findings, many
null findings and some suggestion of harm in certain high-risk populations [95]. Owing to the
mismatch between the epidemiologic studies and the interventional trials, some researchers
have advocated ending antioxidant work. However, we have to bear in mind that most
antioxidant therapies that have been tested were not chosen because they were proved to be
the best antioxidants, but rather owing to their easy availability. An excellent example is
vitamin E. Although easily available, it has many limitations as an anti-oxidant. In fact, in some
studies, vitamin E has been shown to have some pro-oxidant effects. Furthermore, the
antioxidant defense system is complex and the naturally occurring mix of antioxidants obtained
from food may be much more effective in reducing oxidative stress from a multiplicity of
oxidative stressors than is any single isolated antioxidant compound. However, it is difficult
to carry out clinical trials of food. Another possible explanation for the lack of benefit in clinical
trials is that the trials have not lasted long enough. It may be impossible to show the benefits
of antioxidant therapy over several years if the therapy is trying to reverse the results of several
decades of oxidative stress [96]. In addition, it is critical to select the ideal study patients, in
other words, patients in whom high oxidative stress is proven, for example, patients with the
metabolic syndrome. Finally, one has to make sure that the selected antioxidant accumulates
and exerts its effect in tissues, such as heart and adipose tissues, where the oxidation of LDL
preferentially occurs. One possible approach is to target the antioxidant by gene therapy.
However, this area is in need of development, including the improvement of gene transfer
vectors and transfer protocols to more efficiently transduce different cell types of the
cardiovascular system, development of regulatable vectors and diagnostic means for better
identification of patients most likely to benefit from gene therapy interventions [97].

Conclusion
We demonstrated that metabolic syndrome components in obese mice are associated with
increased oxidative stress and impaired HDL-associated antioxidant defense, which correlated
with accelerated atherosclerosis due to increased macrophage infiltration and accumulation of
ox-LDL in the aorta. The impaired HDL-associated antioxidant defense was largely due to a
decrease in PON1. Our mouse data are relevant for humans as lower PON1 activity was found
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to be associated with higher concentrations of oxidized phospholipids in patients with Type 2
diabetes.

We established an important relationship between PPAR-γ and SOD1 for the prevention of the
oxidation of LDL in the arterial wall. The observed induction of PPAR-γ in the aorta and the
inverse relationship with ox-LDL in the plaque adds to its important role in regulating oxidative
stress, as well as inflammation.

We demonstrated that the metabolic syndrome is associated with a higher fraction of ox-LDL
and, thus, with higher levels of circulating ox-LDL in humans. Hyperinsulinemia and impaired
glycemic control, independent of lipid levels, were associated with increased in vivo LDL
oxidation, as reflected by the higher prevalence of high ox-LDL. High concentrations of ox-
LDL were associated with increased risk of future myocardial infarction, even after adjustment
for LDL-C and other established cardiovascular risk factors.

We demonstrated, in a longitudinal study, that higher concentrations of ox-LDL were
associated with higher risk of future metabolic syndrome. In particular, we found an association
with obesity, hyperglycemia and hypertriglyceridemia. These associations in population
cohorts are supported by mechanistic studies in experimental models.

Overall, the reviewed data support the hypothesis that the metabolic syndrome exacerbates ox-
LDL in a feedback loop.

Future perspective
Although an association between ox-LDL and the metabolic syndrome has been demonstrated,
important mechanistic and clinical questions remain to be addressed. Further studies in cellular
and animal models are needed to determine:

• Precise molecular mechanisms by which ox-LDL contributes to inflammation in
adipose tissue, and how chronic inflammation in adipose tissue contributes to insulin
resistance;

• Whether ox-LDL contributes to adipose hypertrophy by inducing adipocyte
proliferation and/or lipid accumulation;

• The effect of ox-LDL on insulin receptor substrate proteins that regulate the metabolic
capacity of the liver;

• Common mechanisms of LDL oxidation in adipose tissues and in the vessel wall;

• How adipokines induce oxidation of LDL or protect ox-LDL from oxidation in the
vessel wall.

In addition, large prospective studies are needed to further establish the relationship of ox-LDL
levels to lifestyle and therapeutic interventions. Little is known about:

• The effect of low-carbohydrate and Mediterranean diets, which seem to improve lipid
profiles of ox-LDL and decrease weight more than low-fat diets;

• The nature of antioxidant foods or supplements, which effectively prevent LDL
oxidation in adipose and cardiac tissues;

• The relationship between ox-LDL and the prevalence and incidence of overweight
and obesity in the nutritional transition countries where the health burden of obesity-
related complications is growing;

• Effect of antiobesity medication and bariatric surgery on concentrations of ox-LDL;
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• Effect of some newer antioxidants (e.g., oxygenated carotenoids [xanthophylls])
[98] in prevention and treatment of cardiovascular disease.

We must be aware that owing to differences in specificity and sensitivity, studies using different
assays may yield different outcomes. Therefore, comparative studies of the various assays are
needed; various assays should be compared using the same sample sets. In addition, there is a
need for an international reference standard and for automated tests.

Executive summary

Metabolic syndrome

• Disorder combining obesity, dyslipidemia, hypertension and insulin resistance.

• Its prevalence increases with that of obesity in Western and in nutritional transition
countries.

• Associated with high cardiovascular risk.

Oxidized LDL

• Oxidation of LDL results in the production of oxidized phospholipids and
aldehyde-conjugated lysine residues in its ApoB100 moiety, which are targets for
antibodies.

• Plasma concentration of oxidized LDL depends on the concentration and the size
of LDL particles (small, dense LDL are more prone to oxidation) and the imbalance
between pro-oxidant and antioxidant molecules in blood and tissues.

• Elevated plasma concentrations are associated with a higher incidence of the
metabolic syndrome and with higher cardiovascular risk.

• Leads to tissue infiltration of macrophages and inflammation.

Pro-oxidant & antioxidant enzymes related to the oxidation of LDL

• Myeloperoxidase and lipoxygenases are oxidant enzymes associated with
macrophages that oxidize LDL in the arterial wall.

• Paraoxonase is an antioxidant enzyme associated with HDL. Its plasma activity is
reduced in persons with the metabolic syndrome with elevated plasma oxidized
LDL.

• Superoxide dismutases are antioxidant enzymes associated with macrophages.
They may provide cardiac protection by inhibiting insulin resistance-associated
oxidation of LDL.
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Figure 1. Effects of weight loss in obese mice
Mice deficient in both the LDL receptor and the leptin gene feature most of the metabolic
syndrome components associated with increased oxidative stress and inflammation and,
thereby, with accelerated atherogenesis and loss of left ventricle function. Weight loss is
associated with an improvement of the metabolic profile associated with inhibition of
atherogenesis, increase of plaque stability and improved left ventricle function. Our
observations in obese mice are relevant for humans. Indeed, the metabolic syndrome is
associated with higher cardiovascular risk, and weight loss decreases this risk.
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Figure 2. Common effects of weight loss and rosuvastatin treatment in obese mice
In the aortic arch, we identified PPAR-γ as a regulator of oxidative stress and inflammation.
Induction of PPAR-γ results in an increase of SOD1 that is associated with a reduction of the
oxidation of LDL by decreasing reactive oxygen species. Induction of PPAR-γ is also
associated with increased expression of CD36, resulting in increased uptake of oxidized LDL.
The reduction of plaque-oxidized LDL results in an increased PPAR-γ expression that, through
LXR, induces the expression of ABCA-1. This is crucial for the efflux of inflammatory lipids,
which tend to reduce PPAR-γ expression, out of the plaque. Arrows indicate activation and
flat ends indicate inhibition.
ABCA-1: ATP-binding cassette, subfamily A member 1; LXR: Liver X receptor; PPAR:
Peroxisome proliferator-activated receptor; SOD: Superoxide dismutase.
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Figure 3. Configuration of the 4E6 sandwich-type and competition ELISA
The sandwich-type ELISA uses ox-LDL-specific monoclonal antibody 4E6 as the capturing
antibody and the anti-ApoB100-specific antibody 8A2 as the tagging antibody. The latter is
conjugated with HRP, which reacts with a specific substrate to yield a yellow-colored reaction
product; this is quantified in the spectrophotometer. The competition ELISA requires
preincubation of the plasma sample with 4E6. The sample is then applied to a microtiter plate,
on which in vitro ox-LDL is immobilized. There, the ox-LDL in the plasma and the in vitro
ox-LDL compete for 4E6. After washing, 4E6 bound to the immobilized ox-LDL is detected
with HRP conjugated rabbit-anti-mouse antibodies. The reaction is completed as in the
sandwich-type ELISA. HRP: Horseradish peroxidase; ox-LDL: Oxidized LDL.
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Figure 4. Mechanisms of oxidation of LDL
Several cell types and cell-mediated enzymatic reactions can lead to the oxidation of LDL. The
common process is the formation of aldehydes, which interact with lysine residues in the
ApoB100 protein in LDL. The antibody 4E6 is directed against a conformational epitope
generated by this interaction. Interestingly, not only cells in the vessel wall, but also cells in
adipose tissues, mediate oxidation reactions. Arrows indicate activation and flat ends indicate
inhibition. HOCL: Hypochlorous acid; NO: Nitric oxide; ox-LDL: Oxidized LDL; PUFA:
Polyunsaturated fatty acid.
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Figure 5. Prevalence of cardiovascular disease according to the presence of the metabolic syndrome
and high oxidized LDL
As expected, the metabolic syndrome was associated with a higher odds ratio for cardiovascular
disease. In agreement with our earlier studies, high ox-LDL was associated with a higher
prevalence. The highest prevalence was observed in persons with the metabolic syndrome and
high ox-LDL. In the left panel, absolute levels of ox-LDL (expressed in mg/dl) were used. In
the right panel, the ox-LDL-to-LDL-cholesterol ratios were used. Data are from the Health
ABC study [56].
CVD: Cardiovascular disease; MS: Metabolic syndrome; OR: Odds ratio; ox-LDL: Oxidized
LDL.
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Figure 6. Elevated oxidized LDL is associated with a high risk of the metabolic syndrome
The data are odds ratios (and 95% CI intervals) for incident metabolic syndrome after 5 years'
follow-up in the second to fifth quintiles compared with the lowest quintile of oxidized LDL
or LDL-cholesterol. These ratios were adjusted for age, gender, race, study center, cigarette
smoking, BMI, physical activity and LDL-cholesterol or oxidized LDL. Data are from the
Cardiovascular Risk Development in Young Adults (CARDIA) study [65].
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