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Periodontitis is a bacterium-induced chronic inflammation that destroys tissues that attach teeth to jaw
bone. Pathologically excessive matrix metalloproteinase 8 (MMP-8) is among the key players in periodontal
destruction by initiating type I collagen degradation. We studied MMP-8 in Porphyromonas gingivalis-induced
periodontitis by using MMP-8-deficient (MMP8~'~) and wild-type (WT) mice. Alveolar bone loss, inflamma-
tory mediator expression, serum immunoglobulin, and lipoprotein responses were investigated to clarify the
role of MMP-8 in periodontitis and systemic inflammatory responses. P. gingivalis infection induced acceler-
ated site-specific alveolar bone loss in both MMP8~'~ and WT mice relative to uninfected mice. The most
extensive bone degradation took place in the P. gingivalis-infected MMP8~'~ group. Surprisingly, MMP-8§
significantly attenuated (P < 0.05) P. gingivalis-induced site-specific alveolar bone loss. Increased alveolar bone
loss in P. gingivalis-infected MMP8~'~ and WT mice was associated with increase in gingival neutrophil elastase
production. Serum lipoprotein analysis demonstrated changes in the distribution of high-density lipoprotein (HDL)
and very-low-density lipoprotein (VLDL) particles; unlike the WT mice, the MMPS8™'~ mice underwent a shift
toward a smaller HDL/VLDL particle sizes. P. gingivalis infection increased the HDL/VLDL particle size in the
MMP8~'~ mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total lipo-
polysaccharide activity and the immunoglobulin G-class antibody level in response to P. gingivalis were significantly
elevated in both infected mice groups. Thus, MMP-8 appears to act in a protective manner inhibiting the devel-
opment of bacterium-induced periodontal tissue destruction, possibly through the processing anti-inflammatory
cytokines and chemokines. Bacterium-induced periodontitis, especially in MMPS8~'~ mice, is associated with sys-

temic inflammatory and lipoprotein changes that are likely involved in early atherosclerosis.

Periodontitis is a chronic infection-induced inflammatory dis-
ease that causes tooth loss and is considered a modifying factor in
systemic health (1, 6). Several pathogens are associated with peri-
odontitis. Porphyromonas gingivalis is one of the major pathogens
in chronic periodontitis (59). P. gingivalis has a number of viru-
lence factors such as capsule, fimbriae, lipopolysaccharide (LPS),
and potent proteolytic enzymes, gingipains (23). These factors can
induce an inflammatory cascade involving proinflammatory cyto-
kines, reactive oxygen species, and matrix metalloproteinases
(MMP), thus leading to the destruction of supportive soft and
hard tissues around the teeth.

Pathologically excessive MMP plays a significant role in peri-
odontal destruction (48, 50). MMP-8 (collagenase 2) is a col-
lagenolytic enzyme that can initiate the digestion of type I
collagen, the most dominant interstitial collagen type in the
periodontal tissues. Collagen degradation is regarded as one of
the key factors in the uncontrolled tissue destruction in peri-
odontitis (48). In addition to periodontitis (52), elevated
MMP-8 levels are attributable to many diseases such as bron-
chiectasis, asthma (40, 41), atherosclerosis (28, 55), inflamma-
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tory bowel disease (39), oral cysts (61), and oral cancer (33).
MMP-8 is predominantly synthesized in the bone marrow and
stored within the secondary granules of neutrophils (polymor-
phonuclear leukocytes) (58). Even though MMP-8 in tissues is
primarily derived from degranulating neutrophils, de novo ex-
pression of MMP-8 has been identified in non-neutrophil-lin-
eage cells such as gingival fibroblasts, odontoblasts, epithelial
cells, plasma cells, and monocytes/macrophages (25, 50). Re-
cent studies suggest that in addition to surrogate tissue de-
structive properties (48, 50), MMP-8 can exert anti-inflamma-
tory effects in the host defense by processing anti-inflammatory
cytokines and chemokines (37). MMP-8 can also regulate
apoptotic and immune responses and play a protective role in
lung inflammation (18), cancer progression (2, 20, 27), and
wound healing (19).

Although chronic periodontitis is localized to the tissues
surrounding the teeth, it is linked to serious systemic condi-
tions such as cardiovascular disease (4, 13), stroke (62), dia-
betes (10), and complications during pregnancy (12). Increased
bacterial burden in inflamed periodontal pockets leads to the
presence of oral bacteria and their components, such as LPS,
in the systemic circulation (15, 22). Periodontitis is also accom-
panied by the systemic antibody response against periodontal
pathogens and proatherogenic changes in lipoprotein metab-
olism (42-45).

Knockout mouse models are useful in studies of the roles of
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specific MMPs in physiological and pathological situations. We
evaluated the role of MMP-8 in P. gingivalis-induced periodon-
titis by comparing alveolar bone destruction between MMP-8-
deficient (MMP8~'~) and wild-type (WT) mice. Furthermore,
serum antibody level and lipoprotein determinations were per-
formed to clarify the systemic effects of MMP-8 during the
inflammatory process of periodontitis.

MATERIALS AND METHODS

Animals. Experimental groups comprised 14-week-old male mice bred and
were maintained in the experimental animal facilities of the University of Oulu,
Oulu, Finland. MMP8~'~ mice of a mixed C57BL/6J/129 background (2) were
used, and WT littermates served as controls (27). Prior to the animal experi-
ments, statistical power analysis was performed to determine an appropriate
sample size to achieve adequate power. The MMPS /~ mice (2) were kindly
provided by Carlos Lopéz-Otin of Oviedo, Spain. All mice were maintained in a
barrier facility (27), and the experiments were conducted in accordance with the
guidelines of the Committee of Animal Experimentation of the University of
Oulu, Oulu, Finland.

Induction of experimental periodontitis. The mouse groups created for the
experiments were WT (n = 10) infected (experimental) and WT uninfected
(control, n = 8), MMP8'~ infected (experimental, n = 12) and MMP8 "/~
uninfected (control, n = 10) (total n = 40). A pilot experiment (n = 17) was
carried out before the present study.

Experimental periodontitis was induced as described previously (11). The mice
received 20 mg of kanamycin and 20 mg of ampicillin in 1 ml of sterile water
twice daily for 3 days to eliminate the native flora and to promote the subsequent
colonization of P. gingivalis in the oral cavity. The antibiotics were allowed to
clear from the system for 4 days. The oral cavity of the mice were inoculated with
P. gingivalis to induce marginal periodontitis (36, 64). A clinical strain ATCC
33277 (American Type Culture Collection) of P. gingivalis was revived from a
frozen (—70°C) stock. The bacterial cells were cultured on brucella agar plates
and incubated in anaerobic jars filled with mixed gas (5% CO,, 10% H,, 85% N,)
at 37°C for 3 days. After the purity of the cultures was checked with a dissecting
microscope, single bacterial colonies were transferred to new brucella agar plates
and incubated anaerobically at 37°C for 2 days. Bacterial cells were harvested to
sterile 3% (a carboxymethyl cellulose medium used to facilitate the retention of
the bacterial suspension in the oral cavity), and the density of the culture was
determined spectrophotometrically at 492 nm to achieve a concentration of
~2 % 10° CFU/ml. To ensure the colonization of P. gingivalis in the oral cavity,
0.1 to 0.2 ml of 3% carboxymethyl cellulose suspension containing viable P.
gingivalis cells was swabbed into the mouth twice daily for 3 days. The control
mice receiving saline served as negative controls. At 30 days after the last
inoculation, blood samples were collected under CO, anesthesia by cardiac
puncture from each mouse, and the serum was separated, frozen in liquid
nitrogen, and stored at —70°C until analyses for serum lipid and inflammatory
markers. The mice were then killed by cervical dislocalization. The skulls were
dissected, hemisected, and collected for alveolar bone loss measurement and
immunohistochemical analysis as described below.

Analysis of alveolar bone loss. After collection, hemisected skulls were fixed in
10% formalin, decalcified in 12.5% EDTA, and embedded in paraffin. Serial
sections best representing the longitudinal cutting of the first and second molars
from the maxillae and mandible were selected and stained with routine hema-
toxylin and eosin (H&E) for the histological analysis of alveolar bone loss. The
depth of the bony pocket was measured as the vertical distance from the
cemento-enamel junction to the alveolar ridge by using AnalySIS-program under a
Olympus BX61 light microscope (14, 31). Each site was measured three times at
random. Double-blind histological analysis was performed by a single evaluator.

Immunohistochemistry. Immunohistological stainings were performed using
standard procedures and antibodies as described previously (38). Paraffin-em-
bedded tissue specimens were deparaffinized, and immunostainings for MMP-9
(R&D Systems, Minneapolis, MN), MMP-13 (Chemicon, Temecula, CA),
MMP-25 (Sigma-Aldrich Co., St. Louis, MO), COX-1 (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA), COX-2 (Santa Cruz Biotechnology), myeloperoxidase
(MPO) (HyCult Biotechnology, b.v., Uden, The Netherlands), laminin-332 (32),
neutrophil elastase (NE; Calbiochem-Novabiochem, San Diego, CA), interleu-
kin-1B (IL-1B; R&D Systems), and tumor necrosis factor alpha (TNF-o; R&D
Systems) were performed as described previously (30). The polyclonal rabbit
anti-laminin-332 antibody was kindly provided by Sirpa Salo of the University of
Oulu, Oulu, Finland: the specificity of the antibody has been previously verified
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(32). The stainings were performed with polyclonal Vectastain Elite rabbit or
goat ABC kits (Vector Laboratories, Burlingame, CA). The sections were pre-
treated with 0.4% pepsin, and endogenous peroxidase activity was blocked by
incubation in 0.6% H,0, in methanol. Samples were blocked with goat or horse
normal serum in 2% bovine serum albumin and incubated with the following
polyclonal antibodies: goat MMP-9 (1:50), goat MMP-13 (1:100), rabbit
MMP-25 (1:700), goat COX-1 (1:50), goat COX-2 (1:50), rabbit MPO (1:200),
rabbit laminin-332 (1:200), rabbit NE (1:500), goat IL-18 (1:500), and goat
TNF-a (1:500) overnight. The control sections were incubated with nonimmune
rabbit or goat serum. Subsequently, samples were incubated with biotinylated
anti-rabbit or anti-goat secondary antibody and thereafter with avidin-biotin
enzyme complex. Sections were stained with 3-amino-9-ethylcarbazole as a chro-
mogen, counterstained with Mayer’s hematoxylin (Merck KGaA, Darmstadt,
Germany), mounted in Dako’s glycergel (Dako Corp., Carpinteria, CA), and
evaluated by using the AnalySIS-program under an Olympus BX61 light micro-
scope. Any intensity if present in immunohistochemical stainings was semiquan-
tified and graded as 0, no staining; 1, very mild staining; 2, mild staining; 3,
moderate staining; and 4, abundant positive staining (40).

Serum determinations. Serum samples were analyzed for concentrations of
total cholesterol, triglycerides (Roche, Basel, Switzerland), apolipoprotein A-I
(apoA-I) (57), and LPS (LAL chromogenic endpoint assay; HyCult Biotechnol-
ogy). Serum immunoglobulin A (IgA)- and IgG-class antibody levels against P.
gingivalis were determined by using multiserotype enzyme-linked immunosor-
bent assay. Formalin-killed whole cells of three serotypes of P. gingivalis served
as antigens (42). Two dilutions (1:100 and 1:200) of each serum (stored at
—70°C) in duplicate were used for the measurements, and the results consisting
of mean absorbances were calculated.

Lipoprotein profiles. To obtain lipoprotein profiles, serum samples from each
group were pooled (8 to 12 mice/pool). Aliquots of 200 pl were applied to a
Superose 6HR size exclusion chromatography (Pharmacia Biotech, Uppsala,
Sweden) column previously equilibrated with phosphate-buffered saline (PBS) at
a flow rate of 0.5 ml/min in PBS, and 0.5-ml fractions were collected. In order to
make a separation between the lipoprotein subclasses, the fractions were ana-
lyzed for cholesterol, triglyceride, and apoA-I concentrations.

Statistical analysis. Using analysis of variance, we compared the alveolar bone
loss and serum lipoprotein profiles between the four groups studied. In the case
of significant differences, we used Duncan’s test to perform post-hoc multiple
comparisons. In immunohistochemical analysis, we performed post-hoc multiple
group comparisons using the Mann-Whitney U test.

RESULTS

Alveolar bone loss. Quantitative analysis of site-specific al-
veolar bone loss revealed that both P. gingivalis-infected mouse
groups exhibited more severe bone loss than did the nonin-
fected control groups (P < 0.05) (Fig. 1). No statistical differ-
ence in alveolar bone loss was found between the two unin-
fected groups. In the P. gingivalis-infected MMP8~'~ group,
the bone loss was enhanced relative to the P. gingivalis-infected
WT group. When we compared mandibular sites, the differ-
ence was statistically significant (P < 0.05) (Fig. 1C). Bone loss
varied considerably between different periodontal sites. Maxi-
mally, the bone loss in the WT + P. gingivalis-infected group
was 489 wm, and the bone loss in the MMPS™'~ + P. gingivalis-
infected group was 706 wm. Two separate sets of experiments
(n = 17 and n = 40) on the development of site-specific
alveolar bone loss yielded similar results.

Immunohistochemistry. The main findings of the immuno-
histochemical analyses are shown in Table 1. The NE levels
were significantly (P < 0.05) higher in both infected groups
than in the uninfected control groups. (Table 1 and Fig. 2). The
MMPS™'~ + P. gingivalis group exhibited significantly (P <
0.05) higher MMP-9 expression than did the MMP8 '~ unin-
fected group. MMP-9 expression was highest in the MMP8™'~ +
P. gingivalis group,but showed no difference from that in the
WT + P. gingivalis group (Table 1 and Fig. 3). The mean
COX-1 expression was highest in the MMP8 '~ + P. gingivalis
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FIG. 1. Alveolar bone loss assessment from the cemento-enamel junction (CEJ) to the alveolar ridge. (A) Schematic diagram showing
measurement of the CEJ-A distance on an H&E-stained section of healthy WT mouse periodontium. The dotted line indicates the top of the
alveolar crest, and the CEJ-A distance is the vertical distance from the CEJ to the alveolar crest (single-headed arrow). A, alveolar bone crest; CEJ,
cemento-enamel junction; D, dentin; E, enamel; SE, epithelium. Scale bar, 500 pm. (B) Schematic diagram showing measurement of the CEJ-AC
distance on an H&E-stained section of P. gingivalis-infected MMPS '~ mouse periodontium. The dotted line shows the top of the alveolar crest,
and the CEJ-A distance is the vertical distance from the CEJ to the alveolar crest (double-headed arrow). A, alveolar bone crest; CEJ,
cemento-enamel junction; D, dentin; E, enamel; SE, epithelium. Scale bar, 500 pm. (C) Diagram showing measurements of the distance between
the cemento-enamel junction and the alveolar bone crest. The red lines show the means of four separate measurements.

group, but the difference from the WT + P. gingivalis group
was not significant (Table 1). TNF-a expression was not only
highest in the MMP8 '~ + P. gingivalis mice but was also
significantly different from that of the MMPS8 /'~ uninfected
group (P < 0.05) (Table 1). Ln-332 expression was highest in
the WT + P. gingivalis mice. It was also significantly different
(P < 0.05) from that of the WT control group (Table 1).
Serum immunoglobulin and lipoprotein profiles. Serum
LPS concentrations were significantly (P < 0.05) higher in the

P. gingivalis-infected MMP8 '~ mice than in the uninfected
MMP8 '~ mice. The corresponding tendency between infected
and uninfected WT group was, however, not significant (Fig.
4A). Serum P. gingivalis 1gG levels were higher in both WT and
MMPS ™'~ bacterium-treated mice than in the controls (Fig.
4B); the difference between the infected and uninfected WT
groups was significant (P = 0.05), whereas P. gingivalis IgA-
class antibodies were undetectable (data not shown).

Serum lipid and lipoprotein profiles revealed that the total
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TABLE 1. Semiquantitative analysis of the
immunohistological stainings

Mean protein level = SD?

in* WT + P. MMP8™'~ + MMP8~/~
Frotein gingivalis P. gingivalis wT ci)nstrol control

(n = 10) (n = 12) (n=8) (1 = 10)
NE 2.60 £0.52*  2.00 =0.77f 0.63 £0.74 0.80 = 0.63
MPO 2.90 = 0.32 2.55 = 0.69 250 x£0.76  2.40 £ 0.52
MMP-9 3.00 = 0.67 3.18 £0.60Ff 250+ 0.53 230 %048
MMP-13  0.50 £ 0.53 0.82 = 0.40 0.88 £0.64 0.90 = 0.32
MMP-25 030 £ 0.48 0.00 = 0.00 0.13 £0.35 0.00 = 0.00
TNF-a 1.90 = 0.57 227+ 0477  2.00%=0.00 1.60 %= 0.70
IL-1B 0.50 = 0.53 0.64 £ 0.51 0.5 £0.54 0.5 £0.53
COX-1 1.40 = 0.52 1.64 = 0.81 0.75x0.71 1.50 £0.71
COX-2 1.50 = 0.85 1.73 = 0.90 0.75 £0.71  1.20 = 0.63
Ln-332 3.30 £ 0.48*  3.00 £ 0.63 2502053 2.80 £0.63

“ Proteins with significant differences between the groups are indicated in
boldface.

> The protein levels were semiquantified as follows: 0, none; 1, very mild; 2,
mild; 3, moderate; 4, abundant. *, Significantly different than WT control group
(P < 0.05); ¥, significantly different than MMP8 ™/~ control group (P < 0.05).

cholesterol concentration was clearly lower in the P. gingivalis-
infected mice than in the uninfected MMP8 /'~ mice. The
serum triglyceride concentration was higher among the in-
fected MMP8~'~ mice than among the control group (P <
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0.05). apoA-I levels were lower in both MMP8 '~ groups than
in both WT groups (P < 0.05) (Fig. 5).

Compared to the infected MMP8 '~ group and both WT
groups, the cholesterol elution peak in uninfected MMP8 ™/~
mice shifted toward a smaller high-density lipoprotein (HDL)
particle size. In a similar fashion, apoA-I, a major apolipopro-
tein of HDL, profile in the uninfected MMPS8 ™'~ group shifted
toward a smaller particle size in the HDL fraction. An obvious
rearrangement in the distribution of HDL subclasses was dem-
onstrated in MMP8 '~ mice. Among the WT mice, P. gingivalis
infection showed no influence on the elution position of HDL,
thus suggesting no significant changes in HDL particle size.
Moreover, the triglyceride elution peak shifted toward a
smaller very-low-density lipoprotein (VLDL) particle size in
uninfected MMP8 '~ mice (Fig. 6). No significant changes
were observed in the elution position of LDL particles (frac-
tions 21 to 25) between the mouse groups.

DISCUSSION

This study confirmed that oral inoculation with P. gingivalis
in mice leads to alveolar bone loss and is a useful model for
studying periodontitis in vivo. The results of our study are in
line with and further extend those of previous studies. Lalla et
al. (29) reported that oral inoculation with P. gingivalis in

|

3

FIG. 2. Expression of NE in P. gingivalis-infected mouse gingival tissue. Mouse gingival tissues were immunohistochemically stained with
polyclonal anti-NE antibody as described in Materials and Methods. (A) WT + P. gingivalis group. The insert with the red square shows the area
in the figure. A, alveolar bone; D, dentin; E, enamel. (B) MMP8 ™'~ + P. gingivalis group. (C) WT control group. (D) MMP8 '~ control group.

Scale bars, 100 pm.
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FIG. 3. Expression of MMP-9 in P. gingivalis-infected mouse gingival tissue. Mouse gingival tissues were immunohistochemically stained with
polyclonal anti-MMP-9 antibody as described in Materials and Methods. (A) WT + P. gingivalis group; (B) MMP8 '~ + P. gingivalis group; (C) WT
control group; (D) MMP8~'~ control group. D, dentin; E, enamel; SE, sulcular epithelium. Scale bars, 200 wm.

apo-E-deficient mice caused more extensive alveolar bone loss
than in uninfected controls. In addition, oral inoculation with
another periodontal pathogen, Actinobacillus actinomycetem-
comitans, leads to the formation of periodontitis in mice (16).
Previous studies have found MMP-8 as one of the key medi-
ators of tissue destruction in periodontal inflammation (49,
50). We investigated the role of MMP-8 in tissue destruction
by using mutant mice deficient in MMP-8 (2, 27). The present
study demonstrates that oral infection of MMP8 '/~ mice with
P. gingivalis results in more severe alveolar bone loss than in
WT mice. The variation of the bone loss was big in all animal
groups. Therefore, the final conclusion of the effect of the role
of MMP-8 in periodontitis cannot be made. The results, how-
ever, suggest that MMP-8 plays, at least in part, a protective
role in alveolar bone loss during periodontal infection.

Our findings are in line with the studies on the role of

MMP-8 in lung inflammation, wound healing, and cancer de-
velopment (2, 18, 27, 37). These studies performed with gene
knockout animals have demonstrated that MMP-8 exerts anti-
inflammatory properties on experimental LPS- and allergen-
induced lung inflammation (18, 37). Balbin et al. (2) reported
that the absence of MMP-8 increased the incidence of skin
tumors in MMP8 '~ male and ovariectomized female mice
compared to WT mice. Moreover, MMP-8-deficient female
mice developed tongue squamous cell carcinomas at a signif-
icantly higher rate than did WT mice (27). A significant delay
in wound closure in MMP8 '~ mice and an altered inflamma-
tory response have been observed (19). Overall, these findings,
together with our present study, indicate that MMP-8 may play
a protective role in inflammation and cancer development and
most probably contributes to the resolution of inflammation by
processing certain anti-inflammatory cytokines and chemo-
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FIG. 4. Infection markers in serum. Mouse serum total-LPS activ-
ity (A) and IgG-class antibody levels to P. gingivalis (B) were analyzed
as described in Materials and Methods from WT mice without (n = 10)
or with (n = 8) P. gingivalis infection and from MMP8~'~ mice with
(n = 12) or without (n = 10) P. gingivalis infection. Statistical com-
parisons were carried out between the infected mice and their corre-
sponding controls (x, P < 0.05).

kines (18, 37). In our semiquantitative immunohistochemical
analysis we observed a tendency for higher IL-1B, TNF-q,
COX-1, and COX-2 expression in inflamed periodontal tissue
of MMP8 '~ mice than in the WT mice, but the difference was
not significant.

A study of wound healing in MMP-8-deficient mice recently
reported a significant increase in MMP-9 expression (19). Our
study also demonstrated increased MMP-9 expression. This
result suggests that the enhanced production of MMP-9 in
MMP8~'~ mice could indicate a compensatory MMP upregu-
lation. NE expression was significantly elevated in infected
mice in inflammatory cells within the gingival connective tissue
surrounding the alveolar bone. No significant differences were
found, however, between the infected WT and MMP8 '~
groups. Elevated TNF-a mRNA expression has been reported
in advanced periodontal lesions among A. actinomycetemcomi-
tans-infected mice (16). These phenomena could be attributed
to increased infiltration and activation of neutrophils in in-
flamed tissue in MMP8 ™'~ mice (19). The association of NE,
TNF-a, MMP-9, COX-1, and COX-2 in P. gingivalis-induced
periodontitis lesions characterized by inflammatory cell infil-
tration and alveolar bone loss indicates similar pathogenic
aspects of periodontitis in our mouse model compared to
periodontitis in humans and rats (5, 7, 11, 34, 47, 63).
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FIG. 5. Serum lipid analysis. Mouse serum cholesterol (A), triglyc-
eride (B), and apoA-I (C) concentrations were analyzed from WT
mice without (n = 10) or with (n = 8) P. gingivalis infection and from
MMP8~'~ mice with (n = 12) or without (n = 10) P. gingivalis infec-
tion. The statistical comparisons were carried out between the infected
animals and their corresponding controls (*, P < 0.05).

Recent studies have demonstrated that oral infection with a
periodontal pathogen, such as A. actinomycetemcomitans, can
induce proatherogenic changes in apolipoprotein-E-deficient
mice (56). The novel finding that inoculation with P. gingivalis
bacteria resulted in somewhat more severe alveolar bone loss
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FIG. 6. Lipoprotein profiles in serum. Sera from WT mice without (n = 10) or with (n = 8) P. gingivalis infection and MMP8 ™/~ mice with (n =
12) or without (n = 10) P. gingivalis infection were pooled within the groups and applied to a Superose 6HR gel filtration column in PBS at a flow
rate of 0.5 ml/min. We collected 0.5-ml fractions, from which we determined cholesterol (A), triglyceride (B), and apoA-I (C) concentrations.

in MMP8 '~ mice than in WT mice led us to investigate
systemic changes in the MMP-8-deficient mice. We found that
P. gingivalis infection was accompanied with changes in inflam-
matory or infection-related parameters (IgG and LPS) and in

lipid metabolism (cholesterol, triglycerides, and apoA-I lipo-
protein profile). The serum total LPS activity and IgG-class
antibody concentrations to the pathogen were significantly
higher among both infected mouse groups than among the
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uninfected controls. This further confirms that systemic expo-
sure of the host to the pathogen and corresponding host re-
sponses accompany oral infections (29, 35, 42, 45, 46). Our
results therefore are in line with the concept that chronic
periodontitis should be considered a risk factor for the pro-
gression of cardiovascular disease.

Infection with P. gingivalis decreased the serum total choles-
terol levels in MMP8 '~ mice but increased the total triglyceride
concentrations. This result suggests that MMP-8 deficiency makes
the animal more sensitive to responses in serum triglyceride and
cholesterol pools.

apoA-I plays a key role in the formation, remodeling, and
tissue uptake of HDL. Serum apoA-I concentrations were
lower in both infected and uninfected MMP8 '~ mice than in
WT mice groups, which suggests that MMP-8 deficiency has a
regulatory influence on apoA-I levels. apoA-I and poorly lipid-
ated apoA-I also contributes to the reverse cholesterol trans-
port process by interacting with ATP-binding cassette trans-
porter A 1 (ABCAL1) in macrophage foam cells and facilitates
the efflux of cholesterol (24, 51). ABCALI is also important in
the liver and the intestine since hepatocytes and enterocytes
secrete nascent apoA-I HDL into circulation via this trans-
porter protein (9, 53). Certain MMPs are involved in the mod-
ification of ABCA1 (54). Our results suggest that MMP-8
deficiency could lead to the modification of ABCAI perhaps
via increased protease function (calpain, MMP-9, etc.), which
leads to disturbed and attenuated secretion of HDL and de-
creased levels in serum.

As apparent in the cholesterol and apoA-I profiles, the HDL
population shifted toward a smaller particle size in uninfected
MMP8 '~ mice. MMP-8 deficiency appears to affect the for-
mation of small, possibly lipid-poor HDL particles, which are
generally catabolized more rapidly from circulation via kidney
function than are large particles (8, 21). This could explain the
reduced HDL cholesterol concentrations observed in the
MMP8 '~ mice. Infection with P. gingivalis caused the forma-
tion of larger-sized HDL particles. In addition, the triglyceride
profile suggested that the VLDL population shifted toward
larger particle sizes in MMPS ™'~ mice after infection, although
P. gingivalis infection failed to affect HDL or VLDL particle
size when MMP-8 was present. An obvious change in the
distribution of HDL and VLDL particles occurred in
MMPS ™'~ mice. P. gingivalis infection increased the HDL/
VLDL particle size among MMP8 '~ mice, thus indicating that
lipoprotein responses during systemic inflammation. Several
factors, e.g., infections, may affect both VLDL and HDL par-
ticle size. For instance, elevated phospholipid transfer protein
activity is known to generate large HDL particles (3, 43).
Furthermore, plasma triglyceride concentrations increase with
increased VLDL secretion as a result of adipose tissue lipoly-
sis, increased de novo hepatic fatty acid synthesis, and the
suppression of fatty acid oxidation. In a severe infection,
VLDL clearance decreases secondary to decreased lipoprotein
lipase and apolipoprotein E in VLDL. All of this could be
implicated as the increased size of triglyceride-enriched VLDL
particles (26).

The results of the present study demonstrate that the pres-
ence of MMP-8 causes at least a partially defensive local in-
flammatory response against the P. gingivalis-induced develop-
ment of periodontal bone destruction. In humans, MMP-8 is
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the predominant collagenase present in periodontitis-affected
gingival tissue, gingival crevicular fluid, and saliva (48), and the
severity of periodontal disease is positively correlated with
MMP-8 levels (50). The present study, together with others
(18-20, 58, 60), points to a conclusion that physiologic but not
pathologically elevated MMP-§ levels exert protective and anti-
inflammatory functions possibly by processing growth factors
and protective endogenous proteinase inhibitors (58). Our
data further suggest that MMP-8 deficiency may influence leu-
kocyte accumulation in the gingiva by regulating increased cell
migration or, alternatively, by reduced resolution of inflamma-
tion after bacterial challenge. We can speculate, in respect to
treatment of periodontitis, that a complete inhibition of
MMP-8 may not be a desirable goal, but instead a reduction
from pathologically excessive MMP-8 close to the physiological
levels would be optimal (17, 49, 60). To verify this concept and
to find out the connection of MMP-8 to lipid metabolism will
require more detailed studies.
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