
Measuring Specific, Rather than Generalized, Cognitive Deficits and Maximizing
Between-Group Effect Size in Studies of Cognition and Cognitive Change

Steven M. Silverstein1,2

2University of Medicine and Dentistry of New Jersey, University
BehavioralHealthCare andRobertWood JohnsonMedical School

While cognitive impairment in schizophrenia is easy to dem-
onstrate, it has beenmuchmore difficult tomeasure a specific
cognitive process unconfounded by the influence of other
cognitive processes and noncognitive factors (eg, sedation,
low motivation) that affect test scores. With the recent in-
terest in the identification of neurophysiology-linked cogni-
tive probes for clinical trials, the issue of isolating specific
cognitive processes has taken on increased importance. Re-
cent advances in research design and psychometric theory
regarding cognition research in schizophrenia demonstrate
the importance of (1) maximizing between-group differences
via reduction of measurement error during both test devel-
opment and subsequent research and (2) the development
and use of process-specific tasks in which theory-driven per-
formance indices are derived across multiple conditions. Use
of these 2 strategies can significantly advance both our un-
derstanding of schizophrenia and measurement sensitivity
for clinical trials. Novel data-analytic strategies for analyz-
ing change across multiple conditions and/or multiple time
points also allow for increased reliability and greater mea-
surement sensitivity than traditional strategies. Following
discussion of these issues, trade-offs inherent to attempts
to address psychometric issues in schizophrenia research
are reviewed. Finally, additional considerations for maxi-
mizing sensitivity and real-world significance in clinical
trials are discussed.
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Introduction

In studies of cognition in schizophrenia, or of cognitive
change as the result of an intervention, a primary goal is

to measure a specific cognitive process, free from the in-
fluence of other cognitive processes, and other factors
that can affect cognitive functioning (eg, sedation, low
motivation, anxiety, etc). The more precise the measure-
ment of the cognitive process, the clearer the link will be
to the associated neurophysiology, allowing for more
sensitive assessments of treatment effects. Accomplishing
this goal has proven difficult, however, due to a number
of methodological and psychometric issues. The purpose
of this article is to review these issues and to suggest po-
tential solutions. The topics discussed below are orga-
nized into the following categories: (1) measuring specific
vs generalized deficits; (2) the differential deficit and
matched tasks research design; (3) optimizing effect size
in between-groups comparisons, including considerations
of the related issues of reliability, within-group variation,
and between-group variation; (4) alternatives to task
matching; (5) trade-offs inherent in choosing solutions to
psychometric issues; and (6) other suggestions to maximize
effect sizes.

Measuring Specific Vs Generalized Deficits

There are numerous obstacles to isolating variance in test
scores that is related to a single cognitive process. One of
these is that neuropsychological tests are generally con-
founded by multiple cognitive processes (ie, many tests
involve attention, working memory, and decision making
components in addition to the specific process purport-
edly being measured). Also, noncognitive factors such as
low frustration tolerance, loss of motivation in the face of
repeated failure, and sedation due to medication side
effects can affect performance.1–3

Based on these considerations, and based on the com-
mon factor model, performance on a typical neuropsy-
chological test can be represented as

zj = aj1s1 þ aj2s2 þ � � � ajpsp þ � � �ajmsm þ ejEj;

where zj = an individual’s standardized score on test j, sp =
true score for source of variance p, ajp = influence of var-
iance source p on test j, Ej = sources of measurement error
on zj, ej = influence of Ej on zj

4

Because the influence of extraneous cognitive and non-
cognitive factors (ie, additional instances of ‘‘s’’) clouds
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interpretation of test performance, the ideal test would be
represented as zj = ajpsp þ ejEj, where a person’s score
reflects only a single cognitive source of variance that
accounts for (ideally) most of the observed variance,
with only (ideally) a small contribution of error variance
to observed scores. For the purposes of maximizing effect
sizes between groups, the sources of variance that must be
eliminated are those that do not discriminate between
groups. To do this, we need to either eliminate all‘‘nons-
pecific’’ sources of true score variance (s), or minimize
effects of these sources (a) on test scores. While concep-
tually simple to grasp, the isolation of single cognitive
processes has proven extraordinarily difficult in practice,
as reflected in the multiple strategies to solving this prob-
lem that have been developed over the past 35 years.

The Differential Deficit Strategy and the Matched Tasks
Solution

Because a single test score can reflect multiple sources of
variance, many investigators have designed studies to de-
tect a differential deficit across 2 tasks. The logic behind
such designs is that if patients’ performance compared
with controls is differentially worse on one test than an-
other, this could be taken as evidence of a specific deficit.
However, as Chapman and Chapman5–7 noted, this pat-
tern of scores does not necessarily indicate the presence of
a specific cognitive deficit, and in fact, it can be due to
a psychometric artifact. In particular, a differential deficit
could be due to the greater discriminating power of one of
the tests. A test that is more reliable and/or has more var-
iance (often associated with being more difficult, though
not always) will discriminate between subjects better than
a less reliable or less variable test. Therefore, a differential
deficit is only meaningful under 3 conditions: (1) the pa-
tient group achieves superior performance on one of the
tests; (2) differences between groups are greater on the
task with poorer discriminating power; and/or (3) both
tests have equivalent reliability and variance.6–8

Chapman and Chapman6 suggested that the best way
to ensure construct validity was to use a matched tasks
approach (No. 3 above)—using two tasks that are
matched on reliability and variance. The logic of this
strategy was that a deficit that was identified using this
approach could not be due either to a generalized deficit
or to psychometric artifact. However, while this strategy
can reduce the likelihood of findings being due to psycho-
metric artifacts, it does not ensure construct validity (pro-
cess specificity). This is because the matched tasks can
still each be confounded by multiple cognitive processes,
and so a difference in scores between the 2 tasks may also
reflect the contribution of multiple cognitive processes.
Moreover, matching on difficulty level is a problem for
cognitive neuroscience tasks where parameter manipula-
tions necessarily change difficulty levels across multiple
conditions (eg, examining the effects of manipulating

the number of noise elements in visual search tasks, ex-
posure duration on recall, or extent of stimulus degrada-
tion on visual perception, etc, all involve manipulating
difficulty level as well). In some cases, researchers have
attempted to get around this issue by either altering tasks
to ensure equivalent difficulty and variance levels across
conditions (typically by removing more difficult items in
more difficult conditions) or introducing additional cog-
nitive requirements into one condition of a task (ie, in-
creasing memory load in one condition of a perception
task) to make this normally easier condition more diffi-
cult. It can be shown in such cases, however, that these
manipulations reduce construct validity by lessening the
range of the cognitive function that is assessed either by
a single condition or the overall test and/or by making
test scores more difficult to interpret in terms of a single
cognitive process.2

Optimizing Effect Size in Between-Groups Comparisons,
Including Considerations of the Related Issues of
Reliability, Within-group Variation, and Between-Group
Variation

Perhaps the most important limitation of the matched
tasks solution, however, is that matching on reliability
and difficulty level does not maximize between-groups
discriminating power.2,9 This can be seen by examining
the following equation for reliability: rxx=r2t

.
r2o,�

rxx=r2t

.�
r2t þ r2me

��
; where r2t = true score variance,

r2o = observed score variance, and r2me = measurement
error. From this view of reliability, it can be seen that re-
liability of a test can be increased by reducing measure-
ment error

�
r2me

�
or by increasing true score variance�

r2t
�
. Reducing measurement error will always reduce

within-group variance and increase sensitivity to be-
tween-group sources of variance. Increasing true score
variance will increase within-group variance/discrimina-
tion, but if it does not also increase between-group sep-
aration, between-group effect size will decrease.10

The latter point can be demonstrated using formulas de-
rived from the noncentrality parameter, the equation that
represents effect size in between group comparisons.10 As
Neufeld10 demonstrated, the magnitude of a between-
group difference can be expressed as (ctþ b)/(tþ e), where
b is the effect on group separation of a variable unique
to group membership (eg, a pathognomonic variable), t
reflects the size of the combined distribution of both
groups’ distributions on a nonpathognomic variable (ie,
the extent of individual differences, as might be revealed
in a population sample), and c represents the amount of
separation between the 2 group distributions whose over-
all magnitude make up t (ie, as t-related group separation
increases, c increases). For example, in a study comparing
people with schizophrenia vs people with depression on
visual integration (a process in which an impairment is
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thought to be found only in schizophrenia), bwould reflect
variance due to visual integration ability, t would reflect
the contribution of variance from individual differences
on a factor present in both groups, such as varying moti-
vation level to perform the task, and c would represent the
degree to which the groups differ on the variable whose
variance is reflected by t. Note that in cases where c is large
and b is small, findings may appear to be due to a gener-
alized deficit.
In a standardization (test development) sample, c and b

are irrelevant because there is no between-group compar-
ison. In such a case, within group discrimination is there-
fore t/(t þ e), and maximizing t will increase reliability
and sensitivity to individual differences. However, in typ-
ical clinical research contexts, where 2 (or more) groups
are being compared, a measure becomes less group dis-
criminating as its standardization group psychometric
precision (ie, within-group variation) goes up.10 That
is, as within-group variance is increased, the ability to dis-
criminate groups will be reduced unless the sources of
within-group variance overlap considerably with the
source of between-group variance.11 Increasing t will
only increase between-group separation when b < c 3

e,10 with the extent of separation increasing as c increases.
However, such cases are not desirable for clinical re-
searchers because there are potential confounds from
other cognitive processes, the specific process of interest
is contributing relatively little to test scores, and between-
group separation will only be a function of the cognitive
process of interest to the extent that c and b covary in the
sample.
For example, with a task that is only minimally sensi-

tive to a putative pathognomonic variable (b) such as
context processing, it can be made to separate groups
more by modifying it so that it relies more heavily on
other nonpathognomonic variables (t) where patients
may nevertheless obtain lower values than controls.
However, such a test would be relatively useless in an ex-
perimental study or clinical trial focused on context pro-
cessing ability. Only in the case where there is significant
overlap between c and b, such as in the case of context
processing in a task such as the AX-continuous perfor-
mance task and working memory, would increases in t
and c overlap with an increase in b. Even in this case
though, between-group separation is won at the cost of
reduced clarity regarding why patients are performing
poorly (eg, context processing per se vs working memory
load), and therefore, typically, reduced clarity regarding
which neurophysiological circuits are associated with ab-
normal test performance. As can be seen by these exam-
ples, attending to issues of true score variance (or
reliability) without regard to the extent to which a test
isolates a pathognomonic cognitive process can be coun-
terproductive, in terms of identifying a measure that is
useful for probing a specific neural circuit or for maximiz-
ing sensitivity to the effects of a medication.

In contrast, recalling that (ct þ b)/(t þ e), when group
separation is a function primarily of b (specifically, when
b > c 3 e), separation goes up as t goes down. That is, as
the overall distribution of scores on a measure is reduced
by elimination of variance due to nonpathognomonic
factors and error, the between-group effect size will re-
main high as long as the primary source of the
between-group differences is the single variable that is
pathognomonic. Continuing with the example used in
the above paragraph, with a task that is maximally sen-
sitive to a pathognomonic variable such as context pro-
cessing (and so where b is high), increasing within-group
variance by modifying the task so that it also relies
heavily on other factors will only reduce the value of sta-
tistical between-group tests (eg, the F test reflecting the
main effect of group in an analysis of variance) by in-
creasing the within-group variance reflected in the de-
nominator relative to the between-group variance
reflected in the numerator.
Based on these constraints, it has been demonstrated

that for 2 tests of the same construct that differ by as
much as 3-fold in true score variance, a test with higher
r2t was associated with a lower between-group effect size,
due to r2t being increased via score variance from process-
ing requirements that increase within-group variation but
that are not related to between-group separation.10 In-
creasing r2t will invariably increase between-group sepa-
ration only if there is one source of true score variance
and reliability and between-group differences act exclu-
sively through this source, a condition which is rare. If
there is more than one source of r2t , increasing r2t will
only increase between-group separation if it is not asso-
ciated with adverse effects on c; raising t in this case also
risks changing a measure’s structure so as to reduce
group separation, as discussed above. Relatedly, meas-
ures of the same construct and of equal reliability can dif-
fer by a factor of greater than 2 in terms of between-group
separation, due to reliability being achieved more by
increases in r2t in one case, and more by reductions in
r2me in the other case, with the former method leading
to reductions in between-group separation.4 Finally, in-
creasing b, like decreasing e, inevitably increases
between-groups discriminating power.
The issues are similar with increasing the length of

a task, a strategy sometimes assumed to automatically in-
crease reliability. Adding trials to a task may increase
test-retest reliability, but it can reduce between-group
separation if new items are associated with sources of
within-group variance that are independent of b. Increas-
ing task length can be useful only if the test is unifactorial,
or if the covariance structure of the task does not change
with added items. Even so, however, this can add signif-
icant time and cost to clinical trials. Relatedly, in within-
group correlational studies, where wider distributions of
scores are often seen as optimal, effect sizes can be in-
creased when within-group variance is reduced, if that
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reduction is achieved by eliminating sources of variance
that are unrelated to the processes being examined. A
good demonstration of this can be seen in a magnetic
resonance imaging study by Mathalon et al12, where
head size correction removed irrelevant within-group
true score variance, which reduced reliability yet in-
creased the correlations between region-of-interest vari-
ables and validity criteria such as age and diagnostic
status.

In short, neither matching on reliability and difficulty
nor maximizing within-group true score variance ensures
either that a specific process is being measured or that
between-group separation is maximized. However, we
need to maximize between group discriminating power
so that we can (1) create process-specific measures that
discriminate schizophrenia from other conditions and
(2) sensitively test whether effects of one treatment (eg,
N-methyl-D-aspartate (NMDA) receptor coagonist) are
different from effects of another (eg, D2 blocker). There-
fore, strategies other than task matching are needed.
Below, several alternatives are reviewed.

Alternatives to Task Matching

Analysis of Covariance

Analysis of covariance (ANCOVA) can control for the
influence of one test score on another, and therefore, pri-
ma facie appears to be a useful method to remove vari-
ance due to one or more cognitive functions from scores
on the test of interest. This of course, assumes that the
control tests are specific measures of the confounding
cognitive processes. More importantly, however, in clin-
ical research ANCOVA typically is not appropriate as
a control for another cognitive process as represented
by a second task score. This is because ANCOVA
assumes independence of the covariate and the indepen-
dent variable (eg, diagnostic group). In studies with pre-
existing groups (eg, schizophrenia vs control), the
covariate and the independent group are often not inde-
pendent. As such, ANCOVA is most appropriate when
there is random assignment to groups. It was designed
to reduce within-group variance rather than between-
group variance.13

Item Response Theory

Item response theory (IRT) is a sophisticated and
increasingly popular approach to test development that
mathematically models individual responses based on
model-derived item and person parameters. However,
it requires large samples to construct measures. More-
over, it cannot resolve the issue that a focus on t and e
cannot ensure a match on group discriminating power.10

Also, while IRT has many advantages for developing
tests in normative samples, it assumes that item param-
eters do not differ across groups, and this assumption

may not be met when comparing people with specific psy-
chopathology-related cognitive processing impairments
to people with intact functioning.

Profile Analysis

The goal of profile analysis is to compare 2 or more
groups on multiple tests to see where the greatest differ-
ences emerge. However, this strategy is vulnerable to the
same psychometric artifacts as the differential deficit
strategy. That is, unless it can be demonstrated that
the largest group differences are not on the most
group-discriminating tests, it is possible that the findings
reflect psychometric artifacts of the differential discrim-
inating power of the tests, rather than a specific deficit.

Aggregation of Scores into Cognitive Subdomains

The goal of this strategy is to reduce the negative effects
of single tests being confounded by multiple processes by
combining or averaging scores on tests thought to mea-
sure the same process into a single a priori factor score.
However, this strategy can exacerbate the effects of mea-
surement error and of variance that is due to sources
other than the construct of interest when the individual
test scores reflect significant variance from such sources.
In cases where confounds from other cognitive processes
are less of an issue, aggregation can increase power. How-
ever, while aggregate scores can potentially be more re-
liable than single test scores, aggregation itself cannot
ensure construct validity (ie, that a single process is being
measured).

Principal Components Analysis and Factor Analysis

Factor analytic approaches are more sophisticated than
a priori aggregation approaches because scores loading
on the same factor are known to be highly correlated.
However, tests with the same confound(s) may load on
the same factor/cluster, thereby confounding interpreta-
tion. For example, tests of different cognitive processes
(eg, working memory and problem solving) that both
have a significant attentional demand may load on the
same factor due to the requirement for this secondary
process for test performance. Despite this caution, these
approaches can be useful for understanding the factor
structure of single tests.

Partially Ordered Sets (POSET)14

This approach assumes that tests are multifactorial and
accommodates this by organizing test scores into a hier-
archical, conceptual network, based on the cognitive
functions that are thought (according to expert consen-
sus) to be shared between tests and functions that are
unique to tests. Patients are then classified as belonging
to one functional state in this network, based on their test
scores, and Bayesian analysis techniques are used to
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determine the likelihood that these assignments are cor-
rect. An important consideration here is that the POSET
approach would not be necessary with unifactorial tests,
which is the goal of much cognitive neuroscience and the
Cognitive Neuroscience Treatment Research to Improve
Cognition in Schizophrenia (CNTRICS) process.15

Moreover, this approach requires the use of multiple
tests, which may not be feasible or desired for clinical tri-
als (due to cost and time considerations or due to a par-
ticular focus on one cognitive system). In addition, this
approach works best with extreme test scores, whereas
researchers typically want scores to be within midrange
intervals.

Process-Oriented Strategies

Unlike the approaches noted above, the process-oriented
approach typically uses tasks that are based in cognitive
psychology, not neuropsychology (ie, tests that were de-
veloped based on a theoretical model of cognition, and
validated in healthy samples or animals, as opposed to
tests developed to discriminate between people with brain
injury and health controls). The tasks used in process-
oriented studies typically include multiple conditions
where specific parameters are varied to probe the integ-
rity of an underlying process, and the adequacy of the
target process is understood in terms of the pattern of
scores across conditions, or the pattern of psychophysi-
ological correlates, as opposed to a single test score. Im-
portantly, process-oriented tasks are guided by theoretical
models that make specific, falsifiable predictions that can
be tested against other hypotheses, including what would
be predicted from a generalized deficit.
Knight16 outlined 4 major process-oriented research

strategies for cognitive studies of schizophrenia. Of these,
2 are particularly relevant to the CNTRICS process and
to clinical trials in general. One is called the superiority
strategy. Here, a cognitive task is designed so that the hy-
pothesized cognitive deficit leads to an absolute perfor-
mance advantage (compared with controls) in at least
one condition of the task. A classic example of this
is the perceptual organization study of Place and
Gilmore.17 In that study, which used very rapid presen-
tation times (20 ms), schizophrenia patients’ impairment
in automatically and initially grouping visual features
into configurations allowed them to attend to and count
individual features more accurately than controls. The
second strategy is called the relative superiority strategy.
This involves a specific reversal of performance, com-
pared with controls, in at least 2 conditions. An example
of this strategy is the study by Silverstein et al.18 In that
study, the perceptual organization impairment led to
a subtype of schizophrenia patients’ visual search perfor-
mance being faster in an ungrouped display with fewer
elements compared with a display with more elements
but where the target was grouped apart from distractors
(ie, a display size effect). In contrast, other groups dem-

onstrated the normal performance pattern of faster
search times in the easy target distractor grouping condi-
tion, even though this had more elements than the non-
grouped condition (ie, a grouping effect).
Examples of superiority or relative superiority have been

found in multiple cognitive domains (eg, latent inhibi-
tion,19 working memory,20 language,21–23 and auditory24

and visual25,26 perception), suggesting the potential for
wider adoption of these strategies. The development of ad-
ditional process-oriented tasks in more cognitive domains
will allow for greater process specificity, stronger
cognition-neurobiology links, and better cognitive probes
for treatment studies.
Simply identifying tasks developed from within cogni-

tive psychology or cognitive neuroscience is not a panacea,
however. There are a number of issues involving such tasks
that pose a challenge for clinical researchers. One is that
these tasks are typically developed to maximize between-
condition differences and are less concerned with indi-
vidual differences and group differences. This raises the
question: how do we convert tests that aim to minimize
individual differences and maximize between-condition
differences into measures that can reliably assess individ-
ual differences in the service ofmaximizing between-group
differences?2 Second, although moving away from the use
of single test scores is desirable, it is less clear what the best
method is to classify subjects based on scores across mul-
tiple conditions. Several possibilities present themselves,
such as classification of subjects by profile types and quan-
tification of aspects of a linear or nonlinear profile across
conditions (eg, extent of slope or curve, intercept, root
mean square error), etc. At this point, the relative validity
of these approaches has not yet been explored,16 although
these approaches have each demonstrated utility.27–30 By
capturing the essential aspects of performance or more ac-
curately characterizing task performance, such indices can
increase sensitivity to taskmanipulations and/or treatment
effects; this is not the same as breaking a continuous vari-
able into categories, which typically reduces sensitivity to
change. Below, the use of a simple yet surprisingly robust,
albeit misunderstood index, the difference score, will be
discussed.

Difference Scores

In the process-oriented approach, integrity of perfor-
mance is typically characterized by a pattern of scores
across more than one condition. This has several advan-
tages over single performance scores on one condition or
task or over residualized scores that reduce performance
across 2 conditions to a single value representing one with
the variance due to another score removed. For example,
straight performance scores contribute both specific and
generalized variance (ie, t and b). In addition, residual-
ized scores are difficult to interpret, and it has been sug-
gested that they never should be used to characterize level
of change.30–35 Although a simple difference score would
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seem to avoid the interpretive difficulties inherent in
a residualized score, a potential problem is that the reli-
ability of a difference score decreases as the correlation
between tasks (or conditions within a task) increases.36

In much real-world clinical research, however, differ-
ence scores are the preferred index of change (although
see suggestion below regarding the collection of multiple
data points) because the conditions inherent in such re-
search can render them highly reliable. Much of the ear-
lier caution about the unreliability of difference scores
came from psychometricians or researchers who assumed
that the phenomena to be measured were trait-like and
therefore highly stable over time.37,38 However, in typical
clinical trials, we are measuring state-related features that
are expected to change over time (at least for one treat-
ment arm), and in such cases, difference scores can be suf-
ficiently reliable. The influence of score stability on
reliability of difference scores can be seen clearly by ex-
amining the following equation for reliability of differ-
ence scores, which holds for typical measurement
conditions:

q
gg’ =qxx’ � ðq12=1� q12Þ; where

q
xx’ = average reliability of pretest and posttestmeasures

andq12 = correlation between the pre and posttests:39

Traditionally, it was assumed that adequate validity re-
quired high q12 (trait stability), so low qgg. When there is
little change among people, or if all people change to
a similar degree, the reliability of difference scores will
be low. However, when there is heterogeneity in true
change (ie, the rank ordering of people changes signifi-
cantly over time), there is low or moderate q12 (or
even high but negative q12) and reliability of difference
scores can be high under these conditions, reflecting
real differences in change over time or across conditions
as a result of a task manipulation or treatment.

This can be seen in the 2 following examples. Again, as-
suming that qgg’ = qxx’ – (q12 /1 � q12), where q12 (corre-
lation between pre- and posttest scores) is low (eg, .2), the
reliability of the difference score can be high (.75): .75 =
(.8 � .2) /(1 � .2). In contrast, where q12 is high (.7),
the reliability of the difference score is lower (.33): .33 =
(.8 - .7) /(1 � .7). Also, note that in the above examples,
the first term in the numerator, the average reliability of
each score, is high (.8); this value typically comes from an
internal consistency estimate.

The above examples are consistent with the point that
differences between conditions may be heterogeneous
across people, even when a test is perfectly construct
valid. This is an important consideration for clinical tri-
als research, because, eg, in a typical clinical trial compar-
ing a new vs an older treatment, heterogeneity in change
is the means by which a treatment effect is observed.
Importantly, under conditions where change is heteroge-

neous and real (ie, where it is not due to error variance
but to known factors such as treatment type), the reliabil-
ity of a difference score can actually be higher than the
reliabilities of the individual scores that make up the in-
dex.34 In addition, the reliability of difference scores
increases monotonically as individual differences in
real change increase.34 The critical issue is whether we
can understand/model the change in terms of measurable
variables. That is, our goal is not to identify processes (or
test indices) that do not change over time. Rather, it is to
sensitively measure change and then to be able to predict
it, whether in terms of group status, medication type, psy-
chosocial intervention, etc.
The discussion above demonstrated that the use of dif-

ference scores across 2 conditions or time points can pro-
duce a sensitive assessment of change that is reliable and
valid. However, to maximally characterize change across
conditions or time, performance should be measured
across more than 2 conditions or time points, via slope
or nonlinear functions. These strategies will increase re-
liability, reduce SE, and increase sensitivity, especially
when change is nonlinear.34,35,40,41 Moreover, they are
feasible for clinical trials because many trials collect
data at time points other than baseline and completion
of treatment, and many use tasks where performance
can be more accurately expressed across multiple condi-
tions (eg, slope of verbal learning curve during a session
or slope of psychometric function in a visual perception
task) than when using an index such as total number cor-
rect. Data analytic strategies that initially model individ-
ual change, followed by analysis of group differences in
patterns of individual change (see below), are increas-
ingly being used in longitudinal research on patient out-
comes (eg, studies using latent growth modeling),42–44

and these same strategies are applicable to performance
analysis of single cognitive tasks that include multiple
conditions.
In cases where patterns of scores are characterized in

terms of extent of slope or curve, individual performance
can be characterized in terms of multiple variables (eg,
baseline value, slope across all data points with first-
order autoregressive component removed, and root mean
square error or variability around the trend line or curve).
In addition to traditional multivariate analysis of vari-
ance procedures that compare groups on multiple varia-
bles, cluster analysis can be used to identify subgroups of
subjects in 3-dimensional space, for subsequent identifi-
cation of (single, or sets of) factors that predict heteroge-
neity in degree of change (either across conditions within
a task or across time with multiple testing points).28,30 An
advantage of this type of multivariate characterization of
subjects is that by including baseline and change indices
as separate variables, they are not confounded by each
other, as can be the case when only extent of change
is included in the analysis. In predicting change, it is
important to note that the effects of group and other
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predictor variables (and sets of variables) on rate of
within-person change may be linear or nonlinear.10,34

Once change is measured in terms of more than 2 data
points, appropriate modeling of covariance structure
further increases sensitivity. For example, repeated-
measures data rarely meet the assumptions of compound
symmetry. Although corrections for violations of this
assumption are ubiquitous in statistical programs, a bet-
ter estimate of reality involves determining which type of
covariance structure (eg, compound symmetry, first or-
der autoregressive, general autoregressive, unstructured,
etc) best fits the observed data and then analyzing effects
across multiple conditions taking this into account.

Trade-offs Inherent in Choosing Solutions to Psychometric
Issues

The strategies discussed above all convey advantages
over traditional single-score indices of cognitive function-
ing. Nevertheless, these strategies can also create psy-
chometric artifacts. Below, a number of these potential
trade-offs are briefly discussed.
Although measurement sensitivity can be increased by

increasing the number of conditions within a task,40 there
are limits to the number of conditions (and therefore, typ-
ically, trials) that can be added before measurement is
compromised. For example, adding conditions and trials
can create fatigue, or reduce motivation, and therefore
confound interpretation of results. The possibility of add-
ing conditions but reducing trials within each condition
to avoid such confounds carries with it the risk of reduc-
ing the number of trials to the point where the reliability
of each condition’s score is reduced below an acceptable
value. Therefore, the trade-off of increasingmeasurement
sensitivity by adding measurement points (conditions) vs
ensuring adequate numbers of trials for within-condition
measurement must always be considered.
A second, but related, trade-off involves measurement

of the full range of a construct vs optimizing discriminat-
ing power in each condition. It is often desirable to ensure
that a full range of ability is being measured. This allows
the researcher to determine under which conditions
groups are similar or different and allows for comparison
of full psychometric functions for each group, which can
help rule out effects of poor attention or low motivation.
However, measuring the full range of a construct typi-
cally involves including conditions where ceiling and
floor effects may be present, and this can lead to atten-
tion, motivation, and fatigue effects. In such cases, it is
tempting to optimize between-group discriminating pow-
er by only including those conditions that maximally
discriminate between groups. While this of course max-
imizes effect sizes, important information may be missed
regarding the abilities of one or more groups to process
stimuli at levels that may be meaningful. On the other

hand, including a fuller range of conditions can add un-
desired time and costs to a clinical trial.
A third trade-off, related to the second one above,

involves the choice of using staircase procedures (adap-
tive testing) vs using standardized trial presentation.
With staircase procedures, the researcher essentially indi-
vidualizes the test for each subject by reducing the range
of trial types so that they vary around each subject’s
threshold level. Because, especially for more impaired
subjects, accuracy may be greater under these conditions
than when using a standardized set of trials, motivation
may also be higher during the task. But, this approach
can lead to different trials and different difficulty levels
being given to different subjects, which can create inter-
pretative difficulties, especially if there are qualitative dif-
ferences between trial types at different difficulty levels
(eg, if longer stimulus durations allow for greater atten-
tional allocation and for eye movements, whereas briefer
stimulus durations recruit primarily perceptual opera-
tions). Staircase or adaptive procedures are widely
used in nonclinical studies of perception and cognition
and have been applied to studies of schizophrenia.45

However, the conditions under which using such proce-
dures are more or less useful have generally not been ex-
plored in clinical research.
A fourth trade-off concerns test-retest reliability/stabil-

ity vs sensitivity to change. While test-retest reliability is
a desirable test characteristic under conditions in which
no change is expected, a test that is insensitive to real
change (eg, change produced by an effective intervention)
is not useful for clinical trials researchers. The ideal test
for treatment studies is one that is sensitive to specific
forms of change and where the extent of the score change
can be predicted by independent variables such as treat-
ment history, premorbid functioning, medication type/
dose, etc.
With tasks that cannot be given more than once, there

can be a conflict between construct validity and test-retest
reliability. For example, with theWisconsin Card Sorting
Test, if a person learns the sorting rule during the first
administration, the test is basically a different test the sec-
ond time. In cases like this, alternate forms with low face
validity are necessary. At this point, however, these have
not been developed.
As discussed above, process-oriented tasks can be su-

perior to the use of matched tasks designs for isolating
specific cognitive processes. However, even with pro-
cess-oriented tasks, it is critical to ensure that the hy-
pothesized, theory-driven pattern of results cannot be
accounted for in terms of differences in the difficulty lev-
els of the conditions. Both the superiority and relative su-
periority strategies avoid this potential confound.
Finally, clinical trials researchers must weigh the trade-

off of accounting for patient heterogeneity against adding
time and costs to studies. It is critical to account for pa-
tient heterogeneity (eg, disorder subtypes, illness course,
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gender, age, genetic factors) in clinical trials because,
thus far, degree of cognitive improvement seen in people
with schizophrenia is much smaller than the variability
between patients in cognitive functioning and the vari-
ability in change over time—a situation where the
increases in the numerator in parametric statistical tests
(eg, t, F, etc) will be offset by larger increases in the de-
nominator (reflecting within-group variability) unless
more homogeneous subgroups can be identified. More-
over, many examples exist where diagnostic subtypes
perform differently on cognitive measures.16,46–49 The
danger of not accounting for heterogeneity is that poten-
tial treatment effects within a meaningful subgroup of
patients can be underestimated or even missed if all
patients’ scores are averaged. Heterogeneity can be
taken into account by only including specific subtypes
of patients into clinical trials or by assessing relevant
characteristics (eg, premorbid functioning, paranoid
vs nonparanoid status) and then having sufficient power
to explore subgroup differences after the trial is com-
pleted. However, the latter suggestion can mean added
time and costs for the trial, although it may allow for
greater sensitivity to detect treatment effects in specific
subgroups of patients.

Other Suggestions to Maximize Effect Sizes

In this final section, several other considerations relevant
to maximizing between-groups discrimination will be
briefly noted. One is to aim for overall performance levels
that are optimally discriminating. Within-group and
between-group effect sizes decrease as the difficulty level
of a task departs from optimally discriminating levels.8 In
addition, overly difficult tasks can impair motivation,
thus confounding interpretation of test scores. Discrim-
ination can also be improved by carefully designing tests
so that they are as unconfounded by extraneous cognitive
processes as possible. For example, in a perception test, it
is important to ensure that trial blocks are short to min-
imize the effects of attention on performance. Second, it
is important to choose tests that are sensitive to the
changes that occur within the time frame of a clinical trial.
Tests whose scores can be considered state markers or
mediating vulnerability markers (ie, trait markers but
where scores still vary within the abnormal range as
a function of state factors)50 are ideal for this purpose.
It is also important to distinguish between performance
and ability; ie, what someone typically does and what
they can do under optimal (ie, reinforcing, motivation-
enhancing) conditions. Research demonstrating that so-
cial or tangible reinforcement can improve and, in some
cases, normalize scores on cognitive tests (including some
that are considered vulnerability markers)51–54 highlights
the influence of environmental effects on cognitive per-
formance and the need to evaluate both performance
and potential. The gain from clinical trials can also be

improved if researchers abandon null hypothesis signifi-
cance testing.55 Testing specific predictions about the
magnitude of change will lead to a more meaningful
body of evidence regarding the effectiveness of interven-
tions. Relatedly, for measurement of change, an alterna-
tive hypothesis should be that of known practice effects,
which can be significant.56,57 Finally, the generalized def-
icit undoubtedly includes variance from a number of
measurable factors, such as negative symptoms (includ-
ing amotivation), distractibility from hallucinations, seda-
tion, and low self-efficacy.Assessment of the extent towhich
these variables contribute variance to cognitive perfor-
mance, or change in cognitive performance, can help clar-
ify the effects of the intervention that is being studied.

The Utility of Analytic Mathematical Modeling (or
Quantitative Clinical Cognitive Science)

The above discussion has focused on measurement issues
related to the application of experimental psychological,
neuropsychological, and neuroscience methods for mea-
suring specific cognitive deficits unconfounded by other
cognitive deficits or extraneous sources of error (eg, poor
motivation, medication side effects). The focus was lim-
ited to these methods because tasks in these categories
were the foci of the CNTRICS project and the earlier
Measurement and Treatment Research to Improve Cog-
nition in Schizophrenia (MATRICS) initiative from
which CNTRICS emerged. As a result, mathematical
modeling as a method to clarify cognitive processing def-
icits in schizophrenia was not a focus of the discussion.
However, it is important to note that in recent years, for-
mal mathematical models have led to significant advan-
ces in our understanding of a number of issues that are
relevant to an understanding of schizophrenia, including
visual processing, memory search, decision making, elec-
trophysiology, and the relationships between cognitive
deficits and symptoms.10,58–61 Moreeover, formal models
have also demonstrated utility in addressing the psycho-
metric artifact issues noted early in the article. And, they
can clarify aspects of sample performance that are nor-
mally seen more simply as part of global constructs
such as ‘‘difficulty level’’—such as intertrial dispersion
and between-condition variability.10,60 Formal mathe-
matical models are perhaps the best methods available
at present for aiding researchers in understanding the dis-
tributional properties of data, and the insights gained can
be applied to both within- and between-group discrimi-
nation issues. Finally, while there is always the danger
that formal models can be developed that are internally
consistent but biologically implausible,2 advances in
model diagnostic technology, and the real-world testing
of model-derived experimental tasks against model-
based predictions can help ensure that refinements are
constrained by biological, psychological, and psycho-
pathological realities.20,62
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Conclusions

Precise measurement of cognitive functioning in schizo-
phrenia is critical to advancing both neuroscience and
treatment studies of this disorder. However, much re-
search on cognition in schizophrenia is confounded with
psychometric artifacts, most notably the generalized def-
icit issue and the use of single performance indices that do
not allow for a discrimination between true score variance
related to the construct of interest, other sources of true
score variance, and error variance. To counter this prob-
lem, it is critical to reduce measurement error as much as
possible, by designing tasks so that the integrity of a cog-
nitive process can be assessed within subject via a theory-
derived prediction involving scores across two or more
conditions, and where the magnitude of between-group
differences are not also a function of the difficulty levels
of those conditions. It is also critical to maximize the pro-
portion of true score variance that is due to the specific
cognitive process of interest and minimize the contribu-
tions of extraneous cognitive and noncognitive (eg, moti-
vational) person-related factors. By ensuring process
specificity, and that the test is designed to maximize be-
tween-group discrimination via the construct of interest,
effect sizes will be maximized. A further consideration is
that tests that are chosen for clinical trials should be sen-
sitive to state-related changes in cognitive functioning.
Therefore, test-retest reliability in patient samples must
be balanced carefully against sensitivity to changes inmen-
tal status. The most important issue is not test-retest reli-
ability per se, but whether we can model the changes that
occur from one administration to the other (eg, under-
stand who is changing, and how much, in terms of known
factors such as preexisting characteristics or treatment
conditions). However, internal consistency and/or alter-
nate form reliability are relevant and these help ensure
the construct validity of the chosen task. Finally, in assess-
ing change over within-task conditions or over time, the
use of novel data analytic strategies to characterize change
can increase reliability, reduce measurement error, and in-
crease sensitivity.
In short, when designing measures for neuroscience

studies of schizophrenia, or for clinical trials, issues related
to between-group discrimination are critical. As a result,
researchers may find themselves in an apparent conflict
with classical test theory, with its focus on maximizing in-
dividual differences and test-retest reliability. However,
a balanced consideration of these issues with those raised
by the need to maximize between-group discrimination
and sensitivity to change is necessary to develop measures
that are sensitive to both the neurophysiology of schizo-
phrenia and to treatment effects.
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