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The primary goal in designing a randomized controlled
clinical trial (RCT) is to minimize bias in the estimate
of treatment effect. Randomized group assignment, dou-
ble-blinded assessments, and control or comparison groups
reduce the risk of bias. The design must also provide suf-
ficient statistical power to detect a clinically meaningful
treatment effect and maintain a nominal level of type I er-
ror. An attempt to integrate neurocognitive science into an
RCT poses additional challenges. Two particularly rele-
vant aspects of such a design often receive insufficient at-
tention in an RCT. Multiple outcomes inflate type I error,
and an unreliable assessment process introduces bias and
reduces statistical power. Here we describe how both unre-
liability and multiple outcomes can increase the study costs
and duration and reduce the feasibility of the study. The
objective of this article is to consider strategies that over-
come the problems of unreliability and multiplicity.
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Introduction

The primary goal in designing a randomized controlled
clinical trial (RCT) is to minimize bias in the estimate
of treatment effects.1 It is that estimate that reveals
whether the treatment is efficacious and, if so, what
the magnitude of the effect is. At the same time, an
RCT design must seek to achieve other objectives. The
study should maintain a nominal level of type I error
and provide statistical power that is sufficient to detect
a clinically meaningful treatment effect. The RCT
must also be both feasible and applicable. That is, the
sample size requirements should be truly attainable in
the proposed clinical sites, and the burden of the protocol
on the participants and investigators cannot be unreason-

able. The characteristics of the study sample, based on the
inclusion and exclusion criteria, should reflect those of
the patient population for whom an indication for the
investigational treatment is being sought.
There are 3 fundamental features of RCT design that

reduce the risk of bias: randomized group assignment,
double-blinded assessments, and control or comparison
groups. These sine quo non elements are standard for
RCTs in psychopharmacology and are applicable regard-
less of whether the outcomes focus on clinical symptoms
or cognitive function. However, 2 other aspects of RCT
design, unreliability and multiplicity, do not necessarily
receive sufficient attention. As a result, they are impedi-
ments in clinical trial implementation. Multiplicity, com-
paring the investigational and comparator groups on
multiple outcomes, inflates type I error. Unreliability,
on the other hand, introduces bias, reduces statistical
power and, thus, diminishes the feasibility of a clinical
trial. Many task paradigms derived from cognitive neu-
roscience have either unknown reliability or levels of re-
liability that may be less than optimal. Further, many
such paradigms are complex and may provide several dif-
ferent outcome measures that could be considered equal-
ly valid indicators of cognitive improvement. Thus, the
problems of unreliability and multiplicity may be partic-
ularly acute for RCTs using such measures. The objective
of this article is to consider strategies that overcome the
problems of unreliability and multiplicity.

Measurement and Sample Size Requirements

In designing an RCT, the choice of assessment for each
outcome is critically important, and for that reason, fun-
damental aspects of candidate measurement tools must
be evaluated. First, is the assessment feasible in the target
patient population? Second, can it be administered re-
peatedly over the course of the trial, and if not, are alter-
native forms available? Third, when selecting appropriate
assessments, both the mode of assessment and intensity
of training deserve consideration, yet they are all too of-
ten overlooked. This has particular bearing on sample
size requirements, which will now be considered in detail.
Finally, the number of primary efficacy measures must
also be determined. The implications for using multiple
outcome measures are discussed below in the section
on ‘‘Multiplicity and Sample Size Requirements.’’

1To whom correspondence should be addressed; Department of
Psychiatry, Weill Medical College of Cornell University, Box 140,
525 East 68th Street, New York, NY 10065; tel: 212-746-3872, fax:
212-746-8754, e-mail: acleon@med.cornell.edu.

Schizophrenia Bulletin vol. 34 no. 4 pp. 664–669, 2008
doi:10.1093/schbul/sbn035
Advance Access publication on May 9, 2008

� The Author 2008. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved.
For permissions, please email: journals.permissions@oxfordjournals.org.

664



Sample Size Determination

The Ethical Guidelines for Statistical Practice from the
Committee on Professional Ethics of the American
Statistical Association states, ‘‘Avoid the use of excessive
or inadequate numbers of research subjects by making
informed recommendations for study size.’’2 It is uneth-
ical to enroll more subjects than are needed to answer a re-
search question because unwarranted numbers needlessly
expose subjects to the risks of research. Conversely, if too
few subjects are enrolled in a study, that design will very
likely not answer the research question that has been set
forth. As a result, the participation of those subjects very
well could be for naught, and again their exposure to risk
is unjustifiable.
Informed recommendations for study size are, of

course, guided by statistical power analyses. The over-
arching goal of power analyses is to propose a design
that is sufficient to provide adequate statistical power
to detect a clinically meaningful intervention effect. Con-
sider the 4 components of power analyses. (1) Type I er-
ror is typically set at a = .05, unless there are coprimary
outcomes (this issue will be discussed again below in the
section on ‘‘Multiplicity and Sample Size Require-
ments’’). (2) Statistical power of 0.80 is a common
goal, although with sufficient resources, both fiscal
and human, power of 0.90 could be a reasonable target.
(3) The sample size is most often the quantity that is es-
timated in statistical power analyses. Nonetheless, in
some settings, the ideal sample size is highly constrained
by resources. (4) The population effect size (eg, Cohen
d for a comparison of 2 groups on a continuous outcome)
must be deemed clinically meaningful on the metric cho-
sen, preferably based on a consensus among expert clini-
cians and researchers. An effect size can be expressed in
various forms, depending on the nature of the outcome,
whether continuous, binary, ordinal, or survival time.
Many of these effect sizes, in turn, can be expressed as
the number needed to treat (NNT), which is viewed by
many to be more clinically interpretable.3 Given any 3
of these power analysis components, the fourth can be
determined.
Power is typically manipulated by altering the sample

size. To provide some framing, the sample size (N) re-
quired for each of 2 treatment groups (assuming equal
cell sizes) to detect various effects with statistical power
of 0.80 using a t test with a 2-tailed a level of .05 is
N = 393 (small effect: d = 0.20), N = 64 (medium effect:
d = 0.50), and N = 26 (large effect: d = 0.80).4 More sub-
jects are needed to detect smaller treatment effects. A for-
mula for estimating the number of subjects needed per
group for statistical power of 0.80 to detect population ef-
fect sizes of other magnitudes with a t test is: N = 16/d2.5

For example, to detect an effect size of d = 0.40, the num-
ber of subjects required is: 16/(0.42) = 100 subjects per
group. (Although the examples used throughout this

manuscript involve RCTs with 2 groups, each of the issues
described is germane to RCTs with more than 2 groups, as
well. Likewise, for simplicity, the examples do not involve
repeated measures over time, but instead assume that
a pre-post change score will be used.)
An alternative to simply manipulating sample size is to

consider reducing unreliability of the outcome measure.
It has been shown empirically that more reliable out-
comes increase the effect size.6 Thus, a smaller sample
size is needed to detect that larger effect size. Consider
the basis for this phenomenon. Cohen d, the between-
group effect size for a t test, expresses group mean differ-

ences in SD units: d=
�X 1� �X 2

s
, where s is the pooled SD. This

can be thought of as a signal-to-noise ratio, in which the
between-group differences represent the signal and the
within-group variability represents noise. If a more reli-
able assessment procedure is implemented, the response
within cell will very likely be less inconsistent. As a result
of reducing that noise (ie, the measurement error), the
within-treatment group variability will decrease, and
this will be reflected in the within-group SDs. Therefore,
as unreliability is reduced, the between-group effect size,
Cohen d, increases. (This is because the denominator of
d comprises within-group variability.) As a consequence,
the sample size required for a given level of statistical
power decreases with more reliable assessment strategies.
Fleiss stated, ‘‘The most elegant design of a clinical

study will not overcome the damage caused by unreliable
or imprecise measurement.’’7 Proactive approaches to at-
tenuate this problem involve the selection of a more re-
liable scale than is typically used, more rigorous rater
training, or a novel modality of assessing, perhaps using
centralized raters that have already established enhanced
reliability.8 In the domain of cognitive assessment, in-
creasing the reliability of the outcome measures could
be accomplished by (1) increasing the number of trials,
(2) improved training and practice approaches, and (3)
eliminating sources of noise or variance, such as irrele-
vant aspects of the tasks. The corresponding reduction
in unreliability will reduce the required sample size ac-
cordingly. A sample size reduction, in turn, reduces risks
to human subjects, reduces RCT study time, and reduces
research costs. Therefore, it can be argued that there
are ethical implications to the choice of assessment
procedure.
We have discussed the virtues of reducing the within-

group variability (ie, SD) by attenuatingmeasurement er-
ror. Nevertheless, there are components of unreliability
that are random noise and might simply increase the var-
iability but remain difficult to eliminate. In addition,
there are conditions in which the variability is truncated
as a result of undesirable properties of an assessment. For
instance, floor and ceiling effects could, in fact, reduce
between-group variability, and this runs contrary to the
purpose of an RCT. Recent efforts at computer adaptive
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assessments have sought to stretch the ceiling or floor,
based on responses to prior items. Another problem
that reduces between-group variability is that of practice
effects. Hence, when selecting an assessment process, one
must be cognizant of these 3 problems and, if detected,
seek to remediate them.

At this point, it is important to diverge somewhat and
consider the source for the magnitude of the treatment
effect that is used in power analyses. One convention has
involved the use of pilot data to guide the choice of effect
size. However, Kraemer et al9 articulately argue against
such a practice and instead state that the objective of
a pilot study is to examine the feasibility of the design.9

Can subjects be recruited? Will they tolerate the burden
of research, including the battery of assessments? Can
the treatments be delivered in the proposed manner?
In contrast, an effect size from a pilot study is a very
imprecise estimate, and it, therefore, poorly informs
the sample size determination process. In other words,
the confidence interval (CI) around Cohen d, eg, is quite
wide when based on the small sample sizes typically seen
in pilot studies. Specifically, the 95% CI is estimated as

d6
�
tN*-2;:025*

2ffiffiffiffiffi
N*

p �
, where N* is the total sample size

(N* = 2N). For pilot Ns, the t value will be approxi-
mately 2.0. Therefore, a quick approximation for the

95% CI is d6 4ffiffiffiffiffi
N*

p . For example, with a pilot study sam-

ple size of 16 (ie, 8/group) and a sample effect size of
d̂=0:50, the 95% CI for the population effect size ranges
from about �0.50 to 1.5. That is, there is a 95% prob-
ability that the true population effect size falls some
where from superiority of the comparator (by 0.5 SD
units) to a tremendous positive effect of the investiga-
tional agent (exceeding the comparator by 1.5 SD units).
Hence, the estimate from this hypothetical pilot is
bathed in imprecision. Other examples, which come
from a simulation study, are presented in Figure 1.
(Note that Figure 1 displays the N/group, not the total
N* used in the preceding example.) The results are based
on 10 000 datasets for each N, and these were simulated
from populations that differ by an effect size of 0.50 (ie,
one-half of a SD unit). Even with 32 subjects per group

(ie, total N* = 64), which by the standards of psycho-
pharmacology would be a large pilot study, the 95%
CI spans a full SD unit (ie, 6 0.5).
The effect size to use for sample size determination,

therefore, should not be based on pilot data due to the
imprecision, but instead on a treatment effect magnitude
that is considered ‘‘clinically meaningful.’’ The clinically
meaningful effect would be defined by a clinician, per-
haps with input from patients and their family members.
It might be thought of as an effect that is so beneficial that
the cost, the inconvenience, and most importantly the
risk of side effects, albeit if carefully monitored, are all
well justified. This is, at best, a difficult task if clinicians
and others with patient contact are not familiar with
a novel outcome measure.

Multiplicity and Sample Size Requirements

Experimentwise Type I Error

The possibility of falsely concluding that an ineffective
agent is efficacious (type I error) must be minimized at
the design stage of an RCT. Nevertheless, investigators
are often tempted to include multiple outcomes in an
RCT. For example, an RCT investigator might seek to
take full advantage of the effort devoted to refining
the number of cognitive assessments that are included
in the Measurement and Treatment Research to Improve
Cognition in Schizophrenia (MATRICS) battery.10 If so,
it might seem reasonable to apply the results of the
MATRICS research in designing RCTs for cognitive en-
hancement and include all 10 cognitive assessments indi-
vidually as outcomes. As another example, paradigms
derived from cognitive neuroscience frequently havemul-
tiple parameters or indices that investigators think are
useful measures of cognitive function (eg, reaction times
and accuracy, multiple levels of memory load). However,
multiple outcomes increase the risk of type I error unless
a multiplicity adjustment is incorporated in the hypoth-
esis testing procedure. Experimentwise type I error refers
to the probability of rejecting at least one of k true null
hypotheses. This is because the probability of experi-
mentwise type I error (aEW) for k statistical tests is esti-
mated as aEW = 1 � (1 � a)k. For example, if 2 outcomes
are designated as primary and an a level of .05 for each
test, aEW = .098, whereas if 3 are selected aEW = .143; and
if all 10 are proposed as primary outcomes aEW = .401.
Each of these exceeds the nominal .05 and represents an
unacceptably high false positive rate. It is worth noting
that an alternative to experimentwise type I error, re-
ferred to as the false discovery rate, represents the
expected proportion of false rejections among many
rejected hypotheses.11

If these estimated levels of experimentwise type I error
do not resonate loudly, consider findings from the simu-
lation study that examined type I error for hypothetical

Fig. 1. Empirical Estimates of Cohen d With 95% Confidence
Interval (Population Delta 5 0.50)
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studies that included multiple binary outcomes. The
study initially simulated a sample of 100 subjects for
each of 2 treatment groups, placebo and active. The
subjects came from one population, in which 10% of
that population was labeled ‘‘responders’’ and the others
‘‘nonresponders.’’ Certainly if the 2 groups came from
just one population, we would expect no group difference
in response rates but instead about 10% responders in
each group. Nevertheless, response rates were calculated
for each group, a v2 test was conducted with a 2-tailed a
level of .05, and the results were recorded. This process
(data simulation, randomized assignment, and v2 testing)
was repeated 10 000 times. Five hundred twenty-five of
those 10 000 v2 tests were significantly different. The ex-
periment was repeated 3 times using populations with re-
sponse rates of 5%, 20%, and 30%, respectively. The
corresponding number of times that the response rates
differed significantly across the 2 samples was 463,
525, and 458. Why would the v2 tests lead us to infer
that 2 samples from one population differ hundreds of
times? Type I error.
Let us return to the pragmatics of clinical trial design.

TheUSFood andDrugAdministration and International
Congress on Harmonization guidance for industry docu-
ment states, ‘‘It may sometimes be desirable to use more
than one primary variable . the method of controlling
type I error should be given in the protocol.’’12 The
most common approach to controlling aEW is the so-called
Bonferroni adjustment, so named based on the Bonferroni
inequality. The approach sets an upper limit on aEW by
partitioning the nominal a = .05 among k tests, such
that the adjusted a level, a* = a/kj = .05/2 = 0.025 for 2
(kj) outcomes, a* = .05/3 = 0.0167 for 3 (kj) outcomes,
and so on. As a result of using a* = 0.025, the aEW = 1
� (1� a)k is approximately equal to .05 for 2 (k) outcomes
(aEW = 1 � (1 � .05)2 = .0494) and with a* = .0167 for 3
(k) outcomes (aEW = 1 � (1� .05)3 = .0492). (Note that if
the Dunn-Sidak adjusted alpha, aD � S = 1 � (1� a)1/k, is
applied, the resulting aEW is precisely .0500 for all values of
k.13 For all practical purposes, however, the negligible dif-
ference between the Bonferroni-adjusted and Dunn-Sidak
adjusted a levels will rarely result in different conclusions
when applied in hypothesis testing.)
Consider, eg, the application of the Bonferroni multi-

plicity adjustment to compare reaction times with a work-
ingmemory task at 3 levels ofmemory load (0 load, 1 item,

2 items) of patients vs controls.15 The means (SD) are pre-
sented in Table 1, along with the results of t tests, indicat-
ing greater reaction time for patients. With 3 outcomes,
a Bonferroni-adjusted a level is .05/3, or .0167. The reac-
tions times for 0 load and 1-item load tasks are signifi-
cantly longer for patients than for controls, because the
P values are each less than .0167. However, the group dif-
ferences seen for a 2-item load is not greater than expected
by chance when the Bonferroni adjustment is used.

Multiplicity-Adjusted Sample Sizes

There are 2 frequent criticisms of the Bonferroni adjust-
ment. First, the strategy appears to sacrifice statistical
power and that would risk false negative findings. Sec-
ond, it does not account for correlations between out-
comes, thereby implicitly assuming independence among
measures. Therefore, it seems that the approach would
provide an overly conservative multiplicity adjustment.
In fact, these concerns are, for the most part, exagger-
ated, if not entirely ill founded. The Bonferroni adjust-
ment will not sacrifice statistical power if the sample
size determination is based on the adjusted a level.
This is certainly feasible because the primary outcome(s),
the multiplicity adjustment, and the proposed sample size
all must be designated in an RCT protocol before the
study commences. It is critically important that the re-
quired sample size is estimated based on the anticipated
adjusted a level. Multiplicity-adjusted sample sizes in-
crease with the number of outcomes.14 For comparison,
consider the required sample size of 64 subjects per
group, as described above, to detect a medium effect
size (d= 0.50)with statistical power of 0.80 using a 2-tailed
t test and an a =.05. In contrast, with 2 outcomes and
a* = .05/2 = 0.025, the multiplicity-adjusted sample
size requirement is 78/group and with 3 outcomes and
a* = .0167, the multiplicity-adjusted sample size require-
ment is 86/group. In general, an investigator must in-
crease the sample size by about 20% for 2 primary
outcomes and about 30% for 3. The requisite percentage
increases in sample size are comparable for v2 tests (see
Table1.15 Ifan investigator isconsideringdesignatingmore
than one primary outcome when at the RCT design stage,
the corresponding increase in sample size requirements
should serve as a critical part of the deliberation, perhaps
adeterrent. This is because a larger sample sizewill result in

Table 1. A Comparison of Individuals With Schizophrenia and Healthy Controls on Reaction Times (in ms) on 3 Memory Load Tasks

Memory Load
Healthy Controls (N = 39) Individuals With Schizophrenia (N = 55)

Unadjusted James adjusted
Mean SD Mean SD t df P Value P Value

0 Load 496.8 93.9 601.4 168.0 �3.846 87.825 .00023 .00061

1 Item 553.3 130.2 712.1 225.5 �4.306 88.812 .00004 .00012

2 Items 684.5 202.2 795.1 265.2 �2.191 92 .03098 .07632
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increased research costs, longer study duration, and more
subjects exposed to the risk of an experiment. Hence, des-
ignation of multiple primary outcomes must be done judi-
ciously. The alternative strategy, unadjusted multiplicity,
will yield in false positive results, as shown above. Clearly,
falsehopes frominertagents servenopurpose totheclinical
community.

Multiplicity Adjustments for Correlated Outcomes

With regard to the concern for correlated outcomes, there
is negligible effect of the Bonferroni adjustment on aEW
unless the correlation among outcomes exceeds .50. It has
been shown in simulation studies that aEW is maintained
at .05 with a Bonferroni adjustment when r� 0.50 among
outcomes.16,17 Furthermore, if 2 outcomes are expected
to be that highly correlated, it is questionable whether
both need to be included as primary outcomes. Nonethe-
less, there are several alternatives to the Bonferroni ad-
justment, 2 of which will be discussed briefly and then
applied to the reaction time data. Prior to describing
those alternative approaches, an entirely different strat-
egy will be briefly mentioned. It involves the development
and evaluation of a composite outcome that comprises
several highly correlated tasks. However, for use as a pri-
mary outcome in an RCT, the composite must be created
and evaluated before the RCT is conducted. Further-
more, sample-specific composites tend to provide metrics
that are difficult to interpret.

James18 introduced a multiplicity adjustment that, in
fact, incorporates the correlations (r) among outcomes
in the calculations. Using this approach, it is the P values
that are adjusted, not the a levels. Of course, whether the
strategy to control for multiplicity is an adjustment that
lowers thata thresholdor increases thePvalue, thecontrol
onaEWis imposedwithasimilargoal.The technicaldetails
of the calculations for the adjustment are presented else-
where.17,18 Consider, the application of the James ap-
proach to the reaction time data described above. The
correlations between pairs of these reaction times varia-
bles range from .56 to .67 (mean = 0.598; SD = 0.060).
The James-adjusted P values are presented in Table 1.
The reactions times for 0-item load and 1-item load tasks
are significantly longer for patients than for controls; yet
the difference on the 2-item load task is non-significant
when the James adjustment is applied.

Alternatively, the Hochberg approach is another mul-
tiplicity adjustment, a sequentially rejective approach, in
which a smaller a threshold is used for each successively
smaller P value.19 Specifically, hypothesis testing is con-
ducted sequentially, based on k outcomes that are ranked
(from 1 to K) in descending order of P values. Each ad-
justed a is a function of the respective rank ða*Hk

=a=kÞ. At
the point of the first rejected null hypothesis, the hypoth-
esis testing process terminates, and all subsequent null
hypotheses are rejected. Each of those subsequent out-

comes is designated ‘‘statistically significant.’’ If 3 out-
comes are designated as primaries, as in the example,
null hypotheses for those outcomes are tested in the fol-
lowing manner. The Hochberg a threshold ða*Hk

Þ for
the outcome with the largest P value is a*H1

=a=1=:05;
the threshold for next largest P value is a*H2

=a=2=:025;
and the threshold for the smallest P value is
a*H3

=a=3=:0167. This approach was used in the CATIE
study.20

The Hochberg approach is illustrated with the reaction
time data. First, the 3 variables are ranked in descending
order of their P values: 2-item load (P = .03098), 0-item
load (P = .00023), 1-item load (P = .00004). The variable
representing a 2-item work load has the largest P value,
which, therefore, has an a threshold of .05. The null hy-
pothesis is rejected (because P = .03098 < .05) and, based
on Hochberg protocol, all subsequent hypotheses (0-item
and 1-item loads) are rejected as well but without com-
parison of the respective P values and a thresholds.
With this particular set of reaction time data and its

pattern of P values, the Hochberg approach yielded
more significant results than the Bonferroni approach
or even the James approach, despite the highly correlated
outcomes. We cannot assume that the approach with the
most significant results is the correct approach. (It is only
in simulation studies that we actually know the true pop-
ulation values needed to precisely determine false positive
and false negative rates.) Nevertheless, the multiplicity
adjustment that will be applied must be prespecified in
the RCT protocol. Based on the results of the simulation
studies that are briefly described below, the protocol
could designate that the James approach will be used
if the mean pairwise correlation among outcomes is
at least .60; otherwise the Hochberg approach will be
used.
The performance of the Bonferroni, Hochberg, and

James approaches for correlated binary outcomes has
been compared in simulation studies.17,21 With regard
to type I error, the James approach maintained aEW at
a constant level of .05 for all values of correlations (q)
among outcomes, whereas the Hochberg and Bonferroni
strategies slightly overcompensate for multiplicity when
the correlations among outcomes was 0.60 or greater.16

With the exception of biomarkers, it is very unlikely that
such highly correlated outcomes would be designated as
co-primaries. Turning to statistical power, the James ap-
proach was advantageous, relative to the Bonferroni or
Hochberg adjustment, when the average correlation
among outcomes was .60 or greater. Conversely, when
the correlation among outcomes was less than .50, the
Hochberg approach had somewhat more power.21

A prudent approach tomultiplicity is simply to identify
only one clinically relevant outcome as the primary effi-
cacy measure in the RCT protocol. If multiple measures
are absolutely essential, however, an a adjustment strat-
egy must be prespecified.
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Conclusion

In conclusion, both unreliability and multiple outcomes
can increase the sample size required for anRCT. Inmak-
ing the choice among outcome procedures during RCT
protocol development, a focus on the reliability and val-
idity of the candidate approaches to assessment is funda-
mental. Furthermore, an effort must be made to
designate only the indispensable as primary outcome(s).
Unreliability and multiple outcomes each can increase
sample size requirements and, as a result, increase the
corresponding study costs and duration and reduce its
feasibility of full implementation.
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