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Molecular Epidemiology of Gastric Cancer:
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ABSTRACT

Gene-environment interaction appears to contribute to the etiology of
gastric cancer, as suggested by the varying geographic patterns of
gastric cancer incidence. Even in areas with a high rate Helicobacter
pylori (H. pylori) infection, only a small proportion of infected individ-
uals develop gastric cancer. It is likely that genetic factors, particularly
relatively common genetic variants, such as single nucleotide polymor-
phisms (SNPs), may modulate the effects of environmental risk factors by
regulating multiple biologic pathways involved in gastric carcinogen-
esis. Thus, common genetic variants can pose a substantial influence on
the population attributable risk, even though the absolute risk associ-
ated with each of these variants may be low. Remarkable progress has
been made in the field of molecular epidemiology, but it appears that
an initial view on the magnitude of the effects of inherited variants was
overestimated. Nevertheless, evidence suggests that genetic variants
may contribute to the etiology of gastric cancer, particularly those SNPs
in genes that are involved in inflammatory response, metabolism of
chemical carcinogens, DNA repair, and tumor suppression. Although
previous molecular epidemiologic studies of potentially functional
polymorphisms in candidate genes and gastric cancer susceptibility
lack consistency, they have advanced our knowledge of the role of
genetic susceptibility in the etiology of gastric cancer. Future, well-
designed large population-based studies will validate current findings
and provide the rationale for identifying at-risk subpopulations for pri-
mary prevention of gastric cancer.
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Although the incidence of gastric cancer
has steadily declined in past decades,

this disease remains a significant global
health problem. Worldwide, cancer of the
stomach ranks fourth in frequency (after
cancers of the lung, breast, and colon and
rectum), with an estimated 934,000 new
cases per year in 2002, and it is the
second most common cause of cancer
death (approximately 700,000 deaths
annually).1 Although diagnostic and thera-
peutic advances have occurred during the
past 10 years, the prognosis of late-stage
gastric cancer continues to be bleak, and
conventional treatments have little effect
on survival.2 Accordingly, prevention re-
mains the best strategy for controlling this
life-threatening disease.

The etiology of gastric cancer involves a
strong environmental component, and its

global distribution is characterized by a
wide geographic variation in incidence.
Particularly high-risk areas include East
Asia (especially China and Japan), Eastern
Europe, and parts of Central and South
America.1 First-line evidence of environ-
mental risk factors is drawn from migration
studies, in which populations from high-
risk regions of the world were found to
have a markedly diminished risk when
they moved to lower-risk areas.3–5

Since 1991, sufficient evidence has
emerged to support the hypothesis that
Helicobacter pylori (H. pylori) colonization
might play a major role in the development
of gastric cancer, and it has been classified
as a Group 1 carcinogen by the International
Agency for Research on Cancer (IARC)
and the World Health Organization (WHO).6

Dietary factors, such as the consumption

of salted and nitrated foods, are also
believed to be responsible for the high
incidence and mortality of gastric cancer
observed primarily in Asian countries.7,8 On
the other hand, risk of gastric cancer is
dramatically decreased in populations
whose diet includes a high intake of fruits
and vegetables,9 which may be partly
attributable to the consumption of antioxi-
dant micronutrients.10 Tobacco smoking is
also considered a known risk factor for gas-
tric cancer.11

In addition to the aforementioned
modifiable environmental factors, genetic
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factors also appear to play an important
role in the etiology of gastric cancer. Data
show, for example, that in certain regions
of the world where nearly 100% of the
populace tests positive for H. pylori, only a
small fraction of those infected develop
gastric cancer.12 This observation suggests
that genetic variations in susceptibility may
constitute an underlying mechanism of
gastric carcinogenesis.

Family-based genetic analysis revealed
the presence of rare, highly penetrant muta-
tions in several genes, such as E-cadherin,
that may confer a high individual risk, but
they account for only a small percentage of
gastric cancer.13,14

In contrast, relatively common genetic
variants, such as single nucleotide poly-
morphisms (SNPs), may modulate the
effects of environmental risk factors by
regulating multiple biologic pathways
involved in gastric carcinogenesis. Thus,
common genetic variants can contribute
substantially to population attributable risk,
even though the absolute risk associated
with each of these variants may be low.
Remarkable progress has been made in
this field of study, but it appears that initial
theories might have overestimated the
magnitude of the effects of inherited variants.

This review summarizes a number of
published association studies using several
well-characterized variants or SNPs in
genes involved in multiple biologic
pathways related to the etiology of gastric
cancer. Emphasis is placed on the
functional relevance of each genetic
variant or SNP, rather than the hypothesis-
driven selection of disease-related biologic
pathways. Although the significance of
most SNPs is still largely unknown, some
are more likely to be a-priori disease-causing
entities than others. One implication is that
SNPs that cause amino acid substitutions
(ie, nonsynonymous) or that are located at
regulatory regions (ie, promoters) may
influence disease outcomes by affecting
the expression and functions of proteins.

Because relatively small, single studies
published to date may not have been suffi-
ciently powered to detect the effect of
genetic polymorphisms in low-penetrance
genes, we performed a meta-analysis by
incorporating data available from
numerous published studies to better
address the association between SNPs

and gastric cancer risk. We identified
studies eligible for inclusion in this meta-
analysis by conducting an electronic
search of the literature (MEDLINE) to select
relevant reports. Additional studies were
identified by a manual search of ref-
erences cited in original studies or review
articles on similar topics. All analyses were
performed with Statistical Analysis System
software (v.9.1.3; SAS Institute, Cary, NC)
and Review Manage Software (v.4.2;
Oxford, England) as described elsewhere.15

MOLECULAR EPIDEMIOLOGIC
STUDIES

Mucosal Protection Against
H. Pylori Infection
H. pylori infection is associated with
diverse clinical outcomes that range from
simple asymptomatic gastritis to more
serious conditions, such as peptic ulcer
disease and gastric neoplasia. Key deter-
minants of these outcomes are severity and
distribution of the H. pylori-induced gastritis.16

When H. pylori challenges gastric
mucosa, a vigorous inflammatory response
is triggered that involves a complex
network of inflammatory mediators,
especially pro-inflammatory cytokines (eg,
interleukin-1beta [IL-1β] and tumor necrosis
factor-alpha [TNF-∝]), which may help
eradicate H. pylori organisms. Concomitant
inhibition of acid secretion, however, may
extend the area of colonization, resulting in
damage-induced inflammation of the
corpus mucosa, leading to an early onset
of gastric atrophy and malignant transfor-
mation.16 Therefore, individual differences
in the intensity of the inflammatory response
may contribute to variation in the likelihood
of malignant transformation of gastric
mucosa, which may be modulated by
polymorphisms in genes that code for key
inflammatory molecules.

IL1B and IL1RN
IL-1β, encoded by the IL1B gene, is a
potent pro-inflammatory cytokine and an
inhibitor of gastric acid secretion. Thus, it
plays a key role in modulating the inflam-
matory response to H. pylori infection.17

The interleukin-1–receptor antagonist (IL-1ra),
encoded by the IL1RN gene, is an anti-
inflammatory cytokine that competitively
binds to the IL-1β receptors, thereby

modulating the pro-inflammatory effects of
IL-1β.18 Inter-individual variation in IL-1β
and IL-1ra protein levels appears to be
determined by functional polymorphisms
in transcription regulatory regions of their
respective genes.19–21 Case-control studies
of diverse ethnic populations have been
conducted to determine the roles these
polymorphisms play in the development of
gastric cancer.22–48

As shown in Table 1, the IL1B-511T
and IL1RN-S alleles, which are reportedly
associated with increased levels of IL-1β
production, have been found to confer an
increased risk of gastric cancer. However,
significant between-study heterogeneity
was revealed in the meta-analysis, regard-
less of which genetic model was used,
suggesting that confounders or cofactors
may play important roles in determining
gastric cancer risk. In subgroup analysis, a
significantly elevated risk (assuming a
dominant model; OR = 1.37, 95% CI =
1.13–1.67, P = .54 for the heterogeneity test)
associated with the IL1RN-S allele was only
evident among studies conducted in the
United States 24,33,44,45,47 but not in Europe
(assuming a dominant model; OR = 1.25,
95% CI = 0.93–1.69, P = .0002 for the
heterogeneity test),22,27,35,38,40,42,43 nor in
Asia (assuming a dominant model; OR =
1.11, 95% CI = 0.75–1.64, P = .0002 for
the heterogeneity test).23,25,26,29,31,34,37,39,41,46

Further, a significantly elevated risk
(assuming a dominant model; OR = 1.78,
95% CI = 1.01-3.13, P < .0001 for the
heterogeneity test) associated with the
IL1RN-S allele was only evident among
studies of intestinal gastric cancer31,33,35,40,42,47

but not for diffuse gastric cancer (assuming
a dominant model; OR = 1.18, 95% CI =
0.87–1.62, P = .27 for the heterogeneity
test).31,33,35,40,47 These results suggested
that histologic types of the disease might
contribute to the study heterogeneity.
Therefore, different genetic backgrounds
and local environmental factors between
populations must be taken into account in
such association studies.

TNF-∝
TNF-∝, encoded by the TNF-∝ gene, is
another potent pro-inflammatory cytokine
and acid inhibitor highly expressed in H.
pylori-induced gastritis, albeit the acid
inhibitory properties are weaker than IL-
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1β.49–51 Several polymorphisms have been
reported in the TNF-∝ promoter, but the
majority of published studies have focused
on the G�A SNP at position –308, because
most of the other SNPs are functionally silent.

The TNF-∝-308A allele is thought to
increase transcriptional activity of TNF-∝52

and was found to be associated with a higher
concentration of TNF-∝ in patients with
malignant tumors.53,54 However, evidence
from our meta-analysis with 2,789 cases
and 4,497 controls24,27,29,35,38,42,45,46,48,55–61 is
not supportive (Table 1), suggesting that
these results need to be verified by
additional large, well-designed studies.

Metabolism of Carcinogens
Inherited polymorphisms in metabolic
enzymes contribute to variability in the
metabolism of xenobiotics and carcinogens,
a well-recognized mechanism underlying
the initiation of multiple cancers. However,
the metabolic system is rather nonspecific
to permit high efficiency in dealing with a
wide spectrum of substrates. A large number

of metabolic enzymes can be grouped into
two families. Phase I enzymes (like the
cytochrome P450 superfamily, CYP)
catabolize oxidative reactions that intro-
duce electrophilic groups to the molecules
and make them more reactive, usually
leading to carcinogen activation. Phase II
enzymes (like the glutathione S-trans-
ferases superfamily, GST) introduce a
hydrophilic group into the intermediate
molecules, usually resulting in detoxifica-
tion of activated carcinogens.

CYP2E1
CYP2E1, the only member of the CYP2E
subfamily identified so far, catalyzes
various exogenous N-nitrosamines, including
N-nitroso-dialkyiamines and tobacco-
smoke-related nitrosamine.62 Considerable
evidence supports the view that carci-
nogenic N-nitrosamine derivatives are
important in the etiology of human cancers,
including gastric cancer. However, large
inter-individual variation in the activity of
CYP2E1 has been observed, suggesting

that genetic polymorphisms may play a
role in individual capacity of metabolizing
carcinogens. The -1053C�T SNP located
in the 5’-flanking region of the CYP2E1
gene was reported to affect its binding of
trans-acting factors and change its trans-
criptional regulation, resulting in different
expression levels of the CYP2E1 mRNA.63

Although relatively few published studies
have investigated this SNP and risk of
gastric cancer, there clearly is a dominant
protective effect of the variant allele
without between-study heterogeneity as
shown in Table 1.64–72

GSTM1
GSTM1 is a main component of the GST
families that facilitate the binding of gluta-
thione (GSH), a nucleophilic tripeptide, to
carcinogens, leading to detoxification of
several known chemical compounds. The
absence of GSTM1 expression due to an
inherited, homozygous deletion of the
GSTM1 gene in the general population
may confer an increased cancer risk

Table 1. Summary of meta-analyses of published studies on selected variants and gastric cancer risk.

Genes and variants Modelsa No. of Cases/Controls OR (95% CI) References

IL1B-31 (T�C) Homozygote comparison 1883/3220 0.95 (0.76–1.18) 22, 23, 25, 26, 29, 30,
Dominant model 3476/5788 0.96 (0.80–1.14) 32-38, 40, 41, 43–48
Recessive model 3476/5788 0.98 (0.83–1.16)

IL1B-511 (C�T) Homozygote comparison 1813/2370 1.19 (0.93–1.53) 22, 24, 26-35, 37,
Dominant model 3663/4594 1.10 (0.92–1.32) 39–42, 44, 46, 48
Recessive model 3663/4594 1.15 (0.94–1.40)

IL1RN (L�S)b SS vs. LL 2799/4355 1.42 (0.90–2.25) 22–27, 29, 31, 33-35,
Dominant model 3749/5905 1.23 (1.02–1.48) 37–47
Recessive model 3749/5905 1.33 (0.82–2.15)

TNF-∝-308 (G�A) Homozygote comparison 2279/3721 1.27 (0.91–1.77)c 24, 27, 29, 35, 38,
Dominant model 2789/4497 1.06 (0.87–1.28) 42, 45, 46, 48, 55–61
Recessive model 2789/4497 1.23 (0.89–1.72)c

Homozygote comparison 792/930 0.92 (0.59–1.42)c,d 64–72

CYP2E1-1053 (C�T) Dominant model 1248/1762 0.78 (0.67–0.92)c

Recessive model 995/1368 0.98 (0.64–1.50)c,d

GSTM1 null genotype Null genotype vs.
non-null genotype 3339/6273 1.33 (1.16–1.52) 72, 74–97

P53 R72P (G�C) Homozygote comparison 534/731 0.86 (0.66–1.11)c 121–128
Dominant model 1077/1387 0.98 (0.82–1.18)c

Recessive model 1077/1387 0.81 (0.65–1.00)c

Homozygote comparison 740/722 1.04 (0.51–2.11) 131–136

CDH1-160 (C�A) Dominant model 1287/1240 1.05 (0.81–1.37)
Recessive model 1287/1240 0.99 (0.52–1.87)

a Homozygote comparison: variant homozygotes were compared with wild-type homozygotes; dominant model: a single variant allele was assumed to have
a dominant effect; ie, both heterozygotes and variant homozygotes were at risk, compared with wild-type homozygotes; recessive model: only variant
homozygotes (having both variant alleles) were at risk, compared with variant heterozygotes and wild-type homozygotes. [143]

b S: ILRN*2; L: other alleles.
c The fixed model (P > .05 for heterogeneity test); otherwise, the random model was used.
d CYP2E1-1053 (C�T): recessive model/homozygote comparison [64–68, 70–71]
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because of the resultant low ability to
detoxify several xenobiotics, causing a
decreased defense against cellular
damage, such as oxidative stress. In vivo
studies have shown that H. pylori causes
oxidative damage in gastric epithelial
cells,73 and the GSTM1 null genotype is
very likely to be associated with compro-
mised antioxidant capacity in situ,
especially in the presence of H. pylori
infection, and therefore may be considered
a risk factor for gastric cancer.

Twenty-five studies have investigated the
role of the GSTM1 null genotype in gastric
cancer susceptibility, and the meta-
analysis showed a significant overall
1.33-fold increased risk.72,74–97 However,
there was substantial heterogeneity among
these 25 studies (P = .003). When we
evaluated the source of heterogeneity by
ethnicity (Chinese populations, 11 studies
of 1,107 cases and 2,206 controls; other
Asian populations, 7 studies of 1,306 cases
and 1,999 controls; white populations, 7
studies of 926 cases and 2,068 controls),
we found no between-study heterogeneity
in each subgroup of ethnicity (data not shown).

The increased risk associated with the
GSTM1 null genotype was significant in
both Chinese (OR = 1.58, 95% CI = 1.35–
1.85) and other Asian populations (OR =
1.17, 95% CI = 1.01–1.36) but not in
white populations (OR = 1.03, 95% CI =
0.88–1.21). Furthermore, we used the
Egger’s test to provide statistical evidence
for the funnel plot symmetry on any publi-
cation bias.98 In the linear regression
analysis, the intercept values were all
significantly deviated from zero for both
overall and subgroup tests (data not
shown), suggesting some publication bias
may be a source of possible bias in the
observed associations between the GSTM1
null genotype and gastric cancer risk.

Deoxynucleotide Synthesis and
DNA Repair
Studies showed that high consumption of
vegetables and fruits was associated with a
reduced risk of gastric cancer,99,100 partly
due to a sufficient supplement of folate.101,102

An important function of folate is to provide
methyl groups required for intracellular
methylation reactions and de novo
deoxynucleotide synthesis. Chronic folate/

methyl deficiency in vivo and in vitro has
been associated with abnormal DNA methy-
lation,103,104 DNA strand breaks, and
chromosomal instability.105,106 Moreover,
folate depletion may impair DNA excision
repair in rat colonic mucosa but not
mismatch repair.107 Therefore, it is conceiv-
able that diminished activity of enzymes
involved in folate metabolism and DNA
strand break repair due functional poly-
morphisms may confer an increased risk
of gastric cancer.

MTHFR
5,10-Methylenetetrahydrofolate reductase
(MTHFR) is a central regulatory enzyme in
folate metabolism. It catalyzes the reduc-
tion of 5,10-methylenetetrahydrofolate
(methylene-THF) to 5-methyltetrahydrofo-
late (methyl-THF), the predominant
circulatory form of folate and carbon donor
for the remethylation of homocysteine to
methionine. Two main non-synonymous
SNPs (nsSNPs), 677C�T and 1298A�C of
the MTHFR gene, have been identified. For
example, the 677C�T nucleotide change at
codon 222 results in an alanine-to-valine
substitution that was found to induce a
thermolabile variant of the MTHFR enzyme
with a reduced activity.108 The roles of the
MTHFR 677C�T and 1298A�C SNPs in
gastric cancer susceptibility were recently
summarized by Zintzaras et al.109 In that meta-
analysis, the MTHFR677C�T,not the1298A�C
variant, was shown to be associated with
gastric cancer risk in all genetic models tested.109

XRCC1
Among the main DNA maintenance
mechanisms operating in mammals, base
excision repair (BER) is the primary guardian
against damage that results from cellular
metabolism, including reactive oxygen
species, methylation, deamination, and hydroxy-
lation. The x-ray repair cross complementing
group 1 gene (XRCC1), one of the over twenty
genes that participate in the BER pathway,
encodes a scaffolding protein that func-
tions in the repair of single-strand breaks
(SSBs).110 Both biologic and biochemical
evidence indicates a direct role of XRCC1 in
BER, because it interacts with a complex of
DNA repair proteins, including poly(ADP-
ribose) polymerase (PARP), DNA ligase 3
(LIG3), and DNA polymerase-β.110,111

Several common nsSNPs in the XRCC1
gene have been reported, including
Arg399Gln in exon 10 and Arg194Trp in
exon 6. The Arg399Gln is located in the
region of the BRCT-I interaction domain of
XRCC1 with poly(ADP-ribose) polymerase,
while the Arg194Trp variant occurs in the
PCNA binding region. These two SNPs
have been extensively investigated both in
their functions and associations with
cancer risk.15 For gastric cancer, however,
only five studies have been reported, with
conflicting results.112–116 This suggests the
need for more rigorously designed studies
with large sample sizes.

Selected Tumor Suppressor Genes

TP53
The tumor protein 53 gene (TP53 or p53), the
most frequently studied tumor suppressor
gene, plays a number of roles in carcino-
genesis in response to cellular stresses.117

TP53 is the most frequently mutated gene
in human cancers, and some of these
mutations have been correlated to specific
carcinogen exposures and clinical pheno-
types. Therefore, it is conceivable that
functional genetic variants in the TP53
gene may be associated with the develop-
ment of certain cancers. One well-known
common nsSNP results in a non-conserva-
tive change of an arginine (R72) to a
proline (P72) at amino acid 72 in a proline-
rich region of p53, which may be important
for the growth suppression and apoptotic
functions of this protein.118,119

Recently, Pietsch reviewed the existing
evidence of biochemical and biologic
differences between the R72 and P72 iso-
forms of p53.120 The R72 variant, when found
in a mutant form of p53, may enhance
tumor development (eg, through increased
inactivation of p73), but, when found in the
wild-type form of p53, it may better inhibit
tumor development (eg, through increased
apoptotic ability), whereas the P72 variant
may facilitate enhanced growth arrest.120

Several groups performed association
studies on the p53 R72P SNP and gastric
cancer risk.121–128 As shown in Table 1, the
72PP variant homozygote was associated
with a borderline decreased gastric cancer
risk in a recessive model without between-
study heterogeneity, suggesting a role for
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the p53 R72P SNP in regulating growth
arrest in the initiation of gastric cancer.

E-Cadherin
The E-cadherin gene (CDH1) encodes a
transmembrane cellular adhesion protein
acting as a mediator of homophilic recog-
nition signals, leading to cell-cell contact
inhibition. Significant familial clustering of
diffuse gastric cancer was found to be
attributable to germline mutations in CDH1.129

The majority of CDH1 mutation carriers were
considered susceptible to this inherited
cancer syndrome dominated by diffuse
gastric cancer,129 suggesting a central role
for this gene as a tumor suppressor in dif-
fuse gastric cancer.

Mutation-specific genetic testing for
the CDH1 gene is now available, mainly for
missense mutations and intragenic in-
frame deletions.129 The hypothesis that
decreased expression without mutations in
CDH1 in the general population may
contribute to gastric cancer risk with a low
penetrance has led to a wave of asso-
ciation studies of the CDH1 promoter
variant and gastric cancer risk. A C�A
SNP located at 160 bp upstream from the
CDH1 transcription start site was identified,
and the A allele was found to be correlated
to a reduced transcriptional factor binding
strength and transcriptional activity.130

However, epidemiologic studies failed to
demonstrate an association between the
promoter CDH1 variant and gastric cancer
susceptibility (Table 1).131–136

CONCLUSIONS AND
PERSPECTIVES
In summary, evidence suggests that
genetic variants may contribute to the
etiology of gastric cancer, particularly those
SNPs in genes that are involved in inflam-
matory response, metabolism of chemical
carcinogens, DNA repair, and tumor
suppression. Although previous molecular
epidemiologic studies of potentially
functional polymorphisms in candidate
genes and gastric cancer susceptibility
lack consistency, they have advanced our
knowledge of the role of genetic suscepti-
bility in the etiology of gastric cancer. For
the association of low-penetrance genetic
variants and gastric cancer risk, hetero-
geneity among published studies poses a
great challenge, underscoring a need for

more careful study design, study execu-
tion, and data analysis.

Heterogeneity between studies may
arise from the disease itself due to different
histological types and anatomic locations
that may involve different etiologies and
genetic predispositions.137 Lauren proposed
categorizing gastric cancers as either
intestinal or diffuse types in 1965.138 This
method of classification is still useful,
because it reflects a fundamental differ-
ence in gastric cancer subtypes with regard
to their etiology and tumor biologic behav-
iors.139 However, new disease classifications
based on genetic markers rather than tra-
ditional morphologic features are warranted
in the future to improve the designs of
genetic and molecular epidemiologic studies.

Another source of the heterogeneity is
the prevalence of confounders or cofactors.
As high-throughput genotyping methods
become available technically mature, and
more affordable, genome-wide association
approaches will be conducted more fre-
quently in the years to come, which may
provide the opportunity to develop a com-
prehensive genetic view of the disease.

The ability to perform related data
mining and statistical analyses in terms of
networking of the genes presents a
challenge. Knowledge of the functional
relevance of SNPs will be more critical
when the issues of multiple testing can be
dealt with using more sophisticated methods.

Currently, most published studies have
failed to present sufficient information on
environmental exposure in the early stages
of the genome-wide studies. This is ob-
viously contrary to the notion of “common
variants and common disease,” the basis of
the HapMap project and genome-wide scan
strategy,140–141 because the low-penetrant
genetic effects of common SNPs may
largely depend on interaction with a partic-
ular environmental exposure in multiple
stages of gastric cancer carcinogenesis,
such as H. pylori infection (eg, pro-inflam-
mation genes and DNA repair genes) and
dietary factors (eg, carcinogens, metabolic
genes, and folate metabolic genes).

A critical area for further development
in molecular epidemiologic studies on gastric
cancer susceptibility would be the incorpo-
ration of novel technologic advances for
refining the assessment of continuous,
daily exposure to dietary factors. It is also

important to develop phenotypic assays
that can provide overall measurements of
well-defined biologic pathways to assess
correlations or associations between
genetic variants and the phenotypes in
appropriate tissues.

Another important aspect of epidemio-
logic studies is the ability to form improved
multicenter research consortia,142 which
may be more advantageous compared
with individual studies, not only in terms of
study sample sizes but also finance, data
quality, and generalizable findings and
conclusions.
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