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Abstract
Data for genome-wide association studies are being collected for a myriad of phenotypes. Many of
these studies do not include control samples selected to reflect ancestry similar to the case samples.
At the same time “control databases” are becoming available to be utilized as a common resource.
These data are often being genotyped using a large-scale SNP array. Human populations exhibit
complex structure which can lead to spurious associations if not properly handled. How to couple
case and control databases effectively is a pressing question. We review available methods for
modeling genetic ancestry based on the information gleaned from the SNP array. Methods for
selecting control samples with genetic ancestry similar to the case samples are described.
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Introduction
As the results of more genome-wide association studies are published it is becoming apparent
that genetic effects are likely to be smaller than anticipated necessitating even bigger samples
to attain good power. At the same time, numerous sources of pre-genotyped control subjects
have become available. With limited resources for genotyping, more cases can be genotyped
if control samples are already in hand.

How to use these control databases effectively is an open question. A number of problems
could potentially arise. Standard epidemiological principles dictate that controls should be well
matched to cases on both genetic ancestry and environmental exposure variables. Typically
many more controls are available than cases. Can this matching be done effectively post hoc
by selectively choosing a subset of the controls? Here we focus on the genetic aspects of this
problem, discussing problems of population stratification and study design.

Case-control studies rely on the unrealistic assumption of population homogeneity. In the face
of population heterogeneity and differential prevalence, spurious associations can arise. If cases
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and controls are matched based on detailed records of their ancestry, then this problem can be
circumvented, for example [1]. Of course, ancestry data are typically not available or
inaccurate. As a response to this problem two statistical approaches to controlling structure
arose in the past decade. Genomic control corrects for stratification using an estimate of the
inflation factor due to stratification [2]. Structured association uses the sampled genotypes to
cluster subjects into more homogeneous subsets prior to analysis [3]. Structured association
performs best when the population consists of a mixture of highly diverse subpopulations, or
distinct admixed populations, for example, [4]. If the populations vary in subtle ways, such as
a continental cline, it is generally not possible for structured association to detect any structure
in the sample. Both of these approaches have shortcomings when applied to large samples with
huge panels of SNPs. Genomic control exhibits diminishing power because the effect of
stratification increases with sample size [5]. Structured association is computationally intensive
and quickly becomes intractable for large numbers of SNPs.

Principal Component based approaches
A third approach for population classification, based on principal component analysis [6],
known as eigenanalysis, has recently been updated for association testing [7,8,9]. This method
utilizes an eigenvector decomposition (EVD) to adjust for population structure. Cavalli-Sforza
and colleagues [10] show that eigenvectors displayed in two dimensions often reflect the
geographical distribution of populations. For populations that are geographically close, they
found that genetic and geographic distances are often highly correlated. Consequently, the
ancestry can be indirectly estimated based on the EVD. To illustrate the concept, Figure 1a
displays simulated data based on a model with 9 subpopulations following a continental cline.
The first eigenvector captures this cline and the remaining dimensions show little or no
additional information.

The EVD is obtained from allele counts derived from a sample of individuals measured at a
large number of SNPs; see [7] for details. Results are more reliable if only tag SNPs [11] are
included. Otherwise some axes of the decomposition will be defined by regions of high linkage
disequilibrium. The EVD provides two quantities: the eigenvectors and the corresponding
eigenvalues. The eigenvalues are ordered from largest to smallest. The larger the eigenvalue
the more successful the eigenvector is in identifying the structure in the data. To determine the
number of important dimensions empirically a test can be based on the magnitude of the
standardized eigenvalues [8].

If the EVD approach is applied carefully, the eigenvectors can be interpreted as axes of
ancestry. The number of dimensions required to capture the key features in the data vary,
depending on the nature of the structure; however, some simple rules apply. If the sample
consists of K distinct subpopulations, then K-1 axes will be required to differentiate these
subpopulations. If a population has a gradient or cline, such as observed in Europe from the
northwest to the southeast, then an axis is required for this feature. With admixed populations,
such as African Americans, a single axis tends to separate the individuals based on their
admixture proportions. Figure 1b displays simulated data from 3 subpopulations with some
admixture. For this data, the number of significant dimensions is two. Generally, when data
are collected for an association study, the sample is stratified by continental ancestry group
before analysis. Consequently the remaining structure is subtle and the number of eigenvectors
required to capture the key dimensions of ancestry are estimated empirically.

The Eigenstrat approach put forth by Price and colleagues [7] adjusts for estimated ancestry
by regressing out the leading eigenvectors before testing for association between SNPs and
phenotypes. Alternatively the effects of ancestry could be removed by genetic matching. This
idea was explored in [12] and developed fully in [13]. Cases and controls need not be matched
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on a SNP by SNP basis. The EVD offers a convenient metric for genetic matching, followed
by logistic regression conditional on the matched strata. This approach is implemented in GEM
[13]. The distance between individuals can be calculated as the Euclidean distance defined by
the leading D eigenvectors, scaled by the eigenvalues. This distance is equivalent to metric
multidimensional scaling and can be shown to be optimal [14].

Although “pair matching” is naturally appealing, an alternative form of matching called “full
matching” has notable advantages [15]. With the latter approach each strata consists of one
case paired with one or more controls or one control paired with one or more cases. When case
and control subjects have different distributions of ancestry, this form of matching permits the
inclusion of more subjects without including poor matches.

As the sample size grows, the effect of structure grows so that even subtle population structure
can lead to spurious associations [5]. At the same time, subtle structure can be difficult to detect
using EVD unless a sufficient amount of information is available in the matrix of allele counts.
The usual parameter used to express the variability in allele frequencies between
subpopulations is Fst. For a world population this quantity is large, say (0.1 to 0.15), but for a
continental population it is much smaller [10]. Within a continent, the amount of variability
varies depending on the history of the populations. In Europe Fst is estimated to be only 0.006,
while AmerIndians have a much higher level of diversity, typically assessed at 0.04 or greater
[10]. Patterson and colleagues [8] studied the sensitivity of EVD to detecting the presence of
two subpopulations as a function of Fst and found that structure is detectable in the first
eigenvalue with high probability provided the product of the sample size and the number of
tag SNPs is greater than 1/Fst 2. Fortunately, the amount of information for detecting structure
is increased by either sampling more people or more SNPs.

Another way to increase the chance of detecting subtle structure via EVD is to choose SNPs
that have been under differential selective pressures. An example is the lactase variant, which
facilitates the digestion of milk in adults. This variant is present in 96% of individuals from
northwestern Europe, but only 36% of those from southeastern Europe [16]. SNPs under
selective pressure tend to be much more informative about clinal variation than randomly
selected SNPs. A large number of SNPs have been identified that successfully differentiate
between European and African ancestry [17]; these are labeled “ancestry informative markers”.

A similar way to control for population substructure is based on propensity scores [15]. For
genetic association studies this quantity is obtained by modeling the odds of disease given a
panel of genetic markers [18]. Cases and controls can be clustered into a handful of strata based
on having similar scores. The data can then be tested for association, conditional on these strata.
This approach uses both case/control status and the panel of genetic markers to stratify the
subjects. In contrast, EVD uses only the structure apparent in the genetic SNP panel to stratify
subjects.

Selecting a suitable sample
With a sufficient number of markers, the EVD is remarkably effective in capturing subtle
structure in the data. For example, Luca and colleagues [13], combined the PopGen sample of
500 northern Germans [19] and the KORA sample of 1644 southern Germans [20]. Ignoring
labels these populations show remarkable differentiation between samples using only two
eigenvectors, but this subtle structure is obscured if the samples include outliers (individuals
with notably different ancestry). Price and colleagues [7] define outliers as those individuals
differing from the mean by at least 6 standard deviations in at least one key dimension of the
EVD. In the German samples, Luca and colleagues removed 53 individuals with ancestry that
were determined to be clearly outlying. Many of these were cryptic relative pairs. Before
removing these outliers, 22 dimensions were required to illustrate key axes of variation; in each
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of these axes, a handful of individuals are highlighted who differ markedly from the rest of the
sample.

Even after removing these gross outliers, some of the individuals may still be outliers in a more
subtle sense. Some regions of the space may be occupied exclusively by controls (or cases).
In this instance, the sample can not be successfully matched. If the control sample is chosen
by convenience this mismatch of case and control samples is quite likely to occur and can lead
to spurious associations.

Individuals who cannot be successfully matched should not be included in association analyses
because it leads to an excess of spurious findings. In addition a more heterogeneous sample
often leads to reduced power [13]. The question remains: if a large number of well-matched
controls are available, is there an advantage in including them? The power of the test will be
increased if the variance is reduced; however, variance is largely determined by the size of the
smaller sample. For instance, in a standard case-control analysis with 100 cases, 1000 controls
is better than 100 controls, but 10,000 controls is not measurably better than 1000. Hence there
is a limit to how much a large control sample can help. If the samples are not well matched, it
can hurt.

Examples
Height and a Lactase variant

With population stratification the most challenging problem occurs when some candidate SNPs
are highly differentiated, but the majority of SNPs in the panel have similar allele frequencies
across subpopulations. This situation arises when a SNP is under strong population specific
selection and is aggravated if the phenotype is also differentially distributed. If the allele
frequency cline matches the phenotype cline it maximizes the opportunity for confounding.
The data in [1] provides an example of this scenario: the phenotype is height (short vs. tall)
and the genotype is a lactase variant. These data include only a modest number of SNPs for
calculating the EVD: 111 missense and noncoding SNPs and 67 ancestry informative markers.
Ignoring the inherent structure in these data, one obtains a significant association between the
lactase variant and height (p-value = 0.0037). Neither genomic control nor structured
association were able to correct for this spurious association [7].

EVD applied to the 67 ancestry informative markers (excluding the two lactase SNPs) reveals
one outlier (Fig. 2a) and three significant axes of variation (Fig. 2a). After removal of this
outlier there are two significant axes (Fig. 2b). It is worth noting that these axes do not separate
the observations in a way that reveals a gradient in height. GEM detects 6 observations that
appear to be unmatchable (4 short and 2 tall; Fig. 2c). After removing these 6 observations
only one axis of variation continues to be significant. Applying the regression and matching
procedures to the remaining sample we find that neither method was fully successful in
removing the signal; however, matching reduces the signal by a full order of magnitude (Table
1). The theory supporting this analysis assumes that the number of SNPs is much larger than
the number of samples [21]. This assumption doesn’t hold in this application. Moreover, based
on the calculations in Patterson and colleagues [8] our panel of SNPs is not likely to yield
sufficient information to fully remove subtle structure from a European sample. Presumably
results would improve with a larger number of SNPs.

A propensity score approach also achieved partial success with these data. The scores were
used to define five strata. Unlike the EVD, the propensity strata show a strong gradient in the
height distribution. The first strata includes 4 tall and 78 short individuals, while the last strata
includes 71 tall and 3 short individuals. Next the data were analyzed using the Mantel-Haenzel
test and the stratified logistic regression test with resulting p-values of 0.039 and 0.44,

Roeder and Luca Page 4

Genomics. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



respectively. Although these tests usually perform similarly, the former failed to fully correct
for the spurious association even with the benefit of the propensity strata. In practice we have
found that this method fails to scale to large panels of SNPs.

Type I diabetes (T1D)
As mentioned in the previous subsection, a genome wide association study (Affymetrix 500K
GeneChip) was conducted on a sample of 416 T1D cases of European descent and 2144 German
controls [13]. To reconstruct ancestry, 23,552 nearly independent tag SNPs were used.
Outlying cases and controls were removed, based on the six standard deviation rule [7].
Applying Eigenstrat to the remaining sample, 25 SNPs had p-values under 10−15. Although
some of these p-values correspond to SNPs in the HLA region, most are false positives.

Using GEM’s criterion 13.2% of the cases and 4.5% of the controls were determine to be
unmatchable and removed from the sample to obtain homogeneous strata. On this sample,
GEM found 9 SNPs with p-values under 10−15. Closer inspection revealed that most small p-
values were due to poor genotyping calls (except those in the HLA region).

To facilitate further comparison of the two methods, Eigenstrat was applied to the data after
removal of the unmatchable samples. Results of GEM and Eigenstrat were compared for those
SNPs with p-values <10−4 and good genotype calls. GEM’s false positive rate was nearly on
target, but Eigenstrat’s was more than twice the desired level.

Only two principal axes are required to model ancestry of these data, after removal of outliers
and unmatchable observations. A strong continental gradient differentiates the northern and
southern German samples [13]. Surprisingly few cases were unmatchable considering that the
controls were all sampled from Germany.

Concluding Remarks
In our experience a large panel of SNPs reveals subtle structure that can be controlled by
matching or regression, provided outlying and unmatchable individuals are removed prior to
analysis. Recent literature suggests that a careful selection of a moderate number of ancestry
informative loci can achieve the same purpose ([22],[23]). It is not surprising that none of the
available methods fully succeeded in removing the effects of the cline in Europe on the lactase/
height data. Only 67 ancestry informative loci were available, and these were not chosen to
optimally reveal the European gradient.

If a large panel of SNPs is available it is advisable to choose the SNP panel from this collection,
rather than relying exclusively on a subset of ancestry informative SNPs. In the lactase/height
data we used only the ancestry informative SNPs because so few other SNPs were measured.
The available SNPs must be pruned to remove SNPs in strong linkage disequilibrium;
otherwise the principal component analysis will discover spurious axes that differentiate the
subjects based on their genotype in a single region. A rule of thumb that seems to work is to
include no pair of SNPs with r2>.04.

Eigenstrat and GEM represent two choices for modeling population substructure using
estimated axes of ancestry. Following the classic epidemiological approaches for removing the
effects of confounding in observational studies Eigenstrat uses regression and the GEM uses
matching. When the ancestry space is not sparse the regression approach tends to be slightly
more powerful [13]. In contrast, when small clusters of observations are separated from the
bulk of the sample, the matching approach is better able to remove the confounding effects.
An open question is how to quantify sparseness of the ancestry space.
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In general, EVD is not robust to outliers. Gross outliers in the ancestry space are easily
identifiable. Subtle outliers that arise due to a disparate distribution of cases and controls are
more difficult to identify (see Fig. 3). An algorithm for identifying these unmatchable
observations is described in [13] and implemented in GEM. This algorithm involves clustering
and rescaling the data so that distances are interpretable. It works well in practice, but as is
typical of clustering problems, the process requires a user specified choice for the minimum
cluster size. Further refinement of this algorithm is desirable.

The matching approach has clear advantages over the regression approach for formulating rules
for identifying subtle outliers and unmatchable observations. A powerful hybrid approach for
modeling structure which involves (i) using a matching criterion to identify unmatchable
observations, and (ii) using a regression approach to remove the remaining effects of structure,
is worth considering. For data that are not sparse in the ancestry space, this approach would
incorporate the best features of Eigenstrat and GEM.

Even after controlling for stratification, typically a slight excess of false positives remains
[24]. This could be due to subtle structure that is not successfully removed by statistical
modeling, but in our experience this problem arises from genotype calling problems not
detected in the initial quality control measures. When using samples of convenience we believe
there are additional chances for quality control issues to arise. If control genotypes are obtained
from a repository, then laboratory effects and phenotypes are completely confounded. Thus
we conclude that laboratory issues may be a concern when controls are obtained from samples
of convenience.

Nearly all investigations of the confounding effect of population structure on association
studies focus on investigations of common variants. Very little is known about the potential
for confounding that may exist for studies of rare variants. This is another question that merits
further study.
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Figure 1.
(a) Simulated data with nine subpopulations following a continental cline. One axis is required
to capture the gradient structure. (b) Three subpopulations with admixture. The first two
eigenvectors are needed to show the structure.
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Figure 2.
(a) EVD applied to AIM markers reveals one outlier. (b) First two eigenvectors for AIM
markers after removing the outlier; short (red) and tall (black) appear uniformly spread across
the clusters. (c) GEM detects 6 unmatchable observations (blue).
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Table 1
P-values for the height/lactase association example, using logistic regression, Eigenstrat, and GEM. EVD are calculated
using ancestry informative markers, before and after removing the unmatchables. Results are for the LCT -13910C →
T (rs4988235) variant. Outliers and unmatchable observations were identified using GEM. Because the sample size is
small we used a smaller critical value to determine significance of ancestry dimensions than the default (α=0.05).

With unmatchables Without unmatchables

Logistic .0032 .0034
Eigenstrat .0033 .0033

GEM .0028 .0200
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