
Menopause and the Human Hypothalamus: Evidence for the Role
of Kisspeptin/Neurokinin B Neurons in the Regulation of Estrogen
Negative Feedback

Naomi E. Rance
Departments of Pathology, Cell Biology and Anatomy and Neurology and the Evelyn F. McKnight
Brain Institute, University of Arizona College of Medicine, Tucson, Arizona, 85724

Abstract
Menopause is characterized by depletion of ovarian follicles, a reduction of ovarian hormones to
castrate levels and elevated levels of serum gonadotropins. Rather than degenerating, the
reproductive neuroendocrine axis in postmenopausal women is intact and responds robustly to the
removal of ovarian hormones. Studies in both humans and non-human primates provide evidence
that the gonadotropin hypersecretion in postmenopausal women is secondary to increased
gonadotropin-releasing hormone (GnRH) secretion from the hypothalamus. In addition, menopause
is accompanied by hypertrophy of neurons in the infundibular (arcuate) nucleus expressing KiSS-1,
neurokinin B (NKB), substance P, dynorphin and estrogen receptor α (ERα) mRNA. Ovariectomy
in experimental animals induces nearly identical findings, providing evidence that these changes are
a compensatory response to ovarian failure. The anatomical site of the hypertrophied neurons, as
well as the extensive data implicating kisspeptin, NKB and dynorphin in the regulation of GnRH
secretion, provide compelling evidence that these neurons are part of the neural network responsible
for the increased levels of serum gonadotropins in postmenopausal women. We propose that neurons
expressing KiSS-1, NKB, substance P, dynorphin and ERα mRNA in the infundibular nucleus play
an important role in sex-steroid feedback on gonadotropin secretion in the human.
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1. Introduction
Menopause marks the cessation in reproductive cycles of middle-aged women. It is heralded
by depletion of ovarian follicles leading to the loss of ovarian hormones with repercussions
throughout the body. The removal of sex-steroid negative feedback results in a marked increase
in serum luteinizing hormone (LH) and follicle stimulating hormone (FSH). This open-loop
condition is accompanied by increased GnRH gene expression and cellular hypertrophy of a
subpopulation of neurons within the human infundibular nucleus, the homologue of the arcuate
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nucleus in other species [80,81]. Although postmenopausal neuronal hypertrophy was first
described in 1966 [96], a major breakthrough in our understanding of this phenomenon
occurred in 2007, when KiSS-1 mRNA was identified within the hypertrophied neurons [86].
To place this discovery in perspective, this article will review aging of the reproductive axis
in women and the marked changes in hypothalamic morphology and gene expression in the
postmenopausal human hypothalamus. As it will become apparent, the studies of kisspeptin
and neurokinin B gene expression in the human hypothalamus provide considerable insight
into reproductive neuroendocrine regulation in postmenopausal women.

2. Ovarian aging and the menopausal transition
Ovarian failure is the critical determinant of menopause in women. At birth, there are
approximately 500,000 to 1,000,000 primordial ovarian follicles. Recent stereological studies
have shown that degeneration of non-growing ovarian follicles continually accelerates from
the time of birth to menopause [43]. Although it has been argued that the loss of follicles
accelerates after the age of 37 [25,82], this conclusion has not been supported by mathematical
modeling studies [60]. Regardless of the rate of decline, the ovary is virtually depleted of
follicles after the menopause [6,60,82]. Thus, the postmenopausal phase of life is dominated
by the hormonal milieu of ovarian failure.

Guidelines for the classification of stages of reproductive life are shown in Figure 1 [101]. The
reproductive stage is followed by the menopausal transition, which marks the onset of irregular
cycle lengths [101]. However, before the onset of irregular cycles, fertility begins to decline
and ovarian hormone levels change. The first hormone alteration is an elevation in FSH in the
early follicular phase, accompanied by declining levels of inhibin B [50,51,97,107]. Inhibin
B, secreted by granulosa cells in small antral follicles, is a useful marker of ovarian reserve
[85,103]. Because inhibin B is the dominant form of inhibin suppressing FSH in the early
follicular phase [85], the early rise in FSH secretion is likely due to decreased secretion of
inhibin B. Anti-Mullerian hormone is another marker of ovarian function that decreases in the
late reproductive stage [38]. Thus, the decline in inhibin B and anti-Mullerian hormone are
signs of ovarian follicle depletion preceding the menopausal transition. It has been proposed
that hypothalamic signals could trigger the transition [111], but this hypothesis is controversial
because much of it is based on a rat model that exhibits significant ovarian function after the
loss of reproductive capacity [67]. While altered frequency of gonadotropin pulses can have
deleterious effects upon ovarian follicle development [75], there is currently conflicting
evidence on whether this mechanism could contribute to the loss of ovarian follicles in the
human [39].

During the early menopausal transition, when cycles are irregular, many women exhibit
elevated levels of FSH throughout the cycle and lower levels of inhibin A, inhibin B, and
progesterone [37]. Serum estrogen levels of the early menopausal transition are either
preserved or increased. A rise in follicular phase FSH may lead to accelerated follicular
development with shortening of the length of the menstrual cycle [49]. The late menopausal
transition is marked by periods of amenorrhea, frequent anovulatory cycles, and substantial
variability in ovarian hormone levels and cycle lengths [37,59]. In a subgroup of
perimenopausal women, anovulatory cycles are characterized by normal estrogen and an LH
surge but inadequate formation of corpora lutea [106]. In others, a rise in follicular phase
estrogen is seen, but this is not accompanied by an LH surge [106]. These findings and others
[104] have been interpreted as indicative of insensitivity to estrogen positive feedback, but
carefully controlled studies to test this hypothesis are not available [40]. In any case, the marked
fluctuation of ovarian hormones in the late menopausal transition gives rise to many of the
clinical symptoms of the perimenopausal period. Erratic levels of serum estrogen, rather than
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the absolute level of estrogen, is a major factor in the occurrence of hot flashes in the
perimenopausal phase [77].

3. The reproductive neuroendocrine axis in postmenopausal women
By the time of the postmenopausal period, the degeneration of ovarian follicles is complete
and circulating estrogen and progesterone are reduced to castrate levels [4,9,66,105]. The
profound deficiency in ovarian hormones results in elevated levels of serum gonadotropins due
to the removal of steroid negative feedback and loss of the restraining action of inhibin on FSH
secretion. In addition, ovarian failure results in a shift in the composition of the gonadotropins
to acidic isoforms, retarding the clearance of LH from the peripheral circulation [94,108]. Due
to the long duration of the postmenopausal phase, there may also be alterations in biological
rhythms, energy homeostasis and the secretion of adrenal and thyroid hormones and growth
hormone [58,100]. As chronological age advances after the menopause, there are also changes
in the reproductive neuroendocrine axis. Between 50 and 80 years of age, mean levels of serum
LH and FSH decline and LH pulse frequency decreases [88,91]. Decreased GnRH pulse
frequency has also been documented using pulsatile gonadotropin free α-subunit pulses as a
marker [41]. These studies show that after the menopausal transition, there is aging of the
hypothalamic-pituitary axis independent from the loss in gonadal function.

Despite the continued aging of the central nervous system, there is compelling evidence that
many aspects of reproductive neuroendocrine function remain intact after menopause. The
hypothalamic/pituitary axis of postmenopausal women is capable of responding to steroid
positive feedback signals with increased LH secretion [69,71]. In addition, studies using
indirect pharmacological methods provide evidence that GnRH secretion is increased in
postmenopausal women compared to premenopausal women [39]. Importantly, the ability of
estrogen feedback to decrease GnRH secretion and gonadotropin secretion is not diminished
by age [30,31]. Similarly, administration of progesterone will still suppress serum
gonadotropin levels, GnRH secretion and free α-subunit pulse frequency in older
postmenopausal women pretreated with estrogen [30]. Because the hypothalamus has been
shown to be the major site of steroid negative feedback in the human [8,31], these studies
demonstrate intact hypothalamic function in the postmenopausal period. Interestingly, the
quantity of GnRH secretion continues to increase with age after the menopause [31]. Although
it is not understood why GnRH secretion would increase in the postmenopausal period, this
finding provides clear evidence that GnRH neurons in older women remain capable of releasing
significant quantities of GnRH. Overall, these studies indicate that removal of steroid negative
feedback in postmenopausal women is linked to increased GnRH secretion from the
hypothalamus.

Autopsy studies of premenopausal and postmenopausal women provide additional evidence
that the reproductive neuroendocrine axis in postmenopausal women responds to the removal
of ovarian steroids. The content of the GnRH decapeptide is decreased in the hypothalamus of
postmenopausal women [72]. A similar change is observed in young oophorectomized women
[72], suggesting that the decrease in hypothalamic GnRH content in postmenopausal women
is a consequence of ovarian failure and may represent decreased storage due to increased release
of decapeptide into the portal circulation [110]. Moreover, GnRH mRNA is increased in the
hypothalamus of postmenopausal women, as would be expected with removal of steroid
negative feedback [80]. The elevation of GnRH gene expression occurs within a subpopulation
of neurons scattered in the ventral preoptic region, retrochiasmatic area and the infundibular
nucleus but not within the dorsal preoptic area or septal region [80]. Combined with the studies
cited in the preceding paragraph, these data reinforce the concept that removal of steroid
negative feedback leads to increased GnRH synthesis and secretion, leading to the
gonadotropin hypersecretion characteristic of the postmenopausal state.
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Experiments using non-human primates support the hypothesis that loss of steroid negative
feedback in postmenopausal women leads to increased GnRH gene expression and secretion.
Removal of the ovaries in young rhesus monkeys results in increased GnRH secretion into the
portal capillary system [10]. Ovariectomy of young cynomolgus monkeys also results in
increased GnRH gene transcripts and these changes are similar in distribution and magnitude
to the changes in GnRH gene expression in postmenopausal women [90]. Conversely, in
ovariectomized monkeys, estrogen replacement decreases GnRH release into the stalk-median
eminence [11,64] and GnRH gene expression in the ventral hypothalamus [22,54]. Moreover,
estrogen markedly suppresses the bursts of multiunit activity within the primate medial basal
hypothalamus that are correlated with pulses of LH in peripheral plasma (the GnRH pulse
generator) [47]. These data provide evidence that estrogen negative feedback occurs at the
level of the GnRH neurons in the primate, although they do not address whether these effects
on GnRH neurons are direct or indirect. They also indicate that increased GnRH gene
expression in ovariectomized primates is linked with increased GnRH secretion from the
hypothalamus. Taken together, these studies provide compelling evidence that the rise in
hypothalamic GnRH gene expression and gonadotropin hypersecretion in postmenopausal
women is secondary to ovarian failure, with withdrawal of estrogen being an important factor
[80].

Similar to humans, menopause in non-human primates is accompanied by ovarian failure and
gonadotropin hypersecretion [112]. However, menopause occurs very late in the lifespan of
the monkey compared to the mid-life menopausal transition of humans [5]. In a recent study,
GnRH secretion was compared in young and aged rhesus monkeys using push-pull perfusion
[34]. The older monkeys exhibited low estrogen levels characteristic of ovarian follicle
depletion and would be considered postmenopausal or within the late menopausal transition
by the STRAW (Stages of Reproductive Aging Workshop) classification [101]. Remarkably,
the amount of pulsatile GnRH secretion was dramatically increased in the aged monkeys, while
GnRH pulse frequency was not significantly different between groups [34]. These findings
correlate well with the increase in GnRH gene expression and secretion observed in
postmenopausal women [31,80] and demonstrate remarkable preservation of GnRH neuronal
function in the non-human primate, even in very advanced age.

4. Changes in morphology and NKB gene expression in the infundibular
nucleus of postmenopausal women

More than four decades ago, Sheehan and Kovacs described pronounced differences in
hypothalamic neuronal morphology between pre- and postmenopausal women [96]. The
neurons were larger in postmenopausal women, in a subregion of the infundibular (arcuate)
nucleus which they named the subventricular nucleus [68,96]. The enlarged neurons exhibited
other signs of hypertrophy, including increased nuclear size, larger nucleoli and prominent
Nissl substance. There was no evidence of increased storage material, chromatolysis, swelling
or any other pathological changes that explained the change in neuron size. The hypertrophied
neurons were identified in women over the age of 50 and in women with a history of post-
partum hypopituitarism, but were inconspicuous in men of any age [96]. Because the neuronal
hypertrophy was strongly correlated with uterine atrophy in patients with post-partum
hypopituitarism, Sheehan proposed that the hypertrophy of neurons in postmenopausal women
was related to loss of ovarian estrogen secretion [95].

Subsequent analysis using computer microscopy showed a 30 to 40% increase in the size of
neurons in the infundibular nucleus of postmenopausal women (Fig. 2, [2,79]). These studies
also demonstrated that the neuronal hypertrophy occurred in a subpopulation of neurons within
the infundibular nucleus [2,79]. Stereological studies revealed no neuronal cell loss in the

Rance Page 4

Peptides. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



infundibular nucleus of older women [2]. Thus, the neuronal hypertrophy is not a compensatory
response to adjacent neuronal cell death.

The development of in situ hybridization allowed characterization of mRNA expression in the
hypertrophied neurons of postmenopausal women. The hypertrophied neurons express ERα
mRNA but do not express GnRH [79]. The increase in GnRH gene expression in
postmenopausal women occurs in a separate subpopulation of neurons scattered diffusely in
the ventral hypothalamus and these GnRH neurons do not exhibit changes in cell size [80].
Hybridization of hypothalamic sections with a variety of cDNA probes revealed that the
majority of hypertrophied neurons express neurokinin B (NKB) and substance P (SP) gene
transcripts [81]. In addition to the increase in cell size, there are increased amounts of NKB
and SP mRNA per cell and a striking increase in the number of cells expressing tachykinin
gene transcripts in postmenopausal women. Ovariectomy of young, cynomolgus monkeys
produces NKB neuronal hypertrophy and increased gene expression that is nearly identical to
that seen in postmenopausal women [90]. Conversely, the expression of NKB mRNA in the
infundibular nucleus of young ovariectomized cynomolgus monkeys is markedly reduced by
estrogen replacement therapy [3]. These studies strongly support the hypothesis that the
hypertrophy and increased NKB gene expression in the infundibular nucleus of older women
is secondary to ovarian failure.

Reciprocal changes in neuropeptide Y (NPY) and proopiomelanocortin (POMC) gene
expression occurs within separate subgroups of neurons in the hypothalamus of older women
[1,23]. Specifically, the number of neurons expressing POMC gene transcripts decreases in
the infundibular nucleus of postmenopausal women [1] whereas the gene expression of NPY
neurons increases in both the infundibular nucleus and retrochiasmatic region [24]. However,
unlike the NKB and ERα mRNA expressing neurons in the infundibular nucleus, NPY and
POMC neurons do not exhibit changes in cell size. Furthermore, the changes in NPY and
POMC gene expression in postmenopausal women are not mimicked by ovariectomy of young
cynomolgus monkeys [23,90]. Thus, not all of the changes in gene expression observed within
the hypothalamus of older women can be explained by ovarian failure.

5. Evidence in animal models that NKB neurons in the infundibular/arcuate
nucleus play a role in the sex-steroid feedback on gonadotropin secretion

In postmenopausal women and ovariectomized monkeys, the hypertrophy and increased gene
expression of NKB/ERα neurons occurs in association with removal of ovarian steroids. These
changes are accompanied by increased hypothalamic GnRH gene expression and elevated
levels of serum gonadotropins consistent with removal of steroid negative feedback (see
sections 3 and 4). These findings suggest that NKB neurons in the human infundibular nucleus
play a role in the hypothalamic circuitry regulating steroid negative feedback [79,81]. Multiple
lines of evidence in experimental animals provide support for this hypothesis. Similar to
humans, virtually all the NKB neurons in the arcuate nucleus of sheep and rats colocalize
ERα [7,36] and estrogen replacement suppresses NKB gene expression in rat, mouse, sheep
and monkeys, indicating that this circuit is highly conserved [3,15,17,73]. ERα is essential for
estrogen negative feedback [19,45] and for the suppressive effects of estrogen on NKB gene
expression [17]. Arcuate NKB neurons are sexually dimorphic [12,36] and NKB gene
expression varies with the rat estrous cycle [78]. Finally, LH secretion is modulated by central
injections of senktide, an agonist for the NK3 receptor (the preferential receptor for NKB).
Initial studies showed a negative effect of senktide injection on LH secretion in ovariectomized
rats with very low levels of exogenous estrogen [89]. However, in the ewe, central injection
of senktide dramatically stimulates LH secretion (more than 15 fold) in the follicular phase,
but not in the luteal phase [61]. Thus, the outcome of NK3 receptor activation on LH secretion
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depends on the hormonal milieu. Taken together, these data provide strong support for a role
of NKB in the sex-steroid feedback on gonadotropin secretion.

Morphological studies in the rat suggest that arcuate NKB neurons could influence LH
secretion via projections to GnRH axons in the median eminence. Tract-tracing studies show
that arcuate NKB neurons project to the median eminence as well as multiple hypothalamic
sites [55]. Because arcuate NKB neurons fail to take up retrograde tracer after systemic
injections, these projections do not link to the portal capillary system [56]. Within the median
eminence, NKB and GnRH axons are closely apposed [36,56] and NK3 receptors are identified
on GnRH axons (Fig. 3)[56]. Ultrastructural studies show that NKB varicosities are in direct
contact with GnRH axons without classical synapses [12]. These data suggest that NKB may
modulate GnRH secretion through non-synaptic transmission, a common mechanism of
peptide signaling [62]. The convergence of GnRH axons and terminals in the median eminence
represents a final coordinating site for synchronization of pulsatile GnRH secretion [65]. NKB
neurons in the arcuate nucleus could provide a sex-steroid responsive input to the GnRH
neuronal network via NK3 receptors in the median eminence (Fig. 4).

NKB is extensively colocalized with dynorphin within arcuate neurons of the ewe and rat [7,
12,26]. Because dynorphin modulates progesterone’s effects on pulsatile GnRH secretion
[32], the colocalization of NKB and dynorphin provides additional evidence that arcuate NKB
neurons participate in the reproductive axis. Immunocytochemical studies reveal close
apposition of dual-labeled NKB/dynorphin terminals on NKB/dynorphin neurons in the
arcuate nucleus of the rat and ewe [7,26]. In the ewe, ultrastructural examination reveals
synaptic contacts at the site of closely apposing dynorphin-immunoreactive terminals and
dynorphin-immunoreactive somata [27]. Because the majority of dynorphin neurons in the rat
arcuate nucleus express NK3 receptor-immunoreactivity [7], a putative synapse between
dynorphin/NKB fibers and dynorphin/NKB cell bodies could be mediated through the NK3
receptor (Fig. 4). It is not known if these inputs represent recurrent innervation or synapses
between different dynorphin/NKB neurons within the arcuate nucleus. Although speculative,
these connections could provide a mechanism to synchronize neuronal activity among
dynorphin/NKB neurons within the arcuate nucleus and thus regulate pulsatile secretion of
GnRH [7,26]

6. Kisspeptin neurons in the human hypothalamus and changes in KiSS-1
gene expression in postmenopausal women

Numerous studies have recently documented the importance of kisspeptin, the endogenous
ligand of the G protein-coupled receptor 54 (GPR54), in the regulation of reproduction and the
initiation of puberty [16,74,76,83,93]. Inactivating mutations of GPR54 in the human results
in a failure of pubertal development with low levels of circulating gonadotropins and low serum
sex hormones [16,93]. Moreover, a GPR54-activating mutation has been shown to be
associated with central precocious puberty [102]. GnRH neurons in experimental animals
express GPR54 mRNA [42,46] and are closely apposed by kisspeptin-immunoreactive fibers
[13,48]. Exogenous administration of kisspeptin excites GnRH neurons, stimulates GnRH
secretion and raises levels of LH and FSH in peripheral plasma [42,63,76,92]. The stimulatory
action of kisspeptin on the reproductive axis is conserved among a wide variety of mammalian
species, including humans [18,20,92].

Studies in experimental animals reveal many similarities between kisspeptin and NKB neurons
in the arcuate nucleus. Like NKB neurons [81], arcuate kisspeptin neurons have been proposed
to play a role in estrogen negative feedback [35]. Arcuate kisspeptin neurons express ERα
[29,99] and kisspeptin (KiSS-1) gene expression is increased in the arcuate nucleus after
ovariectomy [48,78,84,90,98,99]. Similarly, both KiSS-1 and NKB gene expression in the
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arcuate nucleus is suppressed by estrogen replacement [3,15,48,84,98,99] and ERα is required
for this effect [17,99]. Based on these findings, it seemed likely that kisspeptin and NKB would
be colocalized in arcuate neurons. If this hypothesis is correct, the hypertrophied neurons in
the infundibular nucleus of postmenopausal women would express KiSS-1 mRNA, in addition
to NKB and ERα mRNA.

Studies were initiated in our laboratory to map the location of KiSS-1 mRNA expressing
neurons in serial sections throughout the medial hypothalamus of pre- and postmenopausal
women (Fig. 5). These studies showed a preferential distribution of KiSS-1 mRNA-containing
neurons in the infundibular nucleus with only a few scattered KiSS-1 mRNA cell bodies in the
medial preoptic area [86]. Significantly, the hypertrophied neurons in the infundibular nucleus
of postmenopausal women were strongly labeled by the KiSS-1 probe, with a distribution and
morphology identical to the hypertrophied NKB and ERα-containing neurons described earlier
(see Section 4). Quantitative analyses revealed that the mean cross-sectional area of neurons
expressing KiSS-1 mRNA increased in the infundibular nucleus of postmenopausal women,
accompanied by an increase in the number of autoradiographic grains per neuron (Fig. 6). In
addition, there was a marked increase in the number of neurons expressing KiSS-1 mRNA in
the infundibular nucleus of postmenopausal women. Nearly identical changes in cell size and
KiSS-1 gene expression occurred in young cynomolgus monkeys in response to ovariectomy
(Fig. 6). Conversely, estrogen replacement of young ovariectomized cynomolgus monkeys
reduced the number of KiSS-1 neurons in the infundibular nucleus to virtually undetectable
levels [86]. These data provide strong evidence that the hypertrophy and increased gene
expression of KISS-1 neurons in postmenopausal women are secondary to the loss of ovarian
estrogen.

The changes in KiSS-1 neuronal morphology and gene expression in the human and monkey
infundibular nucleus were virtually identical to those observed in NKB neurons [81,90]. Nearly
75% of the hypertrophied neurons express KiSS-1 mRNA, similar to the percentage of the
hypertrophied neurons previously shown to express NKB, SP or ERα mRNA [81] providing
indirect evidence that KiSS-1, NKB, SP and ERα mRNAs are colocalized within the human
infundibular nucleus. Dynorphin mRNA has also been identified within the hypertrophied
neurons, but the number of neurons expressing dynorphin mRNA is decreased in
postmenopausal women [87]. These findings are in agreement with the colocalization of
kisspeptin, NKB and dynorphin in neurons demonstrated within the arcuate nucleus of the ewe
[33], and NKB, dynorphin and ERα colocalization in the arcuate nucleus of the rat and ewe
[7,26]. Definitive proof of KiSS-1, NKB, SP, dynorphin and ERα colocalization in the human
infundibular nucleus awaits multiple labeling studies. However, the identification of each of
these mRNAs in the hypertrophied neurons provides strong evidence that this circuit is
preserved among mammalian species. A future challenge will be to understand the mechanism
of the differential effects of sex-steroids on neuropeptide gene expression within the human
infundibular nucleus and the contribution of each of these neuropeptides to reproductive
regulation.

Studies of GPR54 mutations document the essential nature of kisspeptin/GPR54 signaling in
reproductive control mechanisms [16,93]. Therefore, the relatively restricted distribution of
neurons expressing KiSS-1 mRNA in the infundibular (arcuate) nucleus of the human
underscores the importance of this region in the regulation of the reproductive axis. They also
agree with clinical studies showing a hypothalamic site of estrogen negative feedback in the
human [8,31,44]. These findings are consistent with classic studies in rhesus monkeys
implicating the medial basal hypothalamus as the reproductive control center. For example,
surgical isolation of the arcuate nucleus, median eminence, and portions of the ventromedial
nuclei and premammillary areas from the rest of the brain does not interfere with estrogen
negative or positive feedback [57]. Moreover, destruction of the arcuate region in rhesus
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monkeys abolishes pulsatile gonadotropin release [53]. Finally, electrodes placed in, or
adjacent to, the arcuate nucleus will detect electrical activity synchronized with pulsatile release
of LH (the GnRH pulse generator)[109]. The number of multiunit volleys increases after
ovariectomy over a time course consistent with cellular remodeling and hypertrophy [70].
Conversely, the volleys are inhibited by estrogen replacement in ovariectomized monkeys
[47], reminiscent of the dramatic inhibition of NKB and KiSS-1 gene expression by estrogen
[86,90]. These data raise the intriguing possibility that the numerous KiSS-1/NKB neurons
with the infundibular nucleus could contribute to the multiunit activity known as the GnRH
pulse generator.

7: Summary and Conclusions
The hormonal milieu of postmenopausal women is characterized by the depletion of ovarian
follicles, loss of ovarian steroid secretion and secondary gonadotropin hypersecretion from the
anterior pituitary gland. Rather than showing signs of degeneration, the reproductive
neuroendocrine axis in postmenopausal women responds robustly to the removal of ovarian
hormones. Throughout the postmenopausal period, administration of exogenous sex steroids
is still effective in reducing GnRH and LH secretion. Moreover, postmenopausal women
exhibit increased hypothalamic GnRH gene expression and indirect evidence suggests that this
is linked to increased GnRH secretion. These findings, combined with studies of non-human
primates, provide strong evidence that the hypersecretion of gonadotropins in postmenopausal
women is secondary to the increased synthesis and secretion of GnRH. In the infundibular
nucleus of postmenopausal women, hypertrophy occurs in a subpopulation of neurons
expressing KiSS-1, NKB, SP, dynorphin and ERα mRNA. Postmenopausal neuronal
hypertrophy is accompanied by increased KiSS-1, NKB and substance P gene transcripts and
decreased expression of dynorphin mRNA. Ovariectomy of young experimental animals
induces nearly identical findings [28,86,90], providing evidence that the changes in GnRH,
KiSS-1, NKB and dynorphin gene expression in the infundibular nucleus of postmenopausal
women reflects a compensatory response to ovarian failure. Conversely, estrogen replacement
reduces GnRH, KiSS-1 and NKB gene expression in ovariectomized cynomolgus monkeys
[3,54,86]. Because GnRH and KiSS-1/NKB neurons in postmenopausal women exhibit
changes similar to those in young monkeys after ovariectomy, these studies support the concept
that reproductive hypothalamic function is preserved after menopause. The anatomical site of
the hypertrophied neurons, the colocalization of ERα, as well as the extensive data implicating
NKB, kisspeptin, and dynorphin in the regulation of GnRH secretion provide compelling
evidence that the hypertrophied neurons are part of the neural network responsible for the
increased levels of serum gonadotropins in postmenopausal women (Fig. 7).

We hypothesize that the stimulatory effects of kisspeptin and NKB, combined with a reduction
in the inhibitory effects of dynorphin, ultimately results in increased GnRH gene expression
and secretion in postmenopausal women. While it is well recognized that GnRH neurons are
influenced by multiple converging inputs, studies of GPR54 mutations in humans [16,93] and
transgenic mice emphasize the essential nature of this circuitry in the regulation of
reproduction. ERα is a critical component because estrogen negative feedback on GnRH gene
expression and secretion will not occur in ERα knockout mice [14,19]. Similarly, ERα is
essential for the suppressive effects of estrogen on KiSS-1 and NKB gene expression in the
arcuate nucleus [17,99]. GPR54 receptor signaling is required for initiation of puberty [93],
basal secretion of gonadotropins [93], the postovariectomy rise in LH [21] and the stimulatory
effects of kisspeptin on GnRH neurons [63]. Further studies will be necessary to determine if
NKB or dynorphin signaling are also critical factors in the reproductive axis. Another challenge
will be to characterize putative connections between the hypertrophied neurons and GnRH
neurons in the human hypothalamus. Because there is a wealth of information showing the
critical role of kisspeptin signaling in reproduction, the identification of alterations in KiSS-1
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gene expression in the infundibular of postmenopausal women sheds considerable light on our
understanding of human reproductive neuroendocrine regulation. These studies provide strong
evidence that a subpopulation of neurons in the infundibular nucleus coexpressing kisspeptin,
NKB, SP, dynorphin and ERα mediates estrogen negative feedback on GnRH secretion in the
human.
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Figure 1.
The STRAW (Stages of Reproductive Aging Workshop) staging system. The menopause is
defined as the time of the final menstrual period. The onset of variable cycle lengths
characterizes the menopausal transition. Note that the earliest change is increased FSH
secretion before cycles become irregular. This increase in FSH secretion is inversely correlated
with decreased levels of inhibin B.
From Soules, et al. [101], reproduced with permission from Elsevier.
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Figure 2.
Representative photomicrographs of cresyl violet-stained sections of the infundibular nucleus
of young, premenopausal (A) and older, postmenopausal (B) women. Note the considerably
enlarged neurons in the older subject with increased size of nuclei and nucleoli as well as
increased Nissl substance. Scale bar = 25 microns in A (applies to A,B). From Abel and Rance
[2], reproduced with permission from Wiley-Liss Inc.
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Figure 3.
Confocal microscopy of the rat median eminence. The images were captured at a single focal
plane of approximately 0.80 μm in thickness. A: Color-combined image of GnRH (green) and
proNKB (red)- immunofluorescence showing dense intermingling and multiple foci of close
apposition (arrowheads). B: In contrast, combined images of GnRH (green) and NK3R (red)-
immunofluorescence show punctate colocalization of NK3R on GnRH fibers (yellow, arrows).
The asterisks in A and B mark the edge of the lateral palisade zone. These studies provide
morphological evidence that NKB modulates GnRH secretion at the level of the rat median
eminence. Scale bar = 5μm in A (applies to A, B). From Krajewski et al., [56] reproduced with
permission Wiley-Liss Inc.
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Figure 4.
Schematic diagram of the relationship between NKB (neurokinin B), Dynorphin (DYN), ER
(estrogen receptor α) and GnRH (gonadotropin releasing-hormone) in the arcuate nucleus and
median eminence of the rat. Although the presence of NK3 receptors is shown as an
autofeedback loop, it is not known if these connections represent recurrent collaterals or
synapses between NKB/dynorphin neurons. This diagram is based on immunocytochemical
and tract-tracing studies from several sources [7,55,56].
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Figure 5.
Computer-assisted maps showing the distribution of neurons expressing KiSS-1 mRNA in
representative parasagittal sections from a premenopausal (A) and a postmenopausal (B)
woman. Each filled circle represents one labeled neuron. Neurons expressing KiSS-1 mRNA
were predominantly located in the infundibular nucleus of both groups. A marked increase in
the number of neurons expressing KiSS-1 mRNA was observed in the infundibular nucleus of
postmenopausal women. The arrow indicates the location of the infundibular nucleus.
Abbreviations: ac, anterior commissure; fx, fornix; INF, infundibular nucleus; MB,
mammillary body; MPOA, medial preoptic area; oc, optic chiasm; PH, posterior hypothalamus.
Scale Bar = 2 mm.
From Rometo et al. [86], reproduced with permission from The Endocrine Society.
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Figure 6.
Changes in neuronal morphology and KiSS-1 gene expression in the infundibular nucleus of
premenopausal and postmenopausal women (A,B,C) or the infundibular nucleus of young,
intact and ovariectomized cynomolgus monkeys (D, E, F). Figure 6A shows the mean number
of neurons expressing KiSS-1 mRNA in sagittal human sections and 6D shows the mean
number of neurons in unilateral coronal sections in the monkey. 6B and E show the mean
profile area (μm2) of KiSS-1 neurons and C and F show the mean number of autoradiographic
grains for each labeled neuron. Postmenopausal women exhibited increased number, size and
gene expression of KiSS-1 neurons that was similar to that seen in young, ovariectomized
cynomolgus monkeys. Values are expressed as mean ± SEM. * Significantly different from
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premenopausal (A) or intact (D, E, F), p< 0.001. ** Significantly different from premenopausal
(B, C), p< 0.05.
From Rometo et al. [86], reproduced with permission from The Endocrine Society.
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Figure 7.
Schematic diagram of neuroendocrine regulation of LH secretion in postmenopausal women.
The hallmark of menopause is ovarian aging with follicle depletion resulting in castrate levels
of ovarian hormones. Removal of estrogen leads to hypertrophy of a subpopulation of
infundibular neurons expressing KiSS-1, NKB, substance P, dynorphin and ERα mRNA in the
human infundibular nucleus. Within these neurons, there is increased expression KiSS-1, NKB
and substance P gene transcripts and the decreased gene expression of dynorphin mRNA. We
hypothesize that stimulatory effects of kisspeptins and NKB, combined with a reduction in the
inhibitory effects of dynorphin, ultimately results in increased GnRH gene expression.
Increased GnRH secretion leads to the gonadotropin hypersecretion characteristic of the
postmenopausal period. These studies provide evidence that neurons expressing KiSS-1, NKB,
substance P, dynorphin and ERα mRNA play a role in the regulation of steroid negative
feedback in the human. See text for justification of this model.
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