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Network Dynamics Underlying the Formation of Sparse,
Informative Representations in the Hippocampus
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During development, activity-dependent processes increase the specificity of neural responses to stimuli, but the role that this type of
process plays in adult plasticity is unclear. We examined the dynamics of hippocampal activity as animals learned about new environ-
ments to understand how neural selectivity changes with experience. Hippocampal principal neurons fire when the animal is located in
a particular subregion of its environment, and in any given environment the hippocampal representation is sparse: less than half of the
neurons in areas CA1 and CA3 are active whereas the rest are essentially silent. Here we show that different dynamics govern the evolution
of this sparsity in CA1 and upstream area CA3. CA1, but not CA3, produces twice as many spikes in novel compared with familiar
environments. This high rate firing continues during sharp wave ripple events in a subsequent rest period. The overall CA1 population
rate declines and the number of active cells decreases as the environment becomes familiar and task performance improves, but the
decline in rate is not uniform across neurons. Instead, the activity of cells with initial peak spatial rates above �12 Hz is enhanced,
whereas the activity of cells with lower initial peak rates is suppressed. The result of these changes is that the active CA1 population comes
to consist of a relatively small group of cells with strong spatial tuning. This process is not evident in CA3, indicating that a region-specific
and long timescale process operates in CA1 to create a sparse, spatially informative population of neurons.
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Introduction
The hippocampus is essential for encoding new memories for
space and events (Scoville and Milner, 1957; Squire and Zola-
Morgan, 1991; Eichenbaum and Cohen, 2001) and recent work
has shown that human hippocampal neurons are active during
both memory encoding and retrieval (Gelbard-Sagiv et al., 2008).
In the rodent, individual hippocampal neurons fire selectively
when the animal is located in a particular subregion of its envi-
ronment (O’Keefe and Dostrovsky, 1971). These “place cells”
encode complex associations available in different locations (Best
et al., 2001). Importantly, only �40% of the principal neurons in
hippocampal area CA1 and �30% of the principal neurons in
upstream area CA3 (Wilson and McNaughton, 1993; Lee et al.,
2004b; Leutgeb et al., 2004) show clear spatial specificity in a
given familiar environment whereas the rest are essentially silent.
It is not yet clear how individual neurons become part of a new
spatial representation or how this process might differ across
hippocampal subregions.

We do know that although both CA3 and CA1 show place

specific activity, these areas differ in their responses to new or
altered environments (Guzowski et al., 2004; Lee et al., 2004a,b;
Leutgeb et al., 2004; Alvernhe et al., 2008). CA3 place fields shift
during the first exposure to a new cue configuration but not
during subsequent exposures, whereas the opposite pattern is
seen in CA1 (Lee et al., 2004a). This result is consistent with data
demonstrating the importance of CA3 for single trial learning
(Nakazawa et al., 2003). Furthermore, whereas CA1 cells undergo
rapid plasticity in novel environments (Wilson and McNaugh-
ton, 1993), CA1 place field plasticity (Austin et al., 1993; Frank et
al., 2004) and novelty-specific reactivation (Cheng and Frank,
2008) can extend beyond the first day of exposure to a new place.
Together, these results suggest that CA3 and CA1 may respond
differently during new experiences.

A parallel set of results has demonstrated that there are in-
creases in activity across multiple brain regions during exposure
to novelty (Li et al., 1993; Knight, 1996; Knight and Nakada, 1998;
Kirchhoff et al., 2000). These increases have been seen in CA1
(Nitz and McNaughton, 2004; Csicsvari et al., 2007), but it is not
yet clear whether these changes are seen in CA3. Furthermore, we
do not know whether these increases in activity are relevant to
ongoing plasticity in the hippocampal circuit.

We therefore asked whether changes in overall firing are re-
lated to changes in place cell coding in CA3 and CA1. We exposed
animals to two initially novel environments. The exposures were
staggered to allow us to sample CA3 and CA1 activity both during
the early days of experience in a new place and also later, once that
place was highly familiar. Animals learned to perform an alterna-
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tion task so that we could determine whether behavioral and
neural changes took place on similar timescales. We found fun-
damentally different patterns of population dynamics in CA3 and
CA1, suggestive of specialized roles for these structures in
learning.

Materials and Methods
Data collection and preprocessing. Seven male Long–Evans rats (500 – 600
g) were food deprived to 85–90% of their baseline weight and trained to
run on a linear track with one reward site at each end of the track. The
pretraining was performed in a different room from the recording exper-
iments. After the animals were accustomed to behaving for liquid reward
(sweetened condensed milk), they were implanted with a microdrive
array containing 30 independently movable tetrodes according to Uni-
versity of California, San Francisco and National Institutes of Health
guidelines (for details, see Frank et al., 2004). After 5– 6 d of recovery,
animals were once again food deprived to 85% of their baseline weight.

The tetrodes were arranged bilaterally in two 15 tetrode groups cen-
tered at AP �3.7 mm, ML � 3.7 mm. Each group was located inside an
oval cannula whose major axis was oriented at a 45° angle to the midline
with the more posterior tip of the oval closer to the midline. Tetrodes in
the anterior and lateral portion of each group targeted lateral CA3
whereas more posterior and medial tetrodes targeted CA1. Thus, al-
though there was some overlap of CA3 and CA1 tetrodes in individual
coronal slices, most CA1 recordings were slightly more posterior than
associated CA3 recordings. This arrangement was chosen because the
more lateral CA3 cells we targeted tend to project to slightly more pos-
terior/temporal areas of CA1 (Ishizuka et al., 1990), and our goal was to
sample neurons from highly interconnected regions of CA3 and CA1.

Each recording day consisted of two or three 15 min run sessions in
W-shaped tracks, with rest sessions in a black box before and after each
run. We used two geometrically identical but visually distinct tracks that
were open to the room but separated from one another by a black barrier
(Fig. 1a). The tracks had one reward site at the end of each arm, and
animals learned to perform a continuous alternation task in which, start-
ing from the center arm of the W-track, they alternated visits to each
outer arm for liquid reward (center-left-center-right, and so on) (Frank
et al., 2000, 2004). Animal were rewarded only when an outer arm visit
was followed by a return to the center arm before the next outbound
trajectory was made. Errors were not rewarded, and after an incorrect
choice of an outer arm no rewards were given until the animal returned
to the center arm. Recording for animals in group 1 (n � 4) began on the
first day of exposure to track one (T1). These animals experienced T1 for
3 d (two sessions per day), and in three of these animals, track two (T2)
was then introduced on day 4. From day 4 onward, these three animals
ran at least one session on each track (usually two sessions on T2 and one
session on T1). The fourth animal in group 1 ran only on track 1 for two
sessions a day for days 1 through 5 and was not exposed to track 2.
Animals in group 2 (n � 3) were exposed to T1 for 6 d and then ran on
both T1 and T2 from day 7 onward. Recordings for group 2 were begun
on day 7. The order of track presentations was not the same for every
animal, but was kept consistent for each individual animal (supplemental
Fig. 1, available at www.jneurosci.org as supplemental material). This
design allowed us to compare the activity of single neurons across the two
tracks and to obtain recordings across many days as the initially novel
environments became familiar.

Each run session was 15 min long, and run sessions were flanked by 20
min rest periods in a high walled black box where neural recording con-
tinued. Tetrode positions were adjusted after daily recording sessions for
all tetrodes that had poor unit recordings. On rare occasions some te-
trodes were moved before recording sessions, but never within 4 h of
recording. After data collection electrode locations were identified histo-
logically (Fig. 1b) (Frank et al., 2004).

Data were collected using the NSpike data acquisition system (L. M.
Frank; J. MacArthur, Harvard University, Cambridge, MA). An infrared
diode array with a large and a small group of diodes was attached to the
animal’s preamplifier array and the animal’s position on the track was
reconstructed using a semiautomated analysis of digital video of the

experiment with custom-written software. Spike data were sampled at 30
KHz, digitally filtered between 600 Hz and 6 KHz (2 pole Bessel for high
and low pass) and threshold crossing events were saved to disk. Contin-
uous LFP data from all tetrodes was sampled at 1.5 KHz, digitally filtered
between 0.5 and 400 Hz and saved to disk.

After neural data were collected, individual units were identified by
clustering spikes using only peak amplitude and spike width as variables.
All spike sorting was done using custom software (MatClust, M. Karls-
son). It was generally possible to use a single set of cluster bounds defined
in amplitude and width space to isolate units across an entire 2–3 h
recording session. In the minority of cases in which there was a slight shift
in amplitudes across time, units (putative single neurons) were clustered
only when that shift was coherent across multiple clusters and where
plots of amplitude versus time showed a smooth shift. Only units with at
least 100 spikes fired across a day of recording and a clear refractory
period were included. Furthermore, only units where the entire cluster
was visible were included. Thus, no units in which part of the cluster
vanished into the noise or was cutoff by the recording threshold were
clustered. Because units were clustered across both run and rest sessions,
we were able to identify well isolated units that fired frequently in the rest
box but infrequently on one or both tracks. Data from these cells were

Figure 1. Experimental overview. a, Track shapes and orientations in the recording room.
The track arms were 76 cm long, and each section of track was 7 cm wide. The gray circles at the
end of each arm represent food wells in which rewards were delivered. The black line separating
the two W-tracks represents the black barrier that prevented the animal from seeing one track
from the other. The diagram of a rat represents the approximate size of an animal relative to the
environment. b, Histology. Arrows indicate lesions at the ends of three tetrodes. The slice shown
was composed from three adjacent photos and contains a lesion from a single tetrode targeting
CA3, a tetrode targeting CA1, and a reference tetrode located in the corpus callosum. Overall,
most CA1 tetrodes were slightly more posterior than the CA3 tetrodes (see Materials and Meth-
ods). c, Linearization of firing rates. On the left is a two-dimensional heat map of the occupancy
normalized firing rates of one neuron. The animal’s location was projected onto one of four
linear trajectories. Shown on the right is the linear firing rate for one trajectory from the center
to the left arm (shown in white on the heat map). The neuron had a peak spatial rate of 39 Hz
and was active on 15% of the track. The linearized rate is higher than the nonlinearized rate
because the cell was directional and because two-dimensional smoothing reduces the firing
rates.
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included in the average rate analyses and in the calculation of proportion
of cells active.

After clustering we separated units into putative excitatory and fast
spiking inhibitory neurons using standard criteria (Fox and Ranck, 1981;
Frank et al., 2001). Putative inhibitory cells were identified based on their
high average rate (� 7 Hz) and their narrow spike waveforms (�0.25 ms
measured from peak to trough), as these criteria produced clearly sepa-
rated groups of neurons (data not shown). Only a relatively small num-
ber of putative inhibitory cells were isolated, so we restricted our analyses
to putative principal neurons.

Analysis of behavioral data. We measured the performance on the con-
tinuous alternation task by analyzing the sequence of center arm to outer
arm visits on the W-track. A decision was correct if the animal visited the
outer arm that was not visited on the previous outbound trajectory. We
calculated the proportion of incorrect decisions made as a function of the
amount of experience on the track. For this analysis data were combined
across animals as a pool of ones (correct decisions) and zeroes (incorrect
decisions) for each day, and using a previously described dynamic state
space algorithm (Smith et al., 2004), we estimated the probability of an
incorrect decision with confidence limits across all days. From this, we
calculated the time constant with confidence limits as the point at which
errors decayed to 1/e of the total range. We also measured the average
amount of time the animals used to travel from one well to another as
well as the average velocity for all times included in the analyses of spike
data.

Analysis of neural data. All analyses were performed using custom
software written in Matlab (Mathworks). Only days that contain data
from at least two animals were included, and all analyses for the run
periods excluded times when animals were moving along the track at a
speed �3 cm/s to ensure that periods of nonspatial firing during immo-
bility did not contribute to our results. The average activity for each cell
was calculated as the total number of spikes fired during running divided
by the length of time the animal was running. When comparing cell rates
across days, only the first run session was used from each track per day.
To measure place field properties we calculated the “linearized” activity
of each cell. The behavioral data were separated into four trajectories
(center arm to left arm, left to center, center to right, and right to center)
and the animal’s linear position was measured as the distance in cm along
the track from the reward site on the center arm. We then produced four
corresponding occupancy maps and spikes per bin maps using 2 cm
spatial bins. Both the occupancy and spikes per bin map were smoothed
with a 4 cm SD Gaussian curve with a total extent of 20 cm. The spikes per
bin map was divided bin by bin by the occupancy map to produce a
smoothed, occupancy normalized firing rate map which captured the
spatial specificity seen in the standard 2D place field plot (Fig. 1c). Spatial
peak rate was defined as the maximum rate across all spatial bins for one
15 min run session. The similarity of spatial coding for single cells across
the two environments was computed using place field overlap, defined as
two times the sum of the overlapping areas of the linear rate curves
divided by the sum of the areas of each curve (Battaglia et al., 2004). This
measure is bounded between 0 and 1, where 1 signifies perfect overlap.
All trajectories with at least 3 Hz peak rate were averaged together for this
measure.

We also examined firing rates during sharp-wave ripple (SWR) events
during the rest after the first run of each day. This allowed us to deter-
mine whether the changes in rates that we found were specific to the
spatial setting and whether these changes persisted after the initial expe-
rience in the environment into periods that have been associated with
memory consolidation (Buzsáki, 1986; Buzsáki et al., 1992; Sutherland
and McNaughton, 2000). SWRs were identified based on peaks in the
local field potential (LFP), recorded from one channel from each tetrode
in the CA3 and CA1 cell layers. A reference tetrode was positioned the
corpus callosum and all neural signals were recorded relative to that
reference to eliminate muscle artifacts from the recordings. The raw LFP
data were bandpass filtered between 150 and 250 Hz and the SWR enve-
lope was determined using a Hilbert transform. The envelope was
smoothed with a Gaussian with a SD of 4 ms and a width of 32 ms. SWRs
were defined as contiguous periods when the smoothed SWR envelope
stayed above 3 SDs of the mean for at least 15 ms on at least one tetrode.

The full SWR events included times immediately before and after the
triggering event during which the envelope exceeded the mean. We cal-
culated the rate in these SWR events by taking the total number of spikes
seen during SWRs and dividing it by the total length of all the SWR events
during the rest session.

We then examined the relationship between the spatial peak rate and
the proportion of the environment over which each neuron was active.
The proportion of the environment over which each neuron was active
was defined as the length of the region(s) in which the cell fired at above
0.5 Hz linearized firing rate divided by the total length of the track. For
this analysis we chose, for each neuron, the first session on the most novel
track on each recording day. This restricted the analyses so that the same
cell did not provide two data points for different blocks. The results were
indistinguishable if this condition was relaxed (data not shown). All
statistical tests for differences in proportions used the Z test for propor-
tions, and the associated Z scores are reported in the text.

To visualize the changes that we saw in spatial peak rates over time we
constructed smoothed probability distribution functions (PDF) of peak
and average rates. To do so we computed the cumulative distribution
function (CDF) of the data, smoothed the CDF using a Gaussian curve
and computed the PDF as the derivative of the CDF. The Gaussian had a
SD of 2.3 Hz for the peak rate analysis and a SD of 0.23 Hz for the average
rate analysis. The width of the Gaussian was 10 times the SD. Note that
these smoothed distributions were used only for visualization and all
statistics were computed on raw data.

We also developed a simulation approach to determine whether a
measured set of within day changes in peak spatial rate seen between days
3 and 6 (referred to as the middle block) could account for the changes we
observed from the first 2 d (early block) to the final days (days 7 onward,
late block). To do so we first constructed a scatter plot with the peak
spatial rate of each middle block neuron on the x-axis and the change in
that peak spatial rate from the first run of the day to the second run of the
day on a track on the y-axis (supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). This scatter plot indicated how
the peak spatial rate of a neuron related to the change in that peak spatial
rate. This relationship allowed us to ask how the peak spatial rates of a
group of cells from the early block would evolve if they changed in the
manner of cells from the middle block.

We then took individual cells from the early block, chosen at random,
and simulated the evolution of their peak firing rates using the changes
measured in the raw peak rate/change in peak rate data from the middle
block. For each early block cell we computed its peak spatial firing rate
and then found the middle block cell whose peak spatial firing rate during
the middle block was closest to that of the early block cell. We then took
the change in the peak rate for the selected middle block cell and applied
that change to the peak rate of the early block cell. Thus, a new peak rate
for the early block cell was obtained by either increasing or decreasing the
cell’s peak rate according to the rate change of the matched cell from the
middle block. This allowed us to apply the changes in peak rate we mea-
sured within a day for the middle block to the early block, thereby evolv-
ing the early block population according to the dynamics of the middle
block cells.

We repeated the same procedure multiple times, each time using the
newly generated rate for the early block cell as illustrated in supplemental
Figure 2 (available at www.jneurosci.org as supplemental material). Peak
rate changes from the middle novelty block were randomly sampled with
replacement to match the size of the actual pool of cells. This meant that
single cells could be picked multiple times from the early novelty block
without duplicating a particular set of changes in rate. During the evolu-
tion process, any cells that dipped �0 Hz peak rate were set to 0 Hz before
the next iteration. The evolution process was repeated with 10,000 ran-
dom cell picks from the early novelty block, each with 100 iterations
through the process.

We also calculated the distributions that would result from random
peak rate versus peak rate change relationships. We chose at random a
measured peak rate for each neuron and, separately, a measured peak rate
change. We then used that population to simulate the dynamics of the
early block group. This process was repeated 200 times. These simula-
tions occasionally produced “runaway” cells whose rates went above 70
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Hz, and we excluded these cells from the final distribution. Runaway cells
did not result from the simulation based on the actual peak rate–rate
change distribution.

Results
We isolated large numbers of neurons on each day from both
CA1 (total n � 708) and upstream area CA3 (total n � 984)
which provides direct synaptic input to CA1 (Fig. 2a). These
neurons were approximately equally split between the left and
right hemispheres (CA1 left, n � 290; CA1 right, n � 318; CA3
left, n � 482; CA3 right, n � 502), and we did not find any
differences in firing patterns between the two hemispheres, so all
data were collapsed across hemispheres. Recordings were gener-
ally stable across the entire 2–3 h session, and we were therefore
able to identify putative single neurons that were active on one or
both tracks as well as neurons active only during the rest sessions
(Fig. 2b.). As expected (Frank et al., 2004; Leutgeb et al., 2004),
CA3 and CA1 place fields were evident during the first exposure
to the track. Furthermore, there were distinct spatial representa-
tions of the two tracks in both areas (Fig. 2c,d). Only a small
number of putative inhibitory neurons were recorded, so we did
not include data from these neurons in this study.

CA1-specific rate dynamics
We first sought to characterize the timeline of the previously
observed increase in CA1 activity during novelty. We compared

absolute firing rates across the two tracks for animals in group 1
and found that individual CA1 neurons were on average more
active on the more novel T2 (paired t(145) � 2.04, p � 0.05), a
result consistent with previous studies. Using recordings across
multiple sequential days, we were able to quantify the decay of the
rate change. For every recording session, we calculated the aver-
age firing rates of all recorded CA1 principle neurons, including
those that fired robustly in the rest box but were largely silent on
the tracks, and combined these rates into an estimate of the pop-
ulation average rate. We included all clustered principal neurons
rather than imposing a cutoff because we wanted to minimize the
selection bias for the measure of population activity. Rates slowly
declined across multiple days of experience (T1, R 2 � 0.0259;
slope � 95% bounds � �0.0896 � 0.0620 Hz/d, p � 0.005; T2,
R 2 � 0.0441; slope � �0.249 � 0.191 Hz/d, p � 0.05) indicating
a long timescale process rather than a transient response to nov-
elty (Fig. 3a, left).

The same dynamics were observed in recordings from group 2
(Fig. 3a, right). Again, CA1 activity was initially high in the more
novel T2 and slowly decreased over multiple days of exposure (R 2

� 0.0553, slope � �0.088 � 0.033 Hz/d, p � 10�4) whereas
activity on the more familiar T1 was lower on all recording days
(paired t(457) � 4.96, p � 10�6) and did not decline appreciably
with further experience (R 2 � 0.0034; slope � �0.022 � 0.0373,
N.S.). We should note that although we used a linear regression to

Figure 2. Recording stability and distinct spatial representations for the two tracks. a, Spike amplitudes on two of four tetrode channels recorded across 1 d (experimental day 12, animal 6, group
2). Different colors represent different clustered cells; gray points represent spikes that were not clustered. b, Spike amplitudes for each rest and run session illustrating the stability of recordings and
the presence of some putative single neurons that were well isolated due to their activity during rest sessions but were silent or minimally active on the tracks (e.g., purple cluster). c, Spiking as a
function of position for one run session on each track where each pixel in which a spike was detected is colored as in a. The black line represents the barrier between the tracks. The differences in the
spiking patterns between track 1 and track 2 illustrate the distinct spatial codes for these two environments. d, Overlap between the linearized firing rates of the two runs from the same day across
track 1 and track 2 (T1/T2) and two runs from the same day in track 1 (T1/T1). The low overlap of T1 and T2 indicates that the spatial firing patterns of individual CA1 and CA3 neurons differed across
these two environments, whereas the high overlap of T1 with itself indicates that the spatial representation of the first track was generally stable within a day.
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quantify the decline in slopes, the rates from group 1, track 1 and
group 2, track 2 appear somewhat sigmoidal, whereas the rates
from group 1, track 2 are more linear or exponential in character.
The large variability in individual neuron mean rates makes it
difficult to determine the exact shape of these curves, but it is
nevertheless clear that there is a substantial decrease in rate over
time. Furthermore, because the rate difference is observed both
within single recording sessions and across days, the effect is un-

likely to be due to within-day confounds such as environment
sequence or cell isolation instability, or across-day confounds
such as quantity of recorded cells or tetrode placement. Finally,
none of the potential behavioral confounds we examined, includ-
ing differences in velocity, head direction, or ripple-related activ-
ity in the local field potential, could explain these results (supple-
mental Fig. 3, available at www.jneurosci.org as supplemental
material). In particular, animals moved, on average, more slowly
in the novel track, and thus the higher rates seen in novel envi-
ronments were associated with lower movement speeds. Given
the previously established positive correlation between speed and
CA1 firing rates (McNaughton et al., 1983), we would have ex-
pected lower rather than higher rates if velocity differences
caused the firing rates differences.

The increase in rate was not present one synapse upstream in
CA3 (Fig. 3b). CA3 neurons had on average lower activity than
CA1 for most recording days, and unlike neurons in CA1, did not
show a consistent decline in activity as the environments became
more familiar (linear regression, both groups, N.S.). We com-
pared the activity of single CA3 cells across the two tracks and
found no significant difference in activity for either group (t(185)

� 0.1, t(612) � 1.54, N.S.). Thus, unlike in CA1, no significant
population rate change was observed in CA3 either within or
across days. These results indicate that the change in CA1 was not
due to inheritance of higher rate activity from CA3.

We pooled data from both groups of animals and found that
the ensemble of neurons in CA1 emits more than twice as many
spikes per second in a novel compared with a more familiar en-
vironment (Fig. 3c). Here, day 1� represents the combined data
across all animals from the first day of exposure to each track.
CA1 population activity during initial exposures was �0.9 Hz per
neuron compared with �0.4 Hz observed during more familiar
exposures, and the majority of the rate decline occurred during
the first 5 d of exposure to an environment. This trend could also
be seen when we examined histograms of average firing rates
across days (supplemental Fig. 4, available at www.
jneurosci.org as supplemental material). When we pooled CA3
neurons across all animals, we found that population rates were
flat, averaging �0.3 Hz across all exposure days (linear regres-
sion, N.S.).

Changes in CA1 activity were associated with the initial re-
cruitment of a large fraction of CA1 neurons and the subsequent
reduction in the number of active cells. We divided our data into
three blocks: early (days 1–2), middle (days 3– 6), and late (days
7–14), to provide accurate estimates of the initial, intermediate,
and stable periods of the rate curve (Fig. 3c, top). We then applied
a 0.1 Hz mean rate threshold to designate active neurons and
counted the number of active neurons out of the total number of
isolated neurons, once again including cells that were active on
the track and cells that were inactive on the track but could be
isolated in the rest sessions before and after the behavior. This
threshold was chosen to approximately match the proportion of
active CA1 neurons in familiar environments reported in previ-
ous studies (Wilson and McNaughton, 1993; Lee et al., 2004b;
Leutgeb et al., 2004), but our results were consistent across a
range of thresholds. We found that 151/275 (55%) of cells were
active in the early novelty block and 203/406 (50%) in the middle
block whereas only 239/600 (40%) were active in the late block
(early vs late, Z � 4.17, p � 10�4; note: some cells provided data
for both tracks 1 and 2, which in turn provided data for two
novelty blocks). There was no evidence for similar changes in
CA3, in which the proportion of active cells was constant across

Figure 3. Hippocampal rate dynamics. a, Population average rates in CA1 as a function of
experiment day. The set of days associated with each group is indicated at the top. Rates were
high in each novel environment and then decayed over the course of a few days. Track 1, Group
2 illustrates the final firing rate level reached when animals had 6 d of experience on the track
before recording began. b, Population average rates in CA3 as a function of experiment day.
There were no significant changes in CA3 rates across days. c, Rates pooled from all animals and
both tracks, plotted as a function of the number of days spent on the track. Top, Percentage of
CA1 and CA3 cells active for the three novelty blocks, where “active” is defined as having a mean
rate �0.1 Hz. Error bars represent SEM, calculated by repeated resampling of the data with
replacement (bootstrap).
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the three novelty blocks, with 108/373
(29%), 185/591 (31%), and 234/776
(30%) active (early vs late, Z � 0.42, N.S.).

This decrease in the number of active
cells in CA1 prompted us to ask whether
the decrease in rate was present for both
active and minimally active neurons. We
therefore computed the population firing
rate change for active neurons (average
rate �0.1 Hz) across recording days. We
found that the population mean rates for
active CA1 neurons also declined over
time, but that, as expected, there were no
changes in the population mean rates for
CA3 neurons (supplemental Fig. 5, avail-
able at www.jneurosci.org as supplemental
material).

We then asked whether the changes in
CA1 activity were related to changes in be-
havioral performance on the task. We
found that there were broad similarities in
the timescale of the improvement in per-
formance (Fig. 4a,b) and the decline in the
CA1 population average rate. To quantify
the overall similarity we calculated an ex-
ponential fit to the behavioral data as a
function of environment novelty, collaps-
ing across tracks, and found that the de-
cline in errors had a time constant of
3.55 � 0.7 d (mean � 95% confidence
bound) which was comparable to the ex-
ponential time constant for the decay of
CA1 rates of 3.12 � 2.21 d. In addition,
when we collapsed data across groups we
found that the first exposure to the novel
track 2 was associated with higher error
rates compared with the same day’s expo-
sure to track 1 even though the required
alternation task was identical for both
tracks (z test for proportions, p � 0.03),
although neither within group compari-
son reached significance. Animals also
moved more slowly in the more novel
tracks, taking longer times to travel be-
tween reward sites (track 1 vs track 2, days
1–3, t(1023) � 3.32, p � 0.001). This change
was observable across days with times con-
verging to baseline levels after �4 d (sup-
plemental Fig. 3c,d, available at www.
jneurosci.org as supplemental material).
Overall, the similarity in the time course of
behavioral and firing rate change both
across days and within a day suggests that
firing rate dynamics are related to an on-
going learning process. At the same time,
the high variability of behavioral perfor-
mance across animals (supplemental Fig. 6, available at www.
jneurosci.org as supplemental material) made it impossible for us
to relate the rates for individual animals to their behavioral per-
formance, so although behavioral learning and CA1 rate changes
appear to be correlated, we could not determine whether rate
changes predicts behavioral performance.

We then asked whether the high novel environment rates seen

in CA1 were restricted to the run session. Somewhat surprisingly,
we found that these higher CA1 rates persisted into the subse-
quent rest period. Previous studies have documented preferential
reactivation of cells associated with new experiences (Cheng and
Frank, 2008; O’Neill et al., 2008), but it is not yet clear whether
this reactivation interacts with the rate changes we observed. We
calculated the average firing rate of CA1 and CA3 neurons during

Figure 5. Firing rate changes during SWR events in the rest box mirror changes seen during the run on the track. a, Mean rate
of CA1 (gray bars) and CA3 (white bars) neurons from SWRs detected during the rest after the first run of each day of recording. CA1
SWR rates declined from the early to the middle and late novelty blocks, and the rates during SWRs were similar to the rates during
the run session. CA3 SWR rates, in contrast, did not change across novelty blocks. b, Scatter plot of individual neuron’s firing rates
during running versus rates during rest SWRs. The linear fit (black line) was associated with a significant positive correlation
between run and rest rates (r � 0.488, p � 10 �11), indicating that rate during the run was predictive of later activation during
the rest. This fit remained significant when the two apparent outlier points at which the rate during running was �4 Hz were
removed (r � 0.420, p � 10 �8). c, d, Scatter plot of rates for the middle (c) and late (d) block groups (middle, r � 0.310, p �
10 �6; late block, r � 0.138, p � 0.05). Error bars represent SEM. *p � 0.02, ***p � 10 �4.

Figure 4. Proportion of outbound error trials. a, Proportion of outbound error trials for each group and track plotted as a
function of experiment day. Each point represents the proportion of error trials as a function of the total number of trials on a day
of experience on a track, collapsed across animals in each group. Error bars represent SEM based on the binomial distribution
applied to the number of error trials out of the total number of trials. Animals performed worse in the more novel track 2 compared
with the more familiar track 1 within a day when data from both tracks were collapsed (Z test for proportions, p � 0.03), but the
comparison was not significant for either track taken alone. b, Proportion of outbound error trials for each group and track plotted
as a function of the day of exposure to each track. There is an overall trend of improvement in each track with a time course similar
to that of the decline in CA1 firing rates.
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SWR events that occurred during the rest period after the first run
of each day. The results mirrored our findings for the rates during
running (Fig. 5a), in that the CA1 SWR population mean rates
were �0.9 Hz in the early block but dropped to �0.6 Hz for the
middle block (early vs middle, rank-sum, p � 0.02) and were
�0.5 Hz in the late novelty block (early vs late, rank-sum, p �
10�4). Furthermore, when we examined the relationship be-
tween average rates during the run and rates during SWRs after
the run for individual CA1 neurons, we found a strong, signifi-
cant correlation for the early and the middle block and a weak
correlation for the late block (Fig. 5b– d) (early block: r � 0.488,
p � 10�10; middle block r � 0.310, p � 10�6; late block r �
0.138, p � 0.05). There was also a significant decrease in the
correlation from the early to the late plot ( p � 0.001) indicating
that run and SWR rates decouple over time.

Network selection of cells with strong spatial tuning
We then asked whether the specific tuning properties of individ-
ual CA1 place cells influence whether or not they are silenced. We
examined the proportion of the track on which each neuron was
active and found that this proportion tended to decrease as envi-
ronments became familiar (rank-sum, median early block pro-
portion � 0.08; median late block proportion � 0.03, p � 10�3),

indicating that spatial activity became
more focused with experience. This trend
persisted when we considered only cells
with substantial spatial activity (peak spa-
tial rate of at least 5 Hz, rank-sum, median
early block proportion � 0.30; median late
block proportion � 0.22, p � 0.005).

One might expect that the overall de-
crease in both total firing and in the spatial
extent of activity was a result of a suppres-
sion of activity in CA1. In actuality, how-
ever, some cells showed an enhancement
of spatial firing over time. We examined
the relationship between the peak activity
within each cell’s place field and propor-
tion of the environment on which each
neuron was active (Fig. 6a; supplemental
Fig. 7, available at www.jneurosci.
org as supplemental material). In the early
block (open blue circles; blue line) many
CA1 cells were active across large fractions
of the environment, yet tended to have low
peak spatial rates. As the environment be-
came familiar (middle block, dotted line;
late block, filled black circles and dashed
black line) cells tended to be active across
smaller proportions of the environment,
and there appeared to be some segregation
into a higher and a lower rate group. Note
that middle block points were omitted for
clarity. We first quantified these changes
using a regression and found that the
slopes of regression fits to the data in-
creased with experience (early vs middle
block, p � 0.0001; middle vs late block,
p � 0.02)

To determine whether the apparent
segregation into higher and lower peak
rate groups was real we plotted the distri-
bution of peak rates for each of the three

novelty blocks. We found clear differences across novelty blocks
[early vs middle, Komolgorov–Smirnov (KS) test, p � 0.05; early
vs late, p � 0.001] (Fig. 6b). The three novelty block distributions
intersected at two central points, providing a natural grouping of
peak spatial rates. Using this grouping we compared the early and
late blocks and found that the proportions of cells with interme-
diate peak rates decreased by approximately half (5–25Hz, Z �
�4.56, p � 10�6) (Fig. 6c). This decrease was associated with a
redistribution of neurons into both the high peak rate and low
peak rate groups (Fig. 6d), resulting in more than a doubling of
the proportion of neurons (from 7 to 17%; Z � 3.1, p � 0.01) in
the high peak rate group and equal magnitude increase (from 55
to 65%, Z � 2.0, p � 0.05) in the low peak rate group. This
segregation into two rate groups suggests that the activity of some
neurons with intermediate peak rates is enhanced, whereas the
activity of others is suppressed.

We then asked whether the enhancement of intermediate
peak rate neurons could have been a side effect of a process that
selected neurons based on mean rate. We examined the distribu-
tion of average rates for the cells in the early, middle and late
novelty block and found that, other than the expected shift to-
ward lower rates, there were no other systematic changes in the
distributions (Fig. 7). This shows that the segregation process is

Figure 6. Differential change as a function of peak spatial rate in CA1. a, Long time scale evolution of spatial specificity in CA1.
The scatter plot shows CA1 peak spatial rates versus proportion active, defined as the proportion of the track at which the cell had
�0.5 Hz linearized occupancy-normalized rate. Regression lines were constrained with a zero y-intercept. Points from middle
block were omitted for clarity. There was a clear increase in specificity illustrated by the increase in the slope of the regression line:
high rate cells from the late block tended to cover smaller portions of the environment than high rate cells from the early block. b,
Peak rate distributions for the early, middle, and late novelty blocks. The distributions were smoothed for visual clarity, which
reduces the sharp increase in proportion near zero, but all statistics were performed on the raw, unsmoothed data. The distribu-
tions were significantly different: early versus middle, KS test, p � 0.05; early versus late, p � 0.001. c, Proportion of cells in the
intermediate 5–25 Hz peak rate groups as a function of novelty. There was a highly significant decrease in the number of medium
rate cells. d, Change in proportions for the low, intermediate, and high peak spatial rate groups. The decrease in the intermediate
group resulting in equal magnitude increases in the low and high groups. *p � 0.05, **p � 0.01, ***p � 0.001.
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not simply based on the total activity of the cells, but instead
favors cells with strong, spatially localized activity. Furthermore,
the changes across the novelty blocks differed in CA3. The linear
regression on the scatter plots of peak rate versus proportion
active showed a increase in slope from the early to the middle
block ( p � 0.01) but no subsequent change between the middle
and late blocks (Fig. 8a). An inspection of this plot makes it clear
that there were only relatively modest changes, in that cells re-
mained active across large fractions of the track in both the early
and the late blocks. Furthermore, there was no obvious increase
in the number of high peak rate neurons. Instead, the peak rate
distributions of CA3 neurons changed only slightly, with a de-
crease in the proportion of peaks near zero and a slight increase in
the proportion of high rate cells (KS test, early vs middle, N.S,
early vs late, p � 0.05) (Fig. 8b).

What governs whether a CA1 cell’s peak activity is enhanced
or suppressed? If it depends on the current peak rate of the cell,
one might expect to see a transition point within the 5–25 Hz
peak rate range, where the peak spatial rate of cells with rates
below the transition point will tend to decrease, whereas the peak
spatial rate of cells with rates above it tend to increase. Ideally, one
would record from the same cell across many days to accurately
describe this relationship, but as it is very difficult to conclusively
demonstrate that the same neurons were recorded across days, we
instead analyzed the dynamics of neurons within single recording
sessions. We reasoned that if the place field changes are due to a
single continuous process, the dynamics of single neurons within
a day should be sufficient to predict the changes in the population
across days. All animals were exposed to either T1 or T2 twice a
day, so we were able to measure differences in activity of single
neurons across consecutive runs in an environment. For each
cell, we compared the peak spatial rate on the first run to the
subsequent within-day change in peak spatial rate. Strikingly,
cells in the 5–25 Hz range showed a sharp transition between �6
and 18 Hz: the peak spatial rate tended to decrease for cells with
initial rates �12 Hz and increase for cells with initial rates �12
Hz (Fig. 9a). We calculated the likelihood of this transition ap-
pearing by chance by shuffling the peak rate/peak rate change
relationships for cells in the intermediate group 5000 times and
calculating how often a transition whose peak and trough value
exceeded those we measured occurred by chance. We found that

this sharp transition was unlikely to arise by chance ( p � 0.01).
These within day dynamics strongly support the claim that the
activity of place cells tends to be either enhanced or inhibited
based on the strength of spatial tuning. The highly selective na-
ture of these changes also argues against any behavioral explana-
tion for the CA1 results, as there is no evidence for behavioral
modulations that affect cells differentially as a function of peak
spatial firing rates.

The derived curve represents a system that evolves toward two
stable fixed regions. This is illustrated by a diagram of the associ-
ated energy surface (Fig. 9b) which has one low energy region
near zero and another above 20 Hz. To identify the final state of a
network that evolves according to this rule we used the actual
within-day changes from the middle block to simulate the across-
day evolution of the early block population (supplemental Fig. 2,
available at www.jneurosci.org as supplemental material). We
found that the rate distribution became increasingly different
from the initial distribution and converged after �100 iterations
(supplemental Fig. 8, available at www.jneurosci.org as supple-
mental material). The resulting simulated population distribu-
tion was similar to the actual late block distribution and had two
main peaks: one centered near zero and the other centered at 31
Hz (Fig. 9c). Compared with the early block, the proportion of
cells with peak spatial rates �5 Hz increased (Z � 4.59, p �
10�5), the proportion between 5 and 25 Hz decreased (Z � 6.98,
p � 10�11) and the proportion �25 Hz increased (Z � 4.06, p �
10�4). This pattern did not arise when we performed the same
simulations using randomly scrambled peak rate–rate change re-
lationships from the middle block (supplemental Fig. 9, available
at www.jneurosci.org as supplemental material). Thus, using
within-day changes, we were able to identify the main pattern of
dynamics in the CA1 network and then use these dynamics to
predict the actual changes that occur over the course of many
days of experience.

To test whether the simulated change in the peak rate distri-
bution predicts the observed decrease in population activity, we
made the conservative assumption that the mean rate of each cell
changes proportionately to the peak rate. This assumption ig-
nores dynamics related to the sharpening of place fields, in which
out-of-field rates decrease faster than within-field rates, and
therefore likely causes an underestimate of the magnitude of de-
crease. Nonetheless, the simulation predicted a decrease in the
mean population rate (from 0.84 to 0.62 Hz, rank-sum p �
10�5). As might be expected given the numerous factors that are
likely to govern neural dynamics across days, the precise quanti-
tative outcomes of the simulation and the actual data were not
identical. Despite this, the types of changes seen were very similar.
Thus, a rule that selectively suppresses neurons with low spatial
specificity and preserves neurons with high spatial specificity cap-
tures the key properties of the long term plasticity seen in the CA1
population.

Discussion
We have shown that spatial learning in hippocampal area CA1
invokes a plasticity mechanism that selects a subset of the initially
active neurons to remain as part of a longer lasting representa-
tion. During the initial exposure to a novel environment, many
CA1 cells are active in relatively spatially diffuse patterns, and the
population produces more than twice as many spikes as in a
familiar environment. This occurs both within the novel envi-
ronment and during SWRs in a separate rest box. This increase is
greater than that seen previously (Nitz and McNaughton, 2004;
Csicsvari et al., 2007), perhaps because we included all recorded

Figure 7. Cell selection process is not dependent on average rates. Shown are the mean rate
distributions for the early, middle, and late novelty blocks. Although the average rate distribu-
tions did change somewhat, there was no evidence for selection based on average rate. Thus,
our data indicate that the population selection rule did not depend on overall activity but was
instead related to spatial specificity.
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neurons rather than excluding lower rate neurons based on a
cutoff. Over time the population firing rate decreases to familiar
levels with a time course similar to that of task learning. In the
midst of this global suppression, however, the spatial specificity
of some neurons increases. A simple rule governs the dynamics:
cells that are weakly spatially tuned are suppressed whereas
strongly spatially tuned activity is enhanced. The result is a large
group of minimally active neurons and a smaller group of well
tuned cells with high peak spatial firing rates. The same process is
not evident one synapse upstream in CA3, in which the same
fraction of neurons is active throughout the animal’s experience
and there is no evidence for selection based on spatial tuning.

The active selection of high peak spatial firing rate neurons is
conceptually similar to the sorts of activity dependent plasticity
that increase the specificity of neural tuning during development
(Hensch, 2004). Our finding is, to our knowledge, the first dem-
onstration that the strength of tuning predicts changes in neural
activity during the formation of representations in the adult. This
finding is consistent with previous work showing that the induc-
tion of LTP causes larger changes in low peak rate compared with
high peak rate place fields (Dragoi et al., 2003), and indicates that
CA1 is geared toward creating and preserving high peak rate
neurons.

These results cannot easily be explained by any known behav-
ioral modulations of place cell activity. The increases in CA1
population rates were not a result of differences in head direction
or activity during ripples. The higher rates also persisted into
SWR events seen during the rest after behavior where animals
were in a separate rest box. Furthermore, previous results have
demonstrated that CA1 firing rate is positively correlated with
velocity (McNaughton et al., 1983), which predicts that rates
would be lower during initial, low velocity exploration of a novel
environment. Thus, our results are the opposite of what would
have been expected from the known velocity dependence of place
cell firing.

Previous work has demonstrated that CA1 place cells undergo
rapid plasticity when an animal enters a new environment (Wil-
son and McNaughton, 1993; Frank et al., 2004; Leutgeb et al.,
2004). These papers suggested that place field plasticity returned
to baseline levels after at most 1–2 d of experience in the new

place. Our results confirm the existence of
another, slower process that continues af-
ter the initial rapid formation of place
fields (Austin et al., 1993). The alterations
in rate and spatial specificity between the
middle and late novelty blocks indicate
that the hippocampal representation was
dynamic for at least 4 – 6 d. Although long
time scale changes have been observed in
the context of exposure to multiple similar
environments (Lever et al., 2002), these
presence of these effect in a single static
environment were less clear.

As a simple within-day rule could cap-
ture the essence of the across-day changes,
our results also suggest that there is a slow,
cumulative plasticity process in CA1.
Given the overall similarity between the
time course of firing rate change and the
time course of learning, we suggest that
continued CA1 plasticity is associated with
an ongoing learning process. If so, then
other within-day changes such as those

seen in the context of order learning (Manns et al., 2007) could in
principle accumulate across days to yield a sparse, informative
representation of relevant information.

What mechanism could account for the CA1-specific changes
we observed? We know that the firing rate of CA1 interneurons
drops in novel environments (Nitz and McNaughton, 2004) and
then increases as the environment becomes more familiar (Frank
et al., 2004). Changes in inhibition likely contribute to the
changes we saw, but a simple increase in inhibition would de-
crease the firing of all principal neurons. Our observation of se-
lective increases in peak spatial rate seen for neurons with peak
rates from �12–18 Hz and the preservation of neurons with peak
rates �18 Hz suggests that some other process is involved.

One candidate for such a process was discovered recently in
the amygdala. Han et al. (2007) showed that CREB levels during
the initial encoding of a fear memory are predictive of which
neurons participate in the memory during a subsequent retrieval
as measured by expression of the immediate early gene Arc.
Higher initial levels of CREB during encoding were associated
with higher probabilities of activity during retrieval. Given that
neural activity leads to CREB expression (Hardingham et al.,
2001), we suggest that the amygdala and CA1 could employ sim-
ilar mechanisms to select highly informative neurons to partici-
pate in mnemonic representations. Further, previous work doc-
umenting the importance of NMDA receptors (Kentros et al.,
1998) and protein synthesis (Agnihotri et al., 2004) for place field
stability also suggests that LTP and/or LTD plays a role in the
formation of a stable place cell representation. More specifically,
our finding suggests that the differences in firing patterns at the
12 Hz boundary may push synapses onto CA1 cells toward either
potentiation or depression.

Increases in activity as a result of exposure to new stimuli have
also been seen in electrophysiological and imaging studies fo-
cused on other brain areas (Li et al., 1993; Knight, 1996; Knight
and Nakada, 1998; Kirchhoff et al., 2000). We may then wonder
why CA3 activity does not show a similar high firing rate state
during the initial stages of spatial learning. We suggest that the
relative stability of CA3 in firing rates and place field properties is
a result of the role of CA3 in the rapid formation of new repre-
sentations (Nakazawa et al., 2003; Lee et al., 2004a). Across a

Figure 8. Smaller changes in spatial firing in CA3. a, Peak spatial rates versus proportion of the track on which each neuron was
active. Regression lines were constrained with a zero y-intercept. Points from middle block were omitted for clarity. There was a
significant increase in specificity from the early to the middle block as illustrated by the increase in the slope of the regression line
( p � 0.01) but not subsequent decrease from the middle to the late block. Overall, cells remained active across large fractions of
the track in both the early and the late blocks, and there was no obvious increase in the number of high peak rate neurons. b, Peak
rate distributions for the early, middle, and late novelty blocks. The peak rate distributions of CA3 neurons changed only slightly,
with a decrease in the proportion of peaks near zero and a slight increase in the proportion of high rate cells (KS test, early vs
middle, N.S, early vs late, p � 0.05). **p � 0.01.
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single exposure to a new place, CA3 place fields develop more
slowly than those in CA1 (Leutgeb et al., 2004). Nonetheless, after
20 –30 min in the new place, CA3 fields are largely stable. Our
data indicate that after this initial period, CA3 remains relatively
static compared with CA1. Thus, we conclude that CA3 develops
spatial representations quickly and shows only minimal changes
during subsequent experiences.

These minimal changes in CA3 imply that CA1 receives ap-
proximately the same number of spikes from CA3 throughout
the 5– 6 d during which CA1 rates fall. In contrast, the subiculum
and the entorhinal cortex (EC), the two main targets of CA1
outputs, will receive twice as many spikes from CA1 in a novel
compared with a familiar environment. Spikes are metabolically

costly (Laughlin et al., 1998), so this type of transient increase in
neural output is likely to serve a functional role. We therefore
propose that the high rate of spiking in CA1 could serve to signal
the presence of new spatial information and to facilitate plasticity
in downstream structures. Theoretical models have suggested
that CA1, by virtue of its inputs from CA3 and the EC, is well
positioned to “compare” an internal hippocampal representation
from CA3 with processed sensory information from the EC (Lis-
man and Otmakhova, 2001; Kumaran and Maguire, 2007). These
models predict that CA1 signals the presence of a new represen-
tation from CA3 that is not yet associated with EC inputs; how-
ever, the nature of such a signal was not previously known. Our
results show that higher firing in CA1 could signal the presence of
new information. This could be the physiological basis of the
hippocampal “novelty signal” whose strength is predictive of
later recall (Kirchhoff et al., 2000; Kumaran and Maguire, 2006).

How then, would the increase in rate cause changes in pro-
cessing in downstream structures? Previous work has shown that
novelty-dependent dopamine release in the nucleus accumbens
requires hippocampal activity (Legault and Wise, 2001). Thus,
increased CA1 output during both behavior and subsequent rest
could trigger broadly distributed modulation to facilitate learn-
ing across the brain. Further, our finding that individual CA1
neurons that were highly active during the run are also highly
active during SWRs in the rest period shows that this high rate
activity persists after the experience. Given the association be-
tween SWRs and memory consolidation (Buzsáki, 1986; Buzsáki
et al., 1992), our results provide a mechanism whereby newly
learned information could be preferentially consolidated after
the experience. This complements previous work showing that
CA1 cells are reactivated together both during and after a novel
experience (Cheng and Frank, 2008; O’Neill et al., 2008). Thus,
we suggest that this greater total activity has the potential to in-
crease the influence of CA1 on downstream structures during and
after new experiences, facilitating memory storage.
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