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Abstract
Gender-based differences in the incidence of hypertensive and coronary artery disease, the
development of atherosclerosis, and myocardial remodeling after infarction are attributable to the
indirect effect of estrogen on risk factor profiles such as cholesterol levels, glucose metabolism, and
insulin levels. More recent evidence, however, suggests that activated estrogen receptor (ER)
mediates signaling cascades that culminate in direct protective effects such as vasodilation, inhibition
of response to vessel injury, limiting myocardial injury after infarction, and attenuating cardiac
hypertrophy. Although the ER is usually thought of as a ligand-dependent transcription factor, it can
also rapidly mobilize signals at the plasma membrane and in the cytoplasm. Thus, a greater
understanding of ER function and regulation may lead to the development of highly specific
therapeutics that mediate the prevention and treatment of cardiovascular diseases.

INTRODUCTION
Gender-based differences in the incidence of hypertensive and coronary artery disease, the
development of atherosclerosis, and myocardial remodeling after infarction are attributable to
the indirect effect of estrogen on risk factor profiles, such as cholesterol levels, glucose
metabolism, and insulin levels (1–3), as well as its direct effects on the myocardium, vascular
smooth muscle and endothelium. Although estrogen receptor (ER) is typically thought of as a
ligand-dependent transcription factor, it also modulates the activity of intracellular second
messengers and membrane-associated signaling complexes. In the heart and vasculature, these
non-nuclear signaling pathways mediate rapid vasodilation (4), inhibition of response to vessel
injury (5–10), reduction in myocardial injury after infarction (11,12), and attenuation of cardiac
hypertrophy (13,14).

ESTROGEN RECEPTOR STRUCTURE AND FUNCTION
Both subtypes of ER, ERα and ERβ, are members of the nuclear receptor superfamily (15,
16). They are synthesized from separate genes and are structurally and functionally distinct.
Classically, ER regulates gene expression in target tissues in a ligand-dependent manner: the
binding of estradiol (E2) releases ER from an inhibitory complex and allows for receptor
homodimerization and translocation into the nucleus (1,2,17). The receptor then binds a
palindromic estrogen response element (ERE) located in the promoter region of target genes.
The concerted actions of the ligand-independent activation function domain (AF-1) in the N
terminus (Figure 1) and the ligand-dependent AF-2 region in the hormone-binding domain lead
to the recruitment of tissue-, cell-, and promoter-specific co-regulator complexes to the ERE,
resulting in transactivation or transrepression (18,19).

Gene deletion or mutation studies have underlined the importance of ER in cardiovascular
physiology (20). Early studies of ovariectomized mice demonstrated that E2 inhibits the
proliferation of intimal and medial vascular smooth muscle (5), suggesting a direct protective

NIH Public Access
Author Manuscript
Mol Interv. Author manuscript; available in PMC 2009 January 30.

Published in final edited form as:
Mol Interv. 2002 July ; 2(4): 219–228. doi:10.1124/mi.2.4.219.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



effect of estrogen on endothelium and vascular smooth muscle cells (VSMCs). In ERα and
ERβ double-knockout mice, however, E2 inhibits VSMC proliferation but not medial
thickening, suggesting that a leakily expressed splice-variant of ERα could mediate partial
protection (21,22). The more recent production of complete ERα-null mice (23), which exhibit
increased medial area, VSMC proliferation, and deposition of proteoglycans in response to
vascular injury, has confirmed the role of ERα in vascular protection (24). The effects also
extend to the myocardium. For example, ERα-deficient hearts subjected to whole-organ
ischemia and reperfusion (25) exhibit greater ischemia and higher incidence of arrhythmias
than that observed in wild-type hearts. The process may involve nitric oxide (NO), which
ameliorates coronary dysfunction and reduces tissue edema by decreasing microvascular
permeability, because ERα-deficient hearts also demonstrate decreased NO release.

In 1975, Pietras and Szego first described membrane binding sites for estrogen and described
a non-genomic mechanism for calcium influx in endometrial cells (26). More recent studies
have added to our current understanding of the highly tissue-specific, non-nuclear ERα
signaling network. Though there is also evidence that ERβ has an important function in the
vasculature (27,28), we focus on ERα because of the greater number of observations that have
been made. Defining the cascades through which ERα elicits its pleiotropic cellular effects and
understanding the dysregulation of the network in disease states promises to uncover novel
targets for pharmacological intervention.

NON-NUCLEAR ACTIVITY OF ESTROGEN
Estrogenic transcription-dependent effects, such as those that contribute prominently in
organogenesis and function of the reproductive system, become evident hours after stimulation.
Non-nuclear (alternatively referred to as “non-transcriptional” or “non-genomic”) estrogenic
action peaks minutes after stimulation in multiple cell types. Other characteristics include
immunity to inhibitors of DNA transcription or protein synthesis (actinomycin D or
cycloheximide) and recruitment of membrane or cytosol-localized signaling components.
These include the second messengers calcium and nitric oxide (NO), receptor tyrosine kinases
including the epidermal growth factor receptor (EGFR) and insulin-like growth factor-1
(IGF-1) receptor (IGF1R), G protein coupled receptors (GPCRs), and protein kinases including
phosphatidylinositol-3′ kinase (PI3K), the serine-threonine kinase Akt, mitogen-activated
protein kinase (MAPK) family members, the non-receptor tyrosine kinase Src, and protein
kinases A and C (PKA and PKC, respectively) (Figure 2) (for reviews see 17,29,30).

SIGNALING CASCADES ACTIVATED BY ESTROGEN
The PI3K-Akt signaling cascade is one downstream target of non-nuclear estrogenic signaling
(31–33). In the vasculature, short-term exposure to E2 leads to NO-dependent vasodilation
(34). The secretion of NO by healthy vessels relaxes smooth muscle cells and inhibits platelet
activation in a cyclic guanosine 3′, 5′-mono-phosphate (cGMP)-dependent mechanism. In
cultured endothelial cells, estrogen enhances NO release within minutes without altering
expression of endothelial nitric oxide synthase (eNOS) (33,35). E2 activates eNOS activity in
a biphasic manner through MAPK and PI3K-Akt pathways, leading to enhanced NO release
(32). Myocardial protection by high-dose corticosteroids during ischemia-reperfusion injury
also appears to be mediated by PI3K-Akt (36). In both cases, ERα and glucocorticoid receptors
activate PI3K by associating with the p85α regulatory subunit in a ligand-dependent manner
(32). Furthermore, the 90-kDa heat shock protein (HSP90) interacts with both eNOS and Akt
and modulates eNOS activity by acting as a scaffold to regulate Akt-dependent phosphorylation
of eNOS (37).

MAPK family members are common targets of non-nuclear estrogenic signaling. Induction of
eNOS and inducible NOS (iNOS) expression in cardiac myocytes is blocked by the MAPK
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inhibitor PD98059 (38). This may be clinically relevant since NO inhibits the activation of
caspases and prevents the development of congestive heart failure (39). Estrogen also activates
extracellular-regulated kinases 1 and 2 (ERK1/2) in cardiomyocytes (38), colon cancer (40),
breast cancer (41), and bone (42,43), and inhibits ERK1/2 in VSMCs (44) and lung
myofibroblasts (45). In the heart, ERα also selectively activates the 38-kDa isoform of MAPK
(p38) to modulate the development of pressure-overload hypertrophy (13,14,46,47), which is
consistent with recruitment of p38 in other models of cardiac hypertrophy (48,49). In
endothelial cells, estrogen prevents disruption of the actin cytoskeleton during ischemia,
prevents cell death, and enhances injury-dependent angiogenesis by rapidly and selectively
activating the anti-apoptotic β isoform of p38 (p38β) and inhibiting pro-apoptotic p38α, leading
to the increased expression of MAPK-activated protein kinase-2 (MAPKAP-2) kinase and
phosphorylation of HSP27 (50). Downstream effects include preservation of stress fiber
formation and membrane integrity, prevention of hypoxia-induced apoptosis, and induction of
both endothelial cell (EC) migration and the formation of primitive capillary tubes (50).

It is possible that ERα might direct the activation of more receptor-proximal signaling
complexes located at the plasma membrane. When overexpressed in cells, ligand-bound
ERα induces the rapid phosphorylation of IGF1R and the activation of ERK1/2. Because these
receptors co-immunoprecipitate in a ligand-dependent manner, a direct physical interaction
between ERα and IGF1R could conceivably mediate the activation of ERK1/2 (51). In breast
cancer cell lines, ligand-bound ERα promotes the rapid phosphorylation of the proteins Src
and Shc, resulting in the formation of a Shc-Grb2- (growth factor receptor binding protein 2)-
Sos (son of sevenless) complex (52), leading to downstream activation of Ras, Raf, and MAPK.
Similarly, in both breast cancer and prostate cancer cells, E2 treatment induces the association
of ERα phospho-Tyr537 with the Src SH2 (Src homology 2) domain, leading to activation of
the Src-Ras-ERK pathway and cell cycle progression (53,54). Additionally, in breast cancer
cells, Src modulates PI3K-Akt signaling through a reversible cross-talk mechanism whereby
the ligand-bound ER forms a ternary complex composed of ERα, PI3K, and Src (55). Cross-
talk between PI3K and Src has also been observed in osteoclasts and bone marrow cells (56,
57).

Non-nuclear signaling can also amplify the nuclear, transcriptional activity of ERα. For
example, in lactotroph cells, E2 rapidly activates ERK1/2, leading to increased transcription
of the prolactin (PRL) gene, thus creating an additive effect on PRL expression by
complementing the direct ERE-dependent transcriptional activation of PRL by ERα (58). Non-
nuclear ERα activity can also elicit ERE-independent transcriptional activation. In cardiac
myocytes, E2 rapidly increases ERK1/2-dependent expression of the early growth response-1
gene (egr-1) by inducing the recruitment of serum response factor (SRF) to serum response
elements (SREs) in the egr-1 promoter (59).

Growth factors such as EGF and IGF-1 can stimulate the nuclear activity of ERα through a
non-nuclear, E2-independent mechanism. Through the cross-talk of molecular networks,
mitogenic extracellular signals are translated into cell cycle progression or, in cancer cells, into
hormone-independent proliferation (60). EGF- and IGF-1–mediated stimulation of MAP
kinases result in the direct phosphorylation of ERα on Ser118 (42,61,62), which enhances the
binding of p68 RNA helicase (63), and promotes AF-1-dependent transcriptional activity in
uterine (64,65) and ovarian adenocarcinoma cells (66). Nuclear coregulator proteins can also
be phosphorylated by ERK1/2 leading to increased transcriptional activity (67). Lastly, Src
may enhance AF-1 function of ERα through either a Src, Raf-1, mitogen-activated ERK kinase
(MEK) and ERK pathway that leads to phosphorylation of Ser118, or a pathway that includes
Src, MEK kinase (MEKK), Jun N-terminal kinase (JNK) kinase (JNKK), and JNK, and that
regulates AF-1-associated coactivators (68).
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MECHANISMS FOR ERα ACTIVITY AT THE PLASMA MEMBRANE
Membrane binding sites for E2 were first implicated in 1977 (26), and additional indirect
evidence for a membrane-associated ERα comes from immunohistochemistry (69,70),
overexpressed nuclear receptors (71), or studies with membrane-impermeable ligands (72–
74). The trafficking of ERα to different cellular compartments may be regulated by the nature
of the stimulation; for example, in VSMCs transfected with ERα, MAPK activation mediates
the nuclear translocation of ERα from the membrane fraction by both E2-dependent and -
independent mechanisms (75). However, because ERα has no intrinsic kinase or phosphatase
activity, does not have hydrophobic stretches that could represent transmembrane domains,
and lacks myristoylation and palmitoylation sequences that could anchor it to the membrane,
membrane localization of the receptor seems unlikely. Alternatively, the receptor may associate
with membrane caveolae: in fractionated plasma membranes from endothelial cells (ECs),
ERα is localized to caveolae, and E2 stimulates eNOS in isolated caveolae in an ERα- and
calcium-dependent manner (76–78). There is evidence that within the caveolae of ECs, HSP90,
eNOS, and cav-1 (caveolin-1, the coat protein of caveolae) exist in a heterotrimeric complex
that modulates eNOS activity depending on intracellular calcium levels (79,80).

Non-nuclear ERα signaling also involves membrane-associated heterotrimeric G proteins. In
Chinese hamster ovary (CHO) cells transfected with ERα cDNA, treatment of membrane
fractions with estrogen activated Gαq and Gαs and rapidly stimulated inositol phosphate
production and adenylyl cyclase activity, respectively (71). G protein activation also occurs in
ECs, where E2 activation of eNOS can be inhibited with the ER antagonist ICI 182,780, RGS-4
(a regulator of G protein signaling specific for Gαi and Gαq), or pertussis toxin (specific for
Gαi) (81).

POSSIBLE NEW ESTROGEN RECEPTORS
Non-nuclear signaling may involve a receptor altogether distinct from the classical ERα. In
macrophage cells, E2 and E2-BSA induce a rise in intracellular calcium that is inhibitable with
pertussis toxin (82,83). The existence of an E2-GPCR in the hippocampus has also been
hypothesized, where E2 stimulation potentiates kainate-induced currents through modulation
of PKA activity (84).

The most notable evidence that estrogen’s non-nuclear effects are mediated by a receptor
distinct from ERα or ERβ has come from studies in the cerebral cortex, where estrogen rapidly
stimulates tyrosine phosphorylation of Src, leading to subsequent Shc–Grb2 complex
formation upstream of ERK and B-Raf activation (85,86). The pathway is not inhibitable by
ICI 182,780 in cortical explants from ERα-deficient mice, suggesting that a new receptor,
responsive to E2 but insensitive to ICI 182,780, mediates non-nuclear neuronal differentiation.

The nature of the ERα that mediates the non-nuclear effects of estrogen clearly requires further
definition: the distinction between classical and atypical ERα might be made using cells
cultured from complete ERα knockout mice, and ERα-truncated mutants might provide insight
into the specific domains that mediate non-nuclear effects.

NON-NUCLEAR PHARMACOLOGICAL TARGETS
Nonetheless, an increasingly detailed understanding of the ER signaling network and its
pleiotropic cellular effects have made the receptor an attractive pharmacological target.
Selective estrogen receptor modulators (SERMs) are ER ligands which can have varying
degrees of agonist or antagonist activities depending on the cell, promoter and coregulator
context (87,88) (Table 1).
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Tamoxifen, the prototypical SERM, renders indirect cardiovascular protective effects by
reducing the amounts of serum total cholesterol and low-density lipoprotein (LDL) (89).
Unfortunately, its strong agonist activity in the endometrium leads to endometrial hyperplasia
and low-grade cancers. Raloxifene, a non-steroidal compound, is similar to tamoxifen but it is
less agonistic in the endometrium (90). Though administered primarily for bone preservation,
raloxifene also reduces serum triglycerides and serum fibrinogen levels (91). Like estrogen,
raloxifene and its analog LY117018 (92) stimulate eNOS activity in endothelial cells through
PI3K- and ERK-dependent pathways, respectively (93), both of which may be involved in
coronary artery relaxation (94). Raloxifene also improves endothelium-dependent
vasorelaxation in hypertensive rats by enhancing the expression and activity of NOS (95).

EM-800, a non-steroidal compound, has higher affinity for ERα than any other SERM (96).
In addition to demonstrating potent antitumor activity in the uterus and breast, EM-800 may
also prevent bone loss and lower serum cholesterol and triglyceride levels (97). Furthermore,
in vitro studies in endothelial cells suggest that EM-800, like E2, enhances NO release by
sequential activation of MAPKs and PI3K-Akt, implicating a direct vascular protective effect
(98).

The tissue specificity of SERMs suggests context-specific regulatory mechanisms that depend
on the ligand, the promoter of the target gene, and the combination and exchange of co-
regulators (99,100). Breast cancer and pituitary lactotroph tumors, for example, demonstrate
enhanced apoptosis and tumor shrinkage when transfected with adenovirus constructs
containing dominant-negative ERα mutants (101). Because dominant-negative ERα and
antiestrogens both recruit transcriptionally repressive proteins to the ERα DNA-binding
complex (102,103), the co-regulatory proteins that govern ERα activity, in addition to the
receptor itself, represent promising therapeutic targets.

SUMMARY
We are just beginning to appreciate the complexity of ERα signaling. Future research efforts
will undoubtedly reveal the intricacies of expression and translocation of endogenous ERα and
possibly the identity of a new receptor that binds E2 and activates non-nuclear signaling.
Furthermore, the activity of coregulators and their role in distinguishing the nuclear and non-
nuclear activities of ERα remain to be defined. A full understanding of these highly cell- and
promoter-specific mechanisms will allow the development of specific agonists and antagonists
that selectively elicit only the beneficial effects of estrogen.
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Figure 1.
Functional regions of the human estrogen receptor α (ERα). These domains include a ligand-
independent transactivation function domain (AF-1), DNA-binding domain, hormone-binding
domain and ligand-dependent transactivation function domain (AF-2). Putative regions of
interaction with other proteins and sites of phosphorylation by various kinases are also shown.
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Figure 2.
Selected nuclear and non-nuclear activities of ERα. Details are described in the text.
Abbreviations: endothelial nitric oxide synthase (eNOS), nitric oxide (NO), heat shock protein
90 (HSP90), phosphatidylinositol-3′ kinase (PI3K), son of sevenless (Sos), growth factor
receptor binding protein 2 (Grb2), G protein coupled receptor (GPCR), protein kinase A (PKA),
protein kinase C (PKC), extracellular-regulated kinases 1 and 2 (ERK1/2), Jun N-terminal
kinase (JNK), 38-kDa isoform of MAPK (p38), estrogen response element (ERE).
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TABLE 1
TISSUE-SPECIFIC EFFECTS OF SELECTED SERMS

Breast Uterus Vasculature

Indirect effect Direct effect

Tamoxifen − + Lowers total cholesterol, no effect on
HDL

?

?

GW5638 − − Lowers total cholesterol ?

EM-800 − − Lowers total cholesterol and
triglycerides

NO-mediated vasodilation

Raloxifene − − Lowers total cholesterol and
triglycerides, no effect on HDL

NO-mediated vasodilation

ROS reduction

LY117018 ? − Lowers total cholesterol NO-mediated vasodilation
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