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Abstract
Recently, we developed a model for hepatitis C virus (HCV) infection that explicitly includes
proliferation of infected and uninfected hepatocytes. The model predictions agree with a large body
of experimental observations on the kinetics of HCV RNA change during acute infection, under
antiviral therapy, and after the cessation of therapy. Here we mathematically analyze and characterize
both the steady state and dynamical behavior of this model. The analyses presented here are important
not only for HCV infection but should also be relevant for modeling other infections with hepatotropic
viruses, such as hepatitis B virus.
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1. Introduction
Approximately 200 million people worldwide [38] are persistently infected with the hepatitis
C virus (HCV) and are at risk of developing chronic liver disease, cirrhosis and hepatocellular
carcinoma. HCV infection therefore represents a significant global public health problem. HCV
establishes chronic hepatitis in 60% – 80% of infected adults [46]. A vaccine against infection
with HCV does not exist and standard treatment with interferon-α and ribavirin has produced
sustained virological response rates of approximately 50%, with no effective alternative
treatment for non-responders to this treatment protocol [13,30].

A model of human immunodeficiency virus infection [40,52] was adapted by Neumann et al.
[37] to study the kinetics of chronic HCV infection during treatment. Since then viral kinetics
modeling has played an important role in the analysis of HCV RNA decay during antiviral
therapy (see Perelson [41], Perelson et al. [42]). The original Neumann et al. model for HCV
infection [37] included three differential equations representing the populations of target cells,
productively-infected cells, and virus (Figure 1.1). A simplified version of the model, which
assumes a constant population of target cells, was used to estimate the rates of viral clearance
and infected cell loss by fitting to the model the decline of HCV RNA observed in patients
during the first 14 days of therapy [37]. However, this simplified version of the model is not
able to explain some observed HCV RNA kinetic profiles under treatment [4]. To model
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complex HCV kinetics, the assumption of a constant level of target cells needs to be relaxed
and requires one to model as correctly as possible the dynamics of the target cell population.
Since it has been suggested that hepatocytes, the major cell type in the liver, are also the major
producers of HCV [10,3,43], we assume here that the target cells of the model are hepatocytes.

The liver is an organ that regenerates, and due to homeostatic mechanisms, any loss of
hepatocytes would be compensated for by the proliferation of existing hepatocytes [12,32].
However, besides replication of existing hepatocytes, another mechanism of liver cell
generation is present (termed here immigration), i.e., differentiation of liver progenitor cells
or bone marrow cells [12].

In prior work, we have shown that including proliferation of both target cells and infected cells
increases the ability of the model to explain experimental data [4,6]. Because HCV infection
is generally thought to be non-cytopathic, i.e., infection per se does not kill a cell [31],
proliferation of infected cells has been included in the model. Studying the effects of varying
the rate of infected cell proliferation from zero (no proliferation) to rates in excess of the rate
proliferation of uninfected cells [34], as might occur by an oncogenic effect, is one of the goals
of this work.

HCV is an RNA virus that replicates in the cytoplasm of an infected cell [25]. Due to the action
of endogenous nucleases or microRNAs it is in principle possible for a cell to clear viral RNA
[2,39]. Some of our prior modeling of acute HCV infection in chimpanzees required the
inclusion of this type of “cure” of infected cells in order to explain the kinetics of HCV
clearance without a massive loss of liver cells that would have lead to the animals’ death [5].
Thus, the effects of “cure” of infected cells is also studied in the analysis provided below.

During antiviral therapy for HCV infection patients may exhibit a flat partial response or a
biphasic decline in HCV RNA (Figure 2.1: left and middle). In addition, a triphasic pattern of
HCV RNA decline (Figure 2.1: right) has been observed in some treated patients [19]. In these
patients, HCV RNA initially falls very rapidly, 1–2 orders of magnitude during the first day
or two of therapy. Then HCV RNA decline ceases and a “shoulder phase” that can last from
days to many weeks is observed. This shoulder phase can persist, in which case it has been
called a flat second phase, or it can be followed by a renewed phase of HCV RNA decline, in
this case the pattern has been called triphasic [4, 6]. Another of the goals of this paper is to
understand the origin of the triphasic response and to compute from the model the length of
the shoulder phase as a function of model parameters. As the length of the shoulder phase
approaches zero, a triphasic response transforms into a biphasic response, and thus studying
triphasic responses provides a general framework for understanding treatment response
kinetics.

In order to accomplish our various goals, we first describe the model and its parameters. Then
we study the model’s steady states and their stability. Using a perturbation analysis approach
we show how the shoulder phase arises and provide an approximate formula from which one
can calculate its length.

2. Model
The model proposed by Dahari et al. [6,4] expands on the standard HCV viral-dynamic model
[37] of infection and clearance by incorporating density-dependent proliferation and death
(Figure 1.1). Uninfected hepatocytes, T, are infected at a rate β per free virus per hepatocyte.
Infected cells, I, produce free virus at rate p per cell but also die with rate dI. Free virus is
cleared at rate c by immune and other degradation processes. Besides infection processes,
hepatocyte numbers are influenced by homeostatic processes. Uninfected hepatocytes die at
rate dT. Both infected and Uninfected hepatocytes proliferate logistically with maximum rates
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rI and rT, respectively, as long as the total number of hepatocytes is less than Tmax. Besides
proliferation, uninfected hepatocytes may increase in number through immigration or
differentiation of hepatocyte precursors that develop into hepatocytes at constitutive rate ŝ or
by spontaneous cure of infected hepatocytes through a noncytolytic process at rate q̂. Treatment
with antiviral drugs reduces the infection rate by a fraction η and the viral production rate by
a fraction ε. The corresponding system of differential equations is

(2.1a)

(2.1b)

(2.1c)

where the time t̂ is measured in days. Table 2.1 shows estimated ranges for the parameters.

System (2.1) has a three-dimensional phase-space and a twelve-dimensional parameter space,
so despite the relative simplicity, the full dynamics are difficult to classify. Fortunately, there
are some natural simplifications. The range of rates of viral clearance shown in Table 2.1 is
significantly faster than the other time-scale parameters. In numerical simulations (Figure 2.1),
after an initial transient the viral dynamics closely track the dynamics of infected cells. This
suggests that viral dynamics can be decomposed into two time scales: a fast time scale starting
at t̂0 where the number of infected hepatocytes, I, is relatively constant and

(2.2)

and a slow time scale where

(2.3)

For patients in steady state before treatment, as is typically the case, I (t̂0) = c (t̂0)/p, allowing
one to simply Equation (2.2) to

(2.4)

On times scales longer than 1/c, then, the dynamics of System (2.1) can be approximated by a
system of two equations. If we now introduce the dimensionless time t = (rT − dT)t̂, the
dimensionless state variables
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(2.5)

and the dimensionless parameters

(2.6)

then under the quasi-steady state approximation, System (2.1) is equivalent to the
dimensionless system

(2.7a)

(2.7b)

Note that a fundamental assumption in the transformation to System (2.7) is that rT > dT, which
we expect because of the hepatocyte population’s ability to support itself and to regenerate
itself after injury.

Immigration of new hepatocytes is believed to be slow (< 1% per day; Table 1) relative to the
total number of hepatocytes (i.e., s ≪ 1). Spontaneous cure from HCV has not yet been directly
observed. It has been suggested to occur based on the kinetics of HCV clearance and liver
damage in humans [51] and in chimpanzees [5]. Therefore, in a first analysis, we assume that
s = q = 0. Later, we reintroduce these parameters and examine their effects via a perturbation
analysis. Dropping the s and q terms, System (2.7) simplifies to

(2.8a)

(2.8b)

Most of the parameter ranges from Table 2.1 are captured by allowing b ∈ [10 −2,103] and d
∈ [10−3,102]. rI has not yet been studied experimentally, and thus we can not bound r beyond
the trivial statement that r ≥ 0.

Gómez-Acevedo and Li [14] have previously studied some of the properties of System (2.8)
in the context of human T-cell lymphotropic virus type I. It is a simple model with only three
independent parameters and dynamics that can be completely analyzed using phase-plane
analysis and algebraic methods while still encapsulating the fundamental concepts of System
(2.1). System (2.8) diverges from common viral dynamics models in the homeostasis parameter
r. When r = 0, System (2.8) is naturally interpreted as an epidemic model, a viral infection
model, or a predator-prey model. When the epidemic model is extended to include logistic
homeostasis with r> 0, the infected cells can also proliferate independent of x but experience
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additional density-dependent mortality as a function of the total population size x+y. This paper
explores the consequences of this homeostasis. We will first study System (2.7) and System
(2.8) during acute infection. We will then study the response of these systems to treatment.

3. Dynamics without treatment (θ = 0)
When hepatitis C virus first infects a person, the ensuing dynamics depend on the relative
parameter values. Since newly infected individuals do not know that they are infected, we
assume there is initially no treatment (θ = 0). At first glance, we might expect several different
scenarios to ensue, following exposure: infection may fade out without becoming established,
infection may spread with limited success and infect only part of the liver, or infection may
spread rapidly and infect the whole liver. To understand when the dynamics of System (2.7)
under acute infection correspond to each of these situations, it is helpful to walk through the
bifurcation structure of System (2.8).

3.1. Without Immigration or Spontaneous Cure
When there is no immigration (s = 0) or spontaneous cure (q = 0), the dynamics are described
by System (2.8). System (2.8) is a variant of the Lotka-Volterra equations studied extensively
in ecology [21]. The ẋ-nullclines are x = 0 and y = (1 − x)/(1 + b). The ẏ-nullclines are y = 0
and y = 1 − d/r − (1 − b/r)x (Figure 3.1). Up to four stationary solutions to System (2.8) can
be found at the intersections of the ẋ and ẏ nullclines. They are

(3.1)

respectively, the liver-free solution, the disease-free solution, the total-infection solution, and
the partial-infection solution. The locations and stability conditions for the stationary solutions
are summarized in Table 3.1.

The bifurcations and stability of these four stationary solutions depends on the parameter values
in ways summarized in Table 3.1. System (2.8)’s Jacobian is

(3.2)

The classification of the parameter space is summarized in Figure 3.2, with examples of each
region’s nullclines given in Figure 3.3. Before treatment, the reproductive number of infection

(3.3)

at the disease-free equilibrium (1,0). In order for HCV to infect the liver,  must be greater
than 1, indicating that on average, an infected hepatocyte causes more than one uninfected cell
to become infected. The eigenvalues at the disease-free equilibrium are λ = −1, corresponding
to the eigenvector [1,0], and λ = b − d, corresponding to the eigenvector [−1 − b, 1 + b − d]. If

 < 1, the disease-free solution (1,0) is locally attracting. If  > 1, HCV infects new cells
faster than infected cells die, and the asymptotic dynamics may correspond to either partial or
total infection of the liver.
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The liver-free stationary solution (0,0) is always unstable, switching between a saddle point
when infected cells die quickly (r < d) and an unstable node when infected cells die slowly (d
< r). If the proliferation rate is slower than the death rate (r < d), then HCV can never totally
infect the liver. There is a transcritical bifurcation at d = r, and the total-infection stationary
solution (0, 1 − d/r) is only a feasible when the proliferation rate of infected cells is greater
than the excess death rate of infected cells (Figure 3.2). From the Jacobian, we see that if d +
d/b < r (equivalently, d < rb/(1 + b)), total infection is locally stable, and from the general theory

of Lotka-Volterra systems, it is globally stable provided . This includes all
cases where d < 0.

The partial-infection stationary solution is present whenever d lies between b and . The
local stability of the partially-infected stationary solution can be determined from the
characteristic polynomial

(3.4)

where λ is an eigenvalue. If , the constant term of the characteristic polynomial at
the partial-infection stationary solution is negative, implying (by Decartes’ rule of sign) that
there is a single positive root and the partial-infection steady-state is a saddle point. In this
situation, we can show that both the disease-free and the total-infection stationary solutions
are locally stable. As first shown in Gómez-Acevedo and Li [14], the system is bistable and
the asymptotic dynamics will depend in the initial conditions. The constraint r < 1 is sufficient
to preclude bistability.

When , the coefficients d/b and

(3.5)

of the characteristic polynomial are both positive. From the Routh-Hurwitz conditions [35], it
follows immediately that the partial-infection stationary solution is locally stable. From prior
work on Lotka-Volterra equations [20], we know that it is also globally stable.

Convergence to the partial-infection stationary solution can be oscillatory if the eigenvalues
are complex or monotone if the eigenvalues are real (Figure 3.4). Calculation of the
discriminant shows that the convergence is oscillatory whenever

(3.6)

This inequality is not easy to interpret by inspection, but it is quadratic in d, so it is easy to
handle numerically. The boundaries of the subset of parameter space where convergence is
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oscillatory asymptotically converge to d(b) = r and d(b) = b as b diverges to ∞. When
convergence is oscillatory, the period of oscillations around the stationary solution is

(3.7)

A sufficient condition for monotone convergence to the partial-infection stationary solution
instead of oscillations is b < r, in which case the convergence rate is governed by the slowest
eigenvalue,

(3.8)

3.2. With Immigration and Spontaneous Cure
Including immigration (s > 0) and spontaneous clearance (q > 0) in System (2.7) changes the
dynamics of System (2.8) in small but important ways (Figure 3.5). The two ẏ-nullclines are
y = 0 and

(3.9)

Spontaneous clearance moves the nullcline given by Eq. (3.9) slightly to the left, but the ẏ-
nullclines are basically the same as those of System (2.8). The change in the ẋ-nullclines is
more pronounced. The only ẋ-nullcline in System (2.7) is

(3.10)

The ẋ-nullclines have changed from a pair of intersecting lines in System (2.8) to a hyperbola
in System (2.7). The shape of the hyperbola is still the same as those of System (2.8) except
near the intersection point (0, 1 − d/r). The hyperbola is also shifted slightly down and to the
right compared to System (2.8) (Figure 3.5). For large positive and negative x, the nullcline is
approximately equal to (1 − x)/(1 + b). There is a vertical asymptote at x = q/(1 + b). The
nullcline is positive just to the right of this asymptote and negative just to it’s left. The ẋ-
nullcline’s unique y-intercept is y = − s/q. This implies that there can be no biologically feasible
stationary solutions with x ≤ q/(1 + b), i.e., total hepatocyte loss is no longer a stationary solution
because the model now includes a perpetual source of new hepatocytes. This change also means
that there is no longer a bifurcation between partial and total infection (Figure 3.6).

Two stationary solutions to System (2.7) solve

(3.11)
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The exact solutions are

(3.12)

When s is very small, the solutions of Eq. (3.11) are approximately

(3.13)

The solution with the negative square root can never appear biologically because it predicts a
negative number of uninfected hepatocytes.

The other two stationary solutions of System (2.7) solve

(3.14a)

(3.14b)

The solutions can be expressed in terms of radicals, but greater intuition of the effects of s and
q relative to the stationary solutions of System (2.8) can be gained though perturbation analysis
(Appendix A). When d < min{b, rb/(1+b)}, the one biologically meaningful solution to Eq.
(3.14) is

(3.15)

corresponding to the total-infection stationary solution of System (2.8), but with a small number
of uninfected cells sustained by the sources s and q. The o(s, q) terms in Eq. (3.16) hide higher
order effects in s and q that vanish quadratically or faster as s and q approach zero. When rb/
(1 + b) < d < b,

(3.16a)

(3.16b)

is an approximate solution corresponding to the partial-infection stationary solution of System
(2.8). The other solution of 3.14 is negative.
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When b < d < rb/(1 + b), both solutions to Eq. (3.14) are positive. Again, this can only occur
when r > 1, i.e., when infected cells proliferate faster than uninfected ones. Approximate
locations are given by Eq. (3.15) and Eq. (3.16). The bifurcation between zero and two roots
is a saddle-node bifurcation where the root with smaller x value is a stable node and the root
with larger x value is a saddle. The calculation of the exact condition for bistability when s or
q is positive is algebraically opaque, requiring the solution of a pair of polynomials that are
quadratic in d and a test to distinguish bistability outside the positive quadrant from bistability
inside the positive quadrant. The net effect in System (2.7) of this complexity is a minor
perturbation of that found for System (2.8) (compare Figures 3.2 and Figure 3.6). Immigration
and spontaneous clearance shrink the bistable region of parameter space slightly and shift it so
that it occurs for slightly smaller values of d.

The local stability of the stationary solutions to System (2.7) is predicted by the Jacobian matrix

(3.17)

The disease-free stationary solution loses stability through a transcritical bifurcation that occurs
at det J = 0. Substituting y = 0 into J, det J = 0 if x = 1/2 or (b − r)x = d + q − r. Using the
approximation x = 1 + s + o(s), we can show that the disease-free stationary solution is stable
when

(3.18)

Local stability of the other stationary solutions to System (2.7) can also be approximated
analytically, but resulting formulas are difficult to interpret.

4. Treatment Effects
Treatment effects appear in System (2.7) and System (2.8) only through a multiplicative factor
(1 − θ) reducing the transmission rate b, where θ is the dimensionless treatment efficacy. Thus,
the stationary solution structure of System (2.7) and System (2.8) under treatment is
summarized by replacing the x-axis labels in Figures 3.2 and 3.6 by (1 − θ)b. Taking b to be
constant, the outcome of drug treatment depends on the drug efficacy θ (Table 4.1, Figure 4.1).
There is a critical efficacy

(4.1)

such that θ > θc implies treatment will clear the infection. When r < d+1, the critical efficacy
θc corresponds to reducing the reproductive number to 1. When r > d+1, the treatment efficacy
must be large enough not only to reduce the reproductive number below 1, but also to overcome
the local stability of the total-infection stationary solution in the region of bistability.

Below the critical efficacy θc, there is also a fuzzy partial-efficacy threshold
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(4.2)

The partial-efficacy threshold was derived using the approximate disease-free stability
condition (1 − θ)b(1 + s) < d + q + rs and the approximate bifurcation condition d = r(1 − θ)b/
(1 + (1 − θ)b) between partial and total infection. These conditions where chosen to correspond
approximately to those of System (2.8).

A fuzzy threshold is a weaker form of the standard threshold conditions used in bifurcation
analysis. Thresholds like the critical efficacy threshold θc indicate the location of a bifurcation
or discontinuity of some form. On a given side of the threshold, changes in parameters can be
interpreted as continuous, smooth changes in the system. On opposite sides of the threshold,
dynamics are qualitatively distinct, and parameter changes that cross the threshold typically
cause non-smooth and discontinuous changes in the system. But in many systems, important
differences in dynamics are not separated by a discontinuity; the system can change in a
continuous, smooth manner between qualitatively different extremes. Since there is no
discontinuity in the system, we can not define an exact threshold. As a next-best recourse, we
define a fuzzy threshold that in some sense separates regions of parameter-space with different
dynamics. Unlike standard thresholds, which are uniquely defined by their discontinuity, fuzzy
thresholds are not uniquely defined; there are infinitely many fuzzy thresholds that distinguish
well-separated points in parameter-space, and points in the neighborhood of one fuzzy
threshold may be classified in any variety of ways by other fuzzy thresholds. Still, fuzzy
thresholds can serve as useful rules of thumb. θp is a fuzzy threshold because the transition
between total-infection and partial-infection in System (2.7) does not generally coincide with
a bifurcation.

Treatment efficacies between θp and θc can significantly reduce the fraction of hepatocytes
that are infected but will not clear infection completely. Treatment efficacies θ < θp do not
significantly reduce the fraction of hepatocytes infected (Figure 4.1).

An important aspect of treatment response is the dynamics of the transition from the pre-
treatment state to the post-treatment stationary solution. When treatment is only partially
effective (θp < θ < θc), the dynamics converge to a new partial-infection stationary solution,
and this convergence can be monotone, can overshoot, and can show damped oscillations,
depending on the parameter values. When treatment is above the critical efficacy (θc < θ),
infection asymptotically decays at rate (1 − θ)b − d. However, in situations with near-total
infection, (r > d + d/b), there can be a significant delay before the number of infected
hepatocytes begins to decay (Figure 4.2). This delay may be a “strong” delay, where the number
of infected hepatocytes does not change for an extended period of time after the start of
treatment before decaying exponentially, or a “weak” delay, where the number of number of
infected hepatocytes decays slowly at the start of treatment but then accelerates (Figure 4.2).
The role of the relative proliferation rate r in treatment response is shown in Figure 4.3. These
strong and weak delays are important because they may correspond to the “shoulder phase”
observed in HCV viral load time series after the start of treatment [6].

Why does this delay occur? Suppose that treatment is highly effective (θ > θc). Biologically,
treatment shifts the competitive advantage away from infected to uninfected hepatocytes, but
there are initially too few uninfected hepatocytes to displace a significant portion of the infected
hepatocytes. Infected hepatocytes only begin to decline when the number of uninfected
hepatocytes reaches the same order of magnitude.
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The rate of recovery depends on some details of the phase-plane geometry. Let’s consider how
the phase plane changes as we increase the efficacy θ when r > d + 1. While θ < θp the total-
infection stationary solution is attracting and the disease-free stationary solution is a saddle
point. As θ increases to between θp and θc, the disease-free stationary solution becomes locally
stable, but the total-infection stationary solution is still stable and attracts orbits from the pre-
treatment initial condition. As θ is increased just beyond θ + c, the total-infection stationary
solution collides in a saddle-node bifurcation with the unstable partial-infection stationary
solution and both solutions disappear. Now, infection will be cleared by treatment. The rate of
clearance is controlled by a bottleneck left in the region of the phase-plane where the saddle-
node bifurcation occurred (see Appendix C). As the efficacy θ increases further, the bottleneck
weakens, but another saddle-node bifurcation occurs in the second quadrant of the phase-plane.
The saddle-node bifurcation introduces a new saddle-point stationary solution close to the pre-
treatment initial condition. As the bottleneck from the first saddle-node bifurcation is relaxed,
the unstable manifold of the new saddle point becomes the primary factor controlling the
recovery rate of uninfected hepatocytes.

The distinctions between a strong delay, a weak delay, and no delay (Figures 4.2 and 4.3) are
empirically determined ones. When treatment completely prevents new infections (θ = 1), we
observe in numerical solutions strong delays when r > d+ d/b, weak delays when d + d/b > r >
d, but no delays when r < d. However, these are only observational distinctions, and the
classification of delays is less clear for less efficient treatments.

The existence of a treatment delay is most clean-cut in cases like that of Figure 4.4, where
almost all hepatocytes are infected before treatment and treatment is highly effective. We will
now describe a method for approximating the dynamics at the start of treatment and determining
the delay, td, before the number of infected hepatocytes begins to decline in these cases. We
can use the linearization of System (2.7) near the new unstable stationary solution u* = (x*,
y*) (Figure 4.4) given by the solutions of

(4.3a)

(4.3b)

that is nearest to the positive quadrant. In the neighborhood of u*, the solution of System (2.7)
is approximately given by

(4.4)

where u(0) is the pre-treatment equilibrium, and J(u*) is the Jacobian matrix at u*. The matrix
exponential can be conveniently expressed in terms of the Lagrange interpolation formula
[33]
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(4.5)

where zn is the n-th eigenvalue and I is the identity matrix. When s and q are small,
u* = (x*,y*)≈(0,1−d/r) (see Appendix A), so the Jacobian

(4.6)

The eigenvalues are approximately

(4.7)

Exact formulas can be obtained using the radical expressions for u* = (x*, y*).

As the final part of the process of determining the treatment delay td, we have to identify a
condition that marks the end of a treatment delay and agrees with our intuitive observations.
There are many possible choices (see Appendix B for a discussion). We found that the condition
x(td) = y(td), corresponding to the point where the number of uninfected cells equals the number
of infected cells, was simple, convenient, and robust for calculating td over the strong-delay
parameter range. Solving for td, we find

(4.8)

The dimensional delay time is  days. A side-by-side comparison of Eq. (4.8) to the
actual value calculated by numerical solution of System (2.7) is shown in Figure 4.5. The figure
shows that our approximation gives results that are very similar to the numerical solutions.

If the relative proliferation rate of infected cells r is fixed at a sufficiently large value (r − d ≥
1 for example), then the treatment delay increases as the excess death rate d decreases and the
transmission rate b increase (Figure 4.6). We see from Figures 4.7 and 4.8 that the treatment
delay increases as r increases, until r is sufficiently large to introduce bistability, corresponding
to td → ∞. In the strong-delay region of Figure 4.3, the larger the immigration rate s of
uninfected hepatocytes, the shorter the treatment delay because there are more uninfected
hepatocytes at the start of treatment (compare Figures 4.7 and 4.8). The effect of spontaneous
cure (q) is similar to that of immigration (s); more spontaneous cure shortens the treatment
delay (Figure 4.9). The sensitivity to immigration and spontaneous cure decreases as the
relative proliferation rate r of infected hepatocytes decreases.

There is a small range of values of r for which Eq. (3.14) has no solutions. For this region, u*
does not exist, and our approximation to td fails despite the presence of a positive but finite
delay. The perturbation approximation to td continues to work for some of this region, but also

RELUGA et al. Page 12

SIAM J Appl Math. Author manuscript; available in PMC 2009 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



eventually fails for r just below the exact bistability threshold. Approximation of td in this
region can be performed using dynamical systems theory, as described in Appendix C.

5. Discussion
Only about 20% to 30% of HCV-infected individuals spontaneously clear the virus during the
early phase of infection [44]. According to our model, when an individual is initially exposed
to a small amount of virus, infection can not be established unless the disease-free reproductive
number is greater than 1. If the reproductive number is greater than 1, virus will spread among
hepatocytes, eventually infecting some or all of the cells it targets. In addition, viral dynamics
during this phase may be monotone or oscillatory, but are expected to converge to a stationary
equilibrium. Homeostatic proliferation of infected cells has only a small effect on the
reproductive number, but diminishes oscillations [4] and increases the proportion of target
hepatocytes infected at steady-state. However, the dynamics may be bistable if the proliferation
rate of infected hepatocytes is faster than that of uninfected hepatocytes. The HCV kinetics
during primary infection, before the adaptive immune response against HCV is induced, both
in humans [18] and chimpanzees [29] has been observed to be monotone, i.e., after a fast viral
increase the virus stabilizes without observed oscillations in a high viral load steady-state. This
lack of observed oscillations supports our hypothesis that homeostatic proliferation of infected
cells exists.

The typical HCV RNA decay observed during therapy with standard or pegylated interferon-
α alone or in combination with ribavirin is biphasic- characterized by an initial rapid viral
decline (first phase) followed by a slower decay (second phase) [37]. In about 30%–40% of
treated patients triphasic viral declines have also been observed [19,48,1,23]. In some patients
(nonresponders) viral loads may not decline. In others, viral load initially declines (first phase)
followed by maintenance of a steady level lower than baseline (flat partial responders). Here
we have mathematically characterized a model of HCV dynamics [6] that encompasses the
observed viral kinetic profiles under therapy. We speculate that in nonresponders the drug
effectiveness, θ, may not exceed θp (Figure 4.1) and therefore viral load does not decline under
therapy. Flat partial responders may be explained as a consequence of drug efficacy higher
than θp but lower than the critical drug efficacy θC (Figure 4.1). Viral clearance occurs when
θ> θc via biphasic or triphasic viral decline when the hepatocyte proliferation rate, r, is lower
or higher than the hepatocyte death rate, d, respectively (System (2.7) without “cure”; Figure
4.1).

Using perturbation theory, we showed a delay can occur between the start of treatment and the
first measurable decline in the number of infected hepatocytes under efficient therapy (θ >
θC) because of the influence of a near-by saddle-node bifurcation in the system (Figure 4.4).
Equation (4.8) can be used to approximate the duration of this delay. In terms of viral dynamics,
this delay appears as a shoulder phase separating the initial decay in viral load at the start of
treatment from the asymptotic clearance phase. One of the conditions for the existence of this
delay between the initial decrease and asymptotic clearance is that the number of infected cells
is much larger than the number of uninfected cells at the start of therapy. During therapy the
number of uninfected cells increases. Because of density-dependent homeostatic processes,
the proliferation of infected cells slows as the number of uninfected cells increases. When this
proliferation slows to the point at which it no longer keeps up with the rate of infected cell loss,
the number of infected cells start to decline. The shoulder persists until the ratio between
uninfected cells and infected cells is approximately one. We found that the stopping condition,
T/I ≈ 1, for calculating when the shoulder phase ends, is simple and robust for calculating td
over a large-shoulder parameter range. Other topping conditions T/I ≈ 1 are discussed in
Appendix B.
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When using td in the context of the full model (System (2.1)), i.e., calculating the viral shoulder
phase and hence a triphasic viral decay, our formula (Eq. (4.8)) has to be adjusted. Since
interferon-α mainly inhibits viral production, and we assume that initially the infected cell
number remains close to its level before therapy, then the model (System (2.1)) predicts that
viral load will decline from its baseline value, V0 according to the equation: (t) = 0(1 − ε +
εe−ct)[37]. This equation for the first phase of viral decline predicts that at times long compared
with 1/c, the average free virion lifetime in serum, the viral load will decline to (1 − ε) 0 over
an interval of length ln(1 − ε)/c (Fig. 2.1). Therefore, our formula (Eq. (4.8)), which estimates
the length of time since the start of therapy and the beginning of the third phase of decline (Fig.
2.1 right panel) can be adjusted to the actual viral shoulder duration by subtracting the
relaxation time ln(1 − ε)/c from the dimensional form of td.

We have previously predicted, using System (2.1), that the spontaneous curing (q) of infected
cells by a noncytolytic immune response is necessary to prevent a significant loss of liver cells
during acute HCV infection in chimpanzees [5]. Direct evidence for noncytolytic clearance of
HCV from infected cells has not yet been found, but interferon-a has cured replicon cells [2]
and clearance of hepatitis-B-virus-infected hepatocytes has been shown to occur through
noncytolytic mechanisms [16]. In the context of treatment in chronic-HCV patients, our theory
predicts that any shoulder phase will be shortened by a strong noncytolytic response.

HCV is the only known RNA virus with an exclusively cytoplasmic life cycle that is associated
with cancer [47]. The mechanisms by which it causes cancer are unclear. It may be possible
that the path to hepatocellular carcinoma in chronic hepatitis C shares some important features
with human papillomavirus-induced carcinogenesis [17]. Interactions of HCV proteins with
key regulators of the cell cycle, e.g., the retinoblastoma protein [34] and p53 [22], may lead to
enhanced cellular proliferation over uninfected cells and may also compromise multiple cell
cycle checkpoints that act to maintain genomic integrity [11], thus setting the stage for
carcinogenesis. In light of these speculations, the proliferation of HCV-infected cells, rI, may
be higher than proliferation of uninfected cells, rT. Therefore, in this study we also analyzed
this assumption (i.e., rI> rT). We found that when rI > rT bistability arises (under certain
parameter values), and imposing rI < rT is sufficient to preclude bistability. However, more
experimental work is needed to test the consistency of this view of homeostatic proliferation
with the behavior of hepatocytes in vivo. Our model makes some predictions regarding changes
in the total hepatocyte numbers over the course of infection and treatment. Since liver function
is correlated to hepatocyte numbers, the total number of hepatocytes may be an important
medical indicator and may further inform our understanding of HCV.

On a mathematical note, there is as yet no global stability analysis of System (2.1). Of particular
importance, a closer analysis of the quasi-steady state approximation is needed. This is
emphasized by numerical observations that a Hopf bifurcation of the partial-infection
stationary solution can occur if the viral clearance rate c is not sufficiently large. Applications
and extension of methods from De Leenheer and Smith [9], De Leenheer and Pilyugin [8] and
Korobeinikov [24] may prove useful in further work.

The analyses presented here are important not only for HCV infection but should also be
relevant for modeling other infections with hepatotropic viruses, such as hepatitis B virus.
Many mathematical models for the study of hepatitis B virus DNA kinetics under therapy
ignore the proliferation of virus-infected cells [36]. Interestingly, besides the typical biphasic
decay in viral load, other kinetic profiles have been observed, such as triphasic. As our model
allows one to predict more complex viral decay profiles, we hope that it will be useful for
understanding complex HCV and HBV kinetics under therapy [7].
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Appendix A. Perturbation Approximations
Regular perturbation methods can be used to approximate the stationary solutions of System
(2.7) in the limits of small s and q, based on the polynomials in Eq. (3.11) and Eq. (3.14a). Eq.
(3.11) is independent of q, so let x = x0 + sxs + o(s). Substituting into Eq. (3.11), (x0 + sxs)2 −
(x0 + sxs) = s, Collecting like terms,

(A.1)

From the zeroth-order term in s, x0 ∊ {0,1}, and to first order, . Thus, the two
corresponding stationary solutions for small s and q are

(A.2)

Eq. (3.14a) depends on both s and q, so let x = x0 + sxs + qxq +o(s, q). Substituting into Eq.
(3.14a) and collecting like terms,

(A.3)

To highest order,
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(A.4)

The first order corrections in s and q are

(A.5a)

(A.5b)

Eq. (3.14b) can then be used to determine y. In the special case of x0 = 0, the stationary solution
is given by Eq. (3.15). This can be used to approximate both the pre-treatment and post-
treatment (substituting (1 − θ)b for b) stationary solutions when applying Eq. (4.8).

Appendix B. Choosing a treatment delay threshold
Using Equation (4.4), we can approximate the delay, td, before the number of infected
hepatocytes begins to decline. But to do this, we have to find a quantitative rule for determining
the end of the treatment delay. One way to do this is to choose a line, represented by a vector
k and a constant k0, such that the shoulder ends when the approximate solution intersects this
line. Thus, td is defined such that

(B.1)

Since we are concerned only with the divergence from steady-state, we can ignore the stable
mode of Eq. (4.4), and Eq. B.1 leads to the formula

(B.2)

Several choices for k and k0 are summarized in Table B.1, along with their drawbacks. The
unstable manifold of u* has the initial direction

(B.3)

If we constrain the application of Eq. (B.2) to the region of Figure 4.3 where θ > θc and r > d,
we can show that the choice of k = [1, −1], k0 =0 always gives a solution for td. This is because
the first component of the eigenvector is positive and the second is negative, ensuring that the
orbit approximated by a line in the direction of the eigenvector will always intersect the line y
= x. Numerical evidence indicates that this choice is reasonably consistent with the qualitative
character of delays, and we will use it throughout this paper. However, it underestimates the
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delay time in cases where r − d is small. In such situations, k = [1,1], k0 = 1 gives better
approximations to td.

Appendix C. Bottle neck calculations
When the growth rate r is slightly smaller than the critical value r* that introduces bistability
(Figure 4.3), Equation (4.4) can not be used to estimate the treatment delay td because there is
no near-by equilibrium around-which we can linearize. However, we can still approximate the
treatment delay by transforming the system near the bifurcation point into normal form [15].
The normal form of a generic saddle-node bifurcation satisfies the first-order differential
equation

Table B.1
Possible stopping condition choices for calculation of td.

Description k k0 Comment

Upper bound [1,1] 1 u(t) may not intersect

x(t) =y(t) [1, −1] 0 u(t) may not intersect

90% threshold [0, 1] .9(1−d/r) u(t) may not intersect

Uninfected cells only [1, 0] d/r td → 0 as d → 0, although the delay may not

Uninfected cells only [1, 0] .1 may not correspond to the full delay

(C.1)

where r is the bifurcation parameter, and r= r* is the bifurcation point with a0 > 0 and a2 ≠ 0.
Using elementary integration methods, we can show that for r ≈ r*, the time it takes for a
solution to pass from a negative initial position to a positive final position, both far from the
origin, is approximately given by

(C.2)

As r is increased toward r*, the time becomes longer. If r > r*, the time is infinite because
solutions are trapped by an intermediate attracting state. For this HCV model, our task to
calculate r*, a0, and a2 by transforming System (2.7) into normal-form near the saddle-node
bifurcation that introduces bistability.

We can determine the bifurcation point r* by setting the discriminant of x in Equation (3.14a)
(with transmission rate (1 − θ)b instead of b) equal to zero. The result is a quadratic polynomial
for r*, where the smaller solution corresponds to a saddle-node bifurcation for non-biological
values of x, and the larger solution corresponds to bifurcation which is biologically important.

Once r* is known, we calculate the feasible non-hyperbolic equilibrium solution (x*(r*), y*
(r*)) using Eq. (3.14). and transform System (2.7) using a change of variables of the form

(C.3a)
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(C.3b)

such that locally, the system has the form

(C.4a)

(C.4b)

where a0 and a2 satisfy the conditions given above and a3 > 0. This transformation can be
perform using the eigenvalue decomposition of the Jacobian at the equilibrium point, and then
chosing Mxr and Myr to eliminate extra terms in u̇ and v̇. The O(v) terms are neglected because
v converges to 0 exponentially near the bifurcation. The procedure is easily implemented
numerically, but we have not produced a simple analytic formula for the result.
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Fig. 1.1.
Schematic representation of HCV infection models. T and I represent target and infected cells,
respectively, and V represents free virus. The parameters shown in the figure are defined in
the text. The original model of Neumann et al. [37] assumed that there is no proliferation of
target and infected cells (i.e., rT = rI = 0) and no spontaneous cure (i.e., q = 0). The extended
model of Dahari et al. [6], which was used for predicting complex HCV kinetics under therapy,
includes target and infected cell proliferation without cure (rT, rI > 0 and q = 0). A model
including both proliferation and the spontaneous cure of infected cells(dashed line; q > 0) was
used to explain the kinetics of HCV in primary infection in chimpanzees [5].
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Fig. 2.1.
Three example plots of observed changes in viral load (X) following the start of treatment,
together with numerical solutions to System (2.1) (solid line). The initial condition of each
numerical solutions is the chronic-infection steady-state. In some cases, there is a flat partial
response to treatment (left), where viral load shows an immediate drop, but then remains
unchanged over time. In some cases, there is a biphasic response (middle), with a rapid initial
drop and a slower asymptotic clearance. In some cases, there is a triphasic response, with a
rapid initial drop, an intermediate shoulder phase during which there is little change, and then
an asymptotic clearance phase. The initial rapid decline in virus load is the synchronization to
the new quasi-steady state, following the start of treatment. Afterward, virus load closely tracks
the number of infected cells (right). Treatment efficacies are ε = 0.98,η = 0 (left), ε = 0.9, η =
0 (middle), and ε = 0.996,η = 0 (right). Other parameter values are shown in Table 2.1.
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Fig. 3.1.
Example nullclines for System (2.8) when the disease-free equilibrium is globally attracting.
The liver-free (x = y = 0), disease-free (x = 1, y = 0), and total-infection (x = 0, y = 1 − d/r)
stationary solutions are marked with dots. The solid lines are the ẏ-nullclines, the dotted lines
are the ẋ-nullclines. The partial-infection stationary solution is not present for these parameter
values.

RELUGA et al. Page 23

SIAM J Appl Math. Author manuscript; available in PMC 2009 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.2.
Plot representing the parameter regions for asymptotic dynamics of System (2.8) when r = 0.8
(left) or r = 2.5 (right). Within the region marked partial infection, the dotted line is the boundary
between monotone convergence and oscillatory convergence to the partial infection steady
state.
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Fig. 3.3.
Example phase planes of System (2.8) for distinct parameter regions. The dashed lines are the
ẋ-nullclines and the solid lines are the ẏ-nullclines. The dots represent stationary solutions.
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Fig. 3.4.
Time series for System (2.7) of monotone (left, r = 0.6, b = 0.6) and oscillatory (right, r = 0.1,
b = 2.6) convergence to the partial infection stationary solution when d = 0.4.
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Fig. 3.5.
Example nullclines for System (2.7) when the disease-free equilibrium is globally attracting
for immigration and spontaneous clearance rates s = q = 0.001 (left) or s = q = 0.02 (right).
The liver-free, disease-free, and total-infection stationary solutions are marked with dots. The
liver-free and total-infection stationary solutions have negative x coordinates when the
immigration and spontaneous clearance rates are positive. The solid lines are the ẏ-nullclines,
the dotted lines are the ẋ-nullclines. The partial-infection stationary solution is not present for
these parameter values.
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Fig. 3.6.
Plot representing the parameter regions for asymptotic dynamics of System (2.7) with s = 0.01,
q = 0 when r = 0.8 (left) or r = 2.5 (right). Compare to Figure 3.1. The dashed line represents
the boundary of the parameter region where convergence to the steady state exhibits damped
oscillations. The dotted line represents the bifurcation boundary between partial and total
infection when s = q = 0. However, there is no formal bifurcation between partial and total
infection if s or q is positive because of the structural instability of the transcritical bifurcation
in System (2.8).
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Fig. 4.1.
The treatment efficacy θ leading to specific dynamics for various transmission rates b, given
d = 0.5, r = 0.9, s = 0 and q = 0. Treatment efficacies below θp have little or no effect on the
number of infected hepatocytes. Treatment efficacies between θc and θp reduce the number of
infected hepatocytes, but are not sufficient for complete clearance. Treatment efficacies greater
than θc lead to complete clearance of infection.
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Fig. 4.2.
Time series for System (2.7) with treatment starting at t = 0 for r = 0 (top, left), r = 0.3 (top,
right), and r = 0.6 (bottom). The initial condition is the pre-treatment stationary solution. When
the proliferation rate r is small (top, left), there is no delay; the number of infected cells (y)
decays at a constant rate from the start of treatment. For intermediate proliferation rates (top,
right), there may is a weak delay between the start of treatment and the asymptotic clearance
of infection. When r is large (bottom), there is a strong delay (about 10 units, here) before the
number of uninfected cells (x) reaches equality with the number of infected cells and the
number decay rate of infected cells accelerates to its exponential asymptotic rate. Parameter
values s = 0.001, q = 0, d = 0.3, b = 5, θ = 1.
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Fig. 4.3.
Classification of treatment-response as a function of θ and r when b > d. q = 0, s = 0.001, b =
0.9, d = 0.5. Regions are labelled according to the dynamics observed under treatment,
assuming the dynamics were at equilibrium prior to treatment. In the bistable region, both the
disease-free and total-infection stationary solutions are locally stable under treatment. The
boundaries between the regions of strong delay, weak delay, and no delay are fuzzy, in the case
of θ = 1, and the boundaries are even fuzzier for θ < 1. In the sliver between the dotted line and
the solid line defining the bistable region our approximation to td in Eq. (4.8) fails because
there is no nearby stationary solution to use for u* (see Fig. 4.4). In this sliver, the
approximation method described in Appendix C can be used.
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Fig. 4.4.
Nullclines of System (2.7) when s = 0.001, q = 0.008, r = 0.8, d = 0.2, and b = 1.5 with before
treatment, θ = 0 (left) and at the start of treatment, θ = 14/15 (right). The solid dots represent
stationary solutions. The open dot in the right-hand plot corresponds to the attracting stationary
solution in the left-hand plot and is the initial condition for the dynamics when treatment begins.
The adjacent solid dot u* is the unstable stationary solution around which we linearize to
approximate the treatment delay.
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Fig. 4.5.
Side-by-side comparison of contour plots of the treatment td using numerical solution of system
(2.7) (left) and the Formula (4.8) derived from the linear approximation (right). The

approximate bound on bistability, , labeled ∞, is the same in both plots. Contour
heights are 10, 20,100 and ∞. Parameter values d=0.5, b=1, s=10−3, q=0.θc=0.5 when r=0 in
both plots.
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Fig. 4.6.
Contour plot of the treatment delay td from Eq. (4.8) as functions of d and b when r =1,θ = 1,
s = 10−3 and q=0. Contours at .1, 10, 20, 50, and 100. The dotted line d = rb/(1+b) is an upper
bound on the region of strong-delay effect.
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Fig. 4.7.
Four contour plots of treatment delay td in the strong-delay region of Figure 4.3, calculated
from Formula (4.8) when hepatocyte immigration is slow. In the parameter region above the
∞-contour, treatment is not sufficiently effective to overcome the local stability of the infected-
cell population. Below the ∞-contour, treatment successfully clears infection, with the length
of the delay given by the contour values. Parameter values are given at the top of each plot.
The left-hand boundary in each plot corresponds to θ = θC when r = 0.
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Fig. 4.8.
Four contour plots of treatment delay td in the strong-delay region of Figure 4.3, calculated
from Formula (4.8). Parameter values are stated at the top of each plot. In the parameter region
above the ∞-contour, treatment is not sufficiently effective to overcome the local stability of
the infected-cell population. Below the ∞-contour, treatment successfully clears infection, with
the length of the delay given by the contour values. In these plots, immigration is fast (s =
10−2) and significantly reduces the delay before treatment reduces the number of infected cells,
compared to Figure 4.7. The left-hand boundary in each plot corresponds to θ = θC when r =
0.
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Fig. 4.9.
Time series plot of changes in the number of infected cells under treatment with s = 0.001 (left)
and q = 0.001 (right). As the curing of infected cells q is increased from 0 to 1, the treatment
delay decreases from 15 to 0 (left). Similarly, treatment delay decreases as the immigration
rate s increases (right). Note that only vary large values of s and q significantly effect the pre-
treatment state. Parameter values d = 0.3, b = 3,θ = 1, r = 1.
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Table 3.1
Stationary solutions for System (2.8), and their characteristics

Stationary point Location Bifurcation conditions Local stability condition

Liver-free (0,0) r = d Never stable

Disease-free (1,0) b = d b < d

Total-infection (0, 1 − d/r) r = d + d/b, r = d r > d + d/b

Partial-infection ( db + d − br
b(1 + b − r) , b − d

b(1 + b − r) ) r = d + d/b, b = d rb/(1 +b) < d < b

SIAM J Appl Math. Author manuscript; available in PMC 2009 January 30.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

RELUGA et al. Page 40

Table 4.1
Classification of the dynamics of System (2.7) for b > d, 0 < S ≪ 1, 0 < q ≪ 1. These classifications are only
approximate. Parameter values that fall near the boundaries of any of these regions may have dynamics that fit multiple
classifications. See Figures 4.1 and 4.2 for graphical depictions and example time series.

Pre-treatment Pre-treatment state Treatment Treatment dynamics

r < d Partial infection

θ < θc reduced infection

θ > θc clearance, no treatment delay

d < r < d + d
b

Partial infection

θ < θc reduced infection

θ > θc clearance, weak treatment delay

d + d
b < r < d + 1

Near total infection

θ < θp no effect

θp < θ < θc reduced infection

θc < θ clearance, strong treatment delay

d + 1 < r Near total infection

θ < θp no effect

θp < θ < θc bistable, no effect

θc < θ clearance, strong treatment delay
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