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Electronic colon cleansing �ECC� is an emerging technique developed to segment the colon lumen
from a patient’s abdominal computed tomography colonography �CTC� images. However, the resi-
due stool and fluid tagged by contrast materials as well as mixed tissue distribution with partial
volume �PV� effect impose several challenges for ECC, resulting in incomplete and overcomplete
cleansings. To address the PV effect, this work investigated an improved maximum a posteriori
expectation-maximization �MAP-EM� image segmentation algorithm which simultaneously esti-
mates tissue mixture percentages within each image voxel and statistical model parameters for the
tissue distribution. Given the segmented tissue mixture information beyond the image voxel level,
not only the PV effect has been satisfactorily addressed as a particular case of tissue mixture
problem, but incomplete and overcomplete ECC causes could also be maximally avoided. For
clinical application to CTC that involves several issues transferring from theoretical analysis to
practical validation, an innovative initialization procedure and refined estimation strategy were
proposed to build an ECC pipeline based on the MAP-EM segmentation. The pipeline was evalu-
ated based on 52 patient CTC studies, downloaded from the website of the Virtual Colonoscopy
Screening Resource Center, by two radiologists. A noticeable improvement over the authors’ pre-
vious ECC pipeline was documented. Several typical cases were also presented to show visually the
improved performance of the presented ECC pipeline. © 2008 American Association of Physicists
in Medicine. �DOI: 10.1118/1.3013591�

Key words: electronic colon cleansing, partial volume effect, MAP-EM image segmentation, vir-
tual colonoscopy, fecal tagging
I. INTRODUCTION

Colorectal carcinoma is the third most commonly diagnosed
cancer and the second leading cause of death from cancer in
the United States.1,2 More than 90% colorectal cancers are
developed from adenomatous polyps over 5 to 15 years.
Since the malignant transformation usually does not show
any symptom, screening programs to detect the polyps have
been advocated, and several polyp detection methods, such
as fecal occult blood test, sigmoidoscopy, barium enema, and
fiberoptic colonoscopy �OC�, have been developed over the
years. Each method has its own limitations and currently OC
is the gold standard. Computed tomography colonography
�CTC�, also known as virtual colonoscopy �VC�,3–5 is an

emerging method utilizing advanced medical imaging and
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computer technologies to mimic the OC navigation proce-
dure, looking for polyps via fly-through inside a virtual colon
model which is constructed from patient abdominal
images.6–8 Considering the presence of colonic fluid and
residue stool �survived after routine bowel cleansing9� in CT
scans, finding polyps is not a trivial task in the sense that
colonic fluid might “bury” polyps resulting in false nega-
tives, while residue stool could mimic polyps and increase
false positive rates, although several clinical studies have
shown the great potential of VC as a mass screening modal-
ity in terms of safety, cost, and patient compliance compared
to OC.10–12 It is admitted that scanning in both supine and
prone positons can reduce the possibility of these errors, un-

fortunately it does not solve the problem because fluid and
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residue stool may not move in the way expected for their
location change from supine to prone positions.13 Oral con-
trast tagging of the colonic materials could allow differentia-
tion of colon content from colon wall.14 By the use of oral
contrast, residue stool and fluid have a higher image density
than the surrounding colon or polyp tissues and therefore can
be cleansed electronically in the patient images for an accu-
rate virtual colon model.15–17 A successful electronic colon
cleansing �ECC� of tagged materials �TMs� would relieve the
stress on bowel preparation that often is a limiting factor in
patient compliance with colon cancer screening
recommendations.18–20

ECC has been explored in the past decade utilizing image
segmentation and pattern recognition algorithms.14–17,21–24

Most of these algorithms assume each image voxel is filled
by a single tissue type and ignore the partial volume �PV�
effect particularly around colon wall mucosa, where the de-
tails reflect very useful clinical information. Progress has
been made by seeking the probability of a voxel being filled
with a single tissue type rather than assuming that voxel has
been fully filled by a single tissue type.25 Because of the
weak constraint via the probability, this indirect PV solution
had shown limited gain.25 Modeling tissue mixtures inside
each image voxel for a direct solution to PV effect has been
a research interest for many years.26–28 The authors have
been exploring a direct PV solution,29,30 utilizing the
expectation-maximization �EM� algorithm31 to simulta-
neously estimate �1� tissue mixture percentages in each im-
age voxel and �2� statistical model parameters of the ac-
quired image data under the principle of maximum a
posteriori �MAP�, where the PV effect could be interpreted
as a special case of tissue mixture model within each image
voxel, i.e., a tissue mixture model could account for but not
being limited to the PV effect. Initial clinical tests on 20
patient CTC data sets under the condition of each image
voxel containing no more than two tissue types has demon-
strated improved performance compared to our previous seg-
mentation algorithms.32 Recent numerical investigations
have shown the stability of the MAP-EM tissue mixture seg-
mentation algorithm when a voxel contains more than two
tissue types,33 where each tissue type is assumed to follow a
normal distribution, and all tissue types are assumed to be
independent from each other. The iterative EM approach to
the MAP solution is achieved by a finite number of iterations
and reasonable initial estimate. Further investigation and
validation of the segmentation algorithm are needed and cur-
rently under progress for application to CTC. This work rep-
resents an example of the ongoing research effort.

In current patient CTC studies, positive-contrast tagging
agents are usually used to opacify the residual fecal materials
and fluid for differentiation of the materials from colon wall
and polyps. The use of positive-contrast tagging agents that
have high radio densities tends to artificially elevate the ob-
served CT attenuation of nearby soft tissues toward that of
the TMs on Hounsfield unit scale. This artificial elevation is
called pseudoenhancement �PE� according to Nappi et al.34

and Nappi and Yoshida35 and is an acceptable explanation to

the overcomplete ECC cause where pseudoenhanced soft tis-
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sues are incorrectly identified as TMs. Moreover, the igno-
rance of PV effect around tissue boundaries makes ECC even
more challenging by artifically altering the shape and texture
information, which is believed to hamper the following de-
tection and diagnosis tasks.24 This work aims to address the
PV effect in presence of PE in clinical CTC studies by im-
proving the MAP-EM segmentation performance for esti-
mating the tissue mixtures inside each image voxel across
the entire field of view �FOV�. Several implementation strat-
egies and postsegmentation operations for construction of an
ECC pipeline were proposed to transfer the theoretical
analysis33 to clinical applications in CTC. The major topics
covered in this paper include �1� adequate initialization for
the iterative procedure, �2� optimal neighboring system for
increase or decrease of the number of tissue types at a con-
cerned voxel, �3� iteration speed-up, and �4� innovative post-
segmentation strategies for construction of an ECC pipeline
with evaluation of the ECC pipeline by 52 patient CTC stud-
ies.

The remainder of this work is presented as follows. Sec-
tion II briefly reviews the MAP-EM algorithm, followed by
Sec. III where optimization of the algorithm implementation
and construction of a corresponding ECC pipeline are de-
tailed. Section IV validates the ECC pipeline using 52 CTC
studies with comparison to the authors’ previous results. Fi-
nally, Sec. V draws some conclusions and also discusses
some future research topics.

II. BRIEF REVIEW OF THE MAP-EM ALGORITHM

In this section, the MAP-EM segmentation algorithm for
simultaneously estimating both tissue mixture percentages
and statistical model parameters is briefly reviewed, with
more details presented in a previous work.33

Let the acquired image Y be represented by a column
vector in the form of �Yi, i=1, . . . , I�, where I denotes the
total number of voxels in the image and each Yi is an obser-

vation of an individual random variable with mean Ȳi and
variance �i

2 at voxel i. Assume the image contains K tissue
types. Let the contribution of tissue type k to the observation
of Yi in voxel i be denoted by Xik, i=1, . . . , I; k=1, . . . ,K,
there is Yi=�k=1

K Xik. Each Xik is an unobservable random

variable with mean X̄ik and variance �ik
2 . Let Zik be the frac-

tion of tissue type k in voxel i, contributing to Yi, under
conditions of �k=1

K Zik=1, 0�Zik�1. Let �k and �k be the
mean and variance of tissue type k fully filling in voxel i.
Assume all K tissue types contribute to Yi independently, one

then has X̄ik=Zik�k, �ik
2 =Zik�k, Ȳi=�k=1

K Zik�k, and �i
2

=�k=1
K Zik�k.

28,33 Without loss of generality, it is assumed that
the unobservable random variable Xik for each tissue type k
follows a normal distribution,

p�X���k�,�vk�,�Zik�� = 	
i,k=1

l,K
1


2�Zikvk

�exp�−
�Xik − Zik�k�2

2Zik�k
� . �1�

31
The EM algorithm then seeks the solution of tissue per-
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centage parameters �Zik� and statistical model parameters
��k ,�k� by maximizing the expectation of conditional prob-
ability distribution �1� of the complete data, where the E step
of the EM algorithm computes the conditional expectation of
the unobservable variable distribution given image �Yi� and
current iteration estimates ��k

�n� ,�k
�n� ,Zik

�n��.33 Thus, one has

Q�����n�� = −
1

2�
i,k
�ln�2�� + ln�Zik�k� +

1

Zik�k
��Xik

2 ��n�

− 2Xik
�n�Zik�k + Zik

2 �k
2� + �U�Zik�� , �2�

where parameter set � represents the tissue fractions �or
mixture percentages� �Zik� and the tissue model parameters
��k ,�k�, and Xik

�n� and �Xik
2 ��n� are the conditional expectations

of Xik and Xik
2 , respectively,33

Xik
�n� = E�Xik�Yi,�

�n��

= Zik
�n��k

�n� +
�Zik

�n��k
�n��

� j=1
K �Zij

�n�� j
�n��
Yi − �

j=1

	

Zij
�n�� j

�n�� , �3�

�Xik
2 ��n� = E�Xik

2 �Yi,�
�n��

= �Xik
�n��2 + �Zik

�n��k
�n��

� j�k
K �Zij

�n�� j
�n��

� j=1
K �Zij

�n�� j
�n��

, �4�

where �Xik
�n��2 is the square of the nth iterated estimate of Xik

�n�.
The last term in Eq. �2� reflects a penalty on the tissue frac-
tion distribution �Zik� across the FOV for a penalized maxi-
mum likelihood or MAP solution. The usefulness of Markov
random field �MRF� in modeling the distribution of label
images has been evidenced by many studies, e.g., Refs. 36
and 37. And such continuous distribution of image label can
be easily extended to the case of �Zik� when downsampling
operations are taken infinite times. By a Gibbs functional in
the well-established MRF framework,36 an a priori penalty
on the tissue mixture parameter Zik has the following qua-
dratic form of
Medical Physics, Vol. 35, No. 12, December 2008
U�Zik� = �
r�
1

wir�Zik − Zrk�2, �5�

where index r indicates the neighbors 
i and wir is a weigh-
ing factor for different orders of neighbors. Notation � is an
adjustable parameter controlling the degree of the penalty.

The M step of the EM algorithm determines the next it-
eration estimates ��k

�n+1� ,�k
�n+1� ,Zik

�n+1��, which maximize the
conditional expectation �2�. For the tissue model parameters
��k

�n+1� ,�k
�n+1��, one has

� �Q

��k
�

�=��n+1�
= 0 ⇒ �k

�n+1� =
�iXik

�n�

�iZik
�6�

and similarly

�k
�n+1� =

1

I
�

i

�Xik
2 ��n� − 2Xik

�n�Zik
�n��k

�n� + �Zik
�n��k

�n��2

Zik
�n� . �7�

For the tissue mixture percentages �Zik�, maximizing the con-
ditional expectation �2� will be subject to the conditions of
�k=1

K Zik=1, 0�Zik�1 and will not generate a closed-form
solution for Zik

�n+1�. Since the solution for Zik
�n+1� is spatially

localized to voxel i, a logic approach to the solution is to
consider the neighborhood anatomical information in the ac-
quired image, as depicted as follows.

Considering the continuity existing in both image label
and �Zik�, if all the neighbors around voxel i are labeled as
tissue type k, then central voxel i is most likely to contain
tissue type k exclusively. Similarly, if all the neighbors are
labeled as any two tissue types, e.g., 1 and 2 of the total K,
then for central voxel i, one has Zik

�0�=0, k�1,2. Following
this argument, one can refine the estimation for voxel i con-
taining any k tissue types up to K, provided with its neigh-
bors’ anatomical information.

If all the neighbors at the nth iteration contain any two
tissue types 1 and 2 of the total K, then the following partial
differentiation operation will lead to formula �8� for calcula-
tion of the tissue mixture percentages in voxel i,33
� �Q�����n��
�Zi1

�
Zi1

�n+1�
= 0 ⇒ Zi1

�n+1� =
Xi1

�n���i2
2 ��n��1

�n� + ��2
�n��2��i1

2 ��n� − Xi2
�n���i1

2 ��n��2
�n� + 2���i1

2 ��n���i2
2 ��n��rwirZr1

�n�

��1
�n��2��i2

2 ��n� + ��2
�n��2��i1

2 ��n� + 2���i1
2 ��n���i2

2 ��n��rwir

�8�
and Zi2
�n+1�=1−Zi1

�n+1�, where Xik
�n�, ��k��n�, and ��ik

2 ��n�

=Zik
�n��k

�n� have been defined before.
If all the neighbors at the nth iteration contain any three

tissue types 1, 2, and 3 of the total K, then Eq. �2� can be
approximately expressed as a quadratic form for voxel i, and
the associated �Zik

�n+1�� could be updated by solving three lin-
ear equations, as denoted by Eqs. �9� and �10�, respectively,
Qi � 1
2 �Zi1 Zi2 Zi3��V1,1 V1,2 V1,3

V2,1 V2,2 Z2,3

V3,1 V3,2 V3,3
��Zi1

Zi2

Zi3
�

− �b0 b1 b2��Zi1

Zi2

Zi3
� , �9�
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� 1 1 1

V1,1 − V1,2 V2,1 − V2,2 V3,1 − V3,2

V1,1 − V1,3 V2,1 − V2,3 V3,1 − V3,3
��Zi1

�n+1�

Zi2
�n+1�

Zi3
�n+1� �

= � 1

b0 − b1

b0 − b2
� , �10�

where

V1,1 =
��1

�n��2

Zi1
�n��1

�n� + ��
r

wir, V2,2 =
��2

�n��2

Zi2
�n��2

�n� + ��
r

wir,

V3,3 =
��3

�n��2

Zi3
�n��3

�n� + ��
r

wir,

V1,2 = V1,3 = V2,1 = V2,3 = V3,1 = V3,2 = 0,

b0 =
Xi1

�n��1
�n�

Zi1
�n��1

�n� + ��
r

wirZr1
�n�,

b1 =
Xi2

�n��2
�n�

Zi2
�n��2

�n� + ��
r

wirZr2
�n�, b2 =

Xi3
�n��3

�n�

Zi3
�n��3

�n� + ��
r

wirZr3
�n�.

If all the neighbors at the nth iteration contain any four
tissue types 1, 2, 3, and 4 of the total K, then Eq. �10� be-
comes

�
1 1 1 1

V1,1 − V1,4 V1,2 − V2,4 V1,3 − V3,4 V1,4 − V4,4

V1,2 − V1,4 V2,2 − V2,4 V2,3 − V3,4 V2,4 − V4,4

V1,3 − V1,4 V2,3 − V2,4 V3,3 − V3,4 V3,4 − V4,4

�
��

Zi1
�n+1�

Zi2
�n+1�

Zi3
�n+1�

Zi4
�n+1�
� =�

1

b0 − b3

b1 − b3

b3 − b3

� . �11�

Similarly,

V4,4 =
��4

�n��2

Zi4
�n��4

�n� + ��
r

wir, b3 =
Xi4

�n��4
�n�

Zi4
�n��4

�n� + ��
r

wirZr4
�n�,

V1,2 = V1,3 = V1,4 = V2,3 = V2,4 = V3,4 = 0.

If the neighbors contain all the K tissue types, a set of K
linear equations can be derived for the K tissue mixture per-
centages in voxel i. In this VC application, the authors con-
sider four tissue types of �i� air inside the colon and lungs,
�ii� fat, �iii� muscle, and �iv� bone and TMs in the abdominal
CTC images. Therefore, Eqs. �8�–�11� are sufficient to com-

pute the �n+1�th iteration results.
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III. IMPLEMENTATION OF THE MAP-EM
ALGORITHM

III.A. Initialization of the MAP-EM algorithm

Two kinds of parameters are needed to be initialized to
start the MAP-EM iteration process: tissue model parameters
��k ,�k�, which reflect the image data distribution across the
FOV, and tissue mixture percentages �Zik� of tissue type k
inside voxel i. Comprehensive numerical experiments dem-
onstrated that the MAP-EM algorithm was immune to
��k

�0� ,�k
�0��, i.e., even if the initial ��k

�0� ,�k
�0�� deviated more

than 90% away from their true values, the MAP-EM itera-
tion still converged to good stable results.33 On contrary, its
convergence appeared to be relatively more sensitive to the
initial �Zik

�0��. In patient CTC studies, the presence of PE,
which is fully illustrated in Fig. 1 by drawing CT density
profiles along vertical direction based on partially and fully
pseudoenhanced tissues, is problematic for appropriately ini-
tializing �Zik

�0��. More specifically, the pseudoenhanced soft
tissues could be easily labeled as TMs from the initial, and
therefore it could take a much longer time for the MAP-EM
iteration to converge to desirable solutions and sometimes
the worst cases could occur that even lead to incorrect �Zik

�n��
without any chance of steering back. Improving the initial
�Zik

�0�� by the use of neighboring voxels and anatomic infor-
mation would be a promising approach to overcome PE via
the MAP-EM iterations, and is expected to be better than a
blind initialization solely based on the CT image density val-
ues.

As an image processing technique, vector quantization
�VQ� has received considerable interest and has found vari-
ous applications in image/voice compression and classifica-
tion, statistic pattern recognition, etc.38 As its name implied,
VQ has limited use in CT since each voxel has only one
density value. The authors have been exploring strategies to
reinterpret and reform CT images to fit the VQ’s framework.
One example is the novel method of grouping each voxel’s
22 neighboring voxels to form a 23-dimensional �23D� local
density vector and then classifying all the vectors based on
the density similarity within certain spatial range.21 As a re-
sult, each voxel is uniquely reinterpreted as a 23D local den-
sity vector to catch the local anatomical information. To re-
duce the computing burden, principal component analysis
�PCA� was applied to the local vector series to determine the
dimension of their feature vectors.21 By applying PCA on a
large database, it was observed that a reasonable dimension
of the feature vectors was five, where the summation of the
first five principle components’ variances was more than
92% of the total variance. In this work, the authors adapted
the VQ strategy to initialize �Zik

�0�� for those image density
ranges affected by PE solely. This is expected to provide
more useful CT density information about the pseudoen-
hanced soft tissues and TMs from the viewpoint of quantiza-
tion under the assumption that even pseudoenhanced soft
tissues would still have relatively smaller CT density values
than TMs. If the density information about the pseudoen-

hanced soft tissues is not completely missed in the initial
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�Zik
�0��, then the statistical model fitting mechanism built in

the MAP-EM algorithm would segment those PE voxels as
mixture of soft tissues and TMs. The authors’ VQ/PCA based
initial labeling procedure prior to the assignment of �Zik

�0��
can be summarized as follows.

�a� First of all, all image voxels were roughly divided into
four tissue types of air, fat, muscle, and bone �including
TMs and pseudoenhanced soft tissues� via thresholds
adaptive to the image histogram,25 which were simply
determined as those local optima by taking derivative
along the image histogram. In other words, different
histogram shape would lead to different thresholds with
typical density values illustrated in Fig. 2.

�b� Each voxel of bone class was reformatted to be a 23D
local density vector, followed by PCA through eigen-
value decomposition where the first five principle com-
ponents were chosen to reinterpret the original bone
class voxel as 5D feature vectors.

�c� By using an unsupervised self-adaptive VQ
classification,21 the collection of 5D feature vectors of

FIG. 1. Illustration of pseudoenhancement effect. The left-hand side shows a
arrow; and the right-hand side shows a fully enhanced soft tissue �top� and

FIG. 2. Typical example of three thresholds for the tissue classes of air, fat,

muscle, and bone.
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bone-only class voxels were further classified into ten
subdivided bone classes, where the number of “10”
was determined based on the criterion of maximal dif-
ferentiation among the subdivided bone classes. Con-
sidering the inhomogeneous CT density distribution, it
is sufficient to claim that the ten subdivided bone
classes can capture the characteristics of bone, TMs,
and pseudoenhanced soft tissues.

�d� Instead of obtaining a single mean value for bone class
as the authors did before, ten mean values associated
with the ten subdivided bone classes, denoted by mk,
k=1,2 , . . . ,10, were calculated and sorted in an in-
creasing order. Ten classification labels were therefore
assigned to these subdivided bone class voxels with a
smaller label corresponding to a smaller mk. More spe-
cifically, if the authors originally labeled air class as 1,
fat class as 2, muscle class as 3, and bone class as 4,
then label 4 was subdivided via the combination of
PCA and VQ strategy into ten new labels, resulting in
13 labels all together as depicted in Table I.

Because of their distinct natures, those voxels with label 5
have the smallest sample mean and therefore are highly
likely to be the pseudoenhanced soft tissues. In contrast,
those voxels of label 14 have the largest sample mean which
are highly likely to belong to the class of dense bone or TMs.
For any label between 5 and 14, it serves as an indicator to
provide a “second opinion” of current voxel toward either
pseudoenhanced soft tissues or bone/TMs. Figure 3 illus-
trates how Table I works via VQ/PCA, where in Fig. 3�b� the
brighter the area, the larger the subdivided class labels, and

ally pseudoenhanced soft tissue �top� and profile �bottom� along the vertical
le �bottom� along the vertical arrow.
parti
profi
vice versa.
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In CTC studies, four different tissue types are observed in
the CT images, i.e., air, fat, muscle, and bone �possibly with
TMs�. By grouping each voxel’s 22 neighbors together in the
3D case, a picture of how this voxel is locally mixed by four
tissue types is provided, and 15 mixture combinations are
fully depicted in Table II and visually illustrated in Fig. 4 for
a 2D case, where only the surrounding eight-connected
neighbors were considered to preserve the simplicity and the
letters “B,” “F,” “M,” and “A” represent bone, fat, muscle,
and air classes, respectively.

For example, if a voxel’s 22 neighbors are all labeled as
bone class, then the voxel is linked to index 4 of Table II as
“bone only,” otherwise it is not pure and will be linked to
another index from 5 to 15. Combining Tables I and II, the
initialization of ��k

�0� ,�k
�0� ,Zik

�0�� was treated differently. Since
the MAP-EM algorithm is proven to be relatively robust to
the deviation of ��k

�0� ,�k
�0��, roughly computing ��k

�0� ,�k
�0��,

k=1,2 ,3 ,4 individually from the initially labeled voxels as
described by step �a� turns out to serve well in our studies.
However, the initial �Zik

�0�� is rather sophisticated and summa-
rized as follows:

�1� Each voxel i, which is initially labeled as bone/TM, is
represented by two indicators so far, a subdivided class
label SLi from Table I, and a local mixture index LMIi

from Table II. To determine �Zik
�0�� of tissue type k within

voxel i, one needs to inspect its 22 neighbors whose SLj,

TABLE I. Initially classified labels by the adaptive threshold strategy on the
data histogram, followed by VQ classification of the bone class.

Before VQ After VQ

Air 1 1
Fat 2 2
Muscle 3 3
Bone
and
TM

4 Subdivided class 1 5
Subdivided class 2 6
Subdivided class 3 7
Subdivided class 4 8
Subdivided class 5 9
Subdivided class 6 10
Subdivided class 7 11
Subdivided class 8 12
Subdivided class 9 13
Subdivided class 10 14

(a) (b) (c)

FIG. 3. Illustration of how PCA and VQ further divide the bone class into
ten subclasses, �a� the original CT images, �b� the subdivided class labels
from 5 to 14 for the bone class only, and �c� the enlarged TM area with

pseudoenhanced soft tissue.
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j= i1 , . . . , i22 is between 5 and 14, and compute the av-
eraged SL

i
* to substitute its own SLi based on the as-

sumption that the properties of voxel i could be uniquely
characterized by its neighbors. Therefore, if SL

i
*=14

while LMIi=4, then voxel i is determined to be 100%
bone/TM and the corresponding Zik

�0�=1 for bone class
and all other tissue classes set to 0. As SL

i
* goes down or

LMIi alters away from 4, Zik
�0� is linearly decreased for

bone class while proportionally increased for other tis-
sue types subject to the constraint of �k=1

4 Zik=1, consid-
ering the interaction and tradeoff between SL

i
* and

LMIi.
�2� For each voxel i not initially labeled as bone/TM, we

define �Zik
�0�� as the normalized frequency of tissue type k

occurring among neighboring voxels.

Concluding this section, it is worthwhile to emphasize the
point that the versatility of PE has been observed39,40 that PE
depends upon various factors such as CT scan parameters,
administration of tagging agent, and how the tagging agent is
mixed with the fluids in the gastrointestinal tract. The initial-
ization scheme proposed here attempts to catch part of the
PE distribution range in CTC application via VQ/PCA strat-
egies. It could be extended to other imaging applications
beyond CTC as long as differences in density value distribu-
tion exist between pseudoenhanced soft tissue and TM, such
as in MRI-based virtual cystoscopy where the efficiency of
VQ/PCA in initialization procedure has been evidenced for
segmentation of the bladder wall.41

TABLE II. Eight possible tissue mixture combinations related to the bone
class.

Index Tissue mixture combination Index Tissue mixture combination

1 Air only 9 Tissue and bone
2 Tissue only 10 Muscle and bone
3 Muscle only 11 Air, tissue, and muscle
4 Bone only 12 Air, muscle, and bone
5 Air and tissue 13 Air, tissue, and bone
6 Air and muscle 14 Tissue, muscle, and bone
7 Air and bone 15 Air, tissue, muscle, and bone
8 Tissue and muscle

FIG. 4. Illustration of how to determine local mixture index of each voxel in
the 2D case. �a� Voxel i contains purely bone; �b� voxel i contains mixtures
of two tissue types: Bone and muscle. �c� Voxel i contains mixtures of three
tissue types: Bone, muscle, and fat; and �d� voxel i contains mixtures of four

tissue types: Bone, air, muscle, and fat.
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III.B. Utility of neighborhood information to refine
iterated estimate

Given ��k
�0� ,�k

�0� ,Zik
�0�� as initials, ��k

�n� ,�k
�n�� are updated

iteratively by Eqs. �6� and �7�, respectively, while �Zik
�n�� are

updated by Eqs. �8�, �9�, and �11� for voxels containing two,
three, and four tissue types, respectively.

To allow the number of tissue types inside each voxel i
adaptive to each individual iteration, the authors propose to
inspect the first- and second-order neighbors of voxel i after
each iteration. If voxel i contains more than one tissue type
and the observed tissue type k in this voxel satisfies


 Zik
�n� + � j�Ni

� jZjk
�n�

Zik
�n� + �k=1

K � j�Ni
� jZjk

�n�� � � , �12�

then Zik
�n�=0 and the total number of tissue types in voxel i

decreases by 1, where Ni denotes the first- and second-order
neighborhood system centered at voxel i, � j is a scale factor
reflecting the difference among different orders of the neigh-
boring voxels, and � is a predefined small value �e.g., 0.05 or
5%�. Figure 5 depicts how the first- and second-order neigh-
bors are defined.

Similarly, if voxel i does not contain tissue type k from its
neighbors the following condition holds:


 � j�Ni
� jZjk

�n�

�k=1
K � j�Ni

� jZjk
�n�� 
 � , �13�

then the number of tissue types in voxel i increases by 1 and
all the percentages �Zik

�n�� are recalculated for the changed
number of tissue types.

More comments on Eqs. �12� and �13� are worthwhile.
First of all, Eq. �12� was derived to exclude those tissue
types which are playing negligible roles in forming current
tissue mixture in voxel i, and the ratio of �Zik� in Eq. �12� for
a given tissue type in voxel index i just acts as such an
indicator, i.e., the higher the ratio, the more significant the
tissue type k, and vice versa. Therefore, when such ratio is
small enough compared to a predefined threshold, it is ap-
propriate to claim its uselessness in shaping voxel i. Conse-
quently, the number of tissue types in voxel i shall be de-
creased by 1. The same arguments could be easily extended
to Eq. �13� for the case of increasing the number of tissue

FIG. 5. Illustration of how to define the first- and second-order neighbor-
hood systems for voxel i: �a� The first-order neighbors and �b� the second-
order neighbors.
types in voxel i. In general, the thresholds defined in Eqs.
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�12� and �13� are set to be equivalent for consistency. Sec-
ond, the scale factors �wj� were applied to reflect different
roles of neighboring voxels, i.e., it is in inverse proportion to
the distance between central voxel i and its neighbors. The
most common way is to set 1 and 1 /
2 for first- and second-
order neighbors, respectively. Finally, in terms of the robust-
ness of Eqs. �12� and �13�, comprehensive experiments were
conducted and the following observations were obtained.
Without the regulation of Eq. �12� in decreasing the number
of tissue types, the segmentation results were prone to be
impaired by spot noise. In other words, the initially induced
spot noise �in the iterative initialization� would remain or
even propagate over to its neighbors. Similarly, the use of
Eq. �13� was particularly designed to compensate for the case
where tissue mixture percentage is overestimated �i.e., the
number of tissue types is underestimated�. After an initial
guess of tissue types in a voxel, Eqs. �12� and �13� are con-
sidered to be “dual examinations” for refining purpose.

In doing so, �Zik
�n�� is smoothly changed in an adaptive

manner as iteration proceeds, either decreasing or increasing
as regularized by Eqs. �12� and �13�. Because of the sophis-
ticated initialization, condition �13� is observed to rarely oc-
cur compared to condition �12� in the authors’ studies. Con-
sidering the fact that computation complexity is significantly
reduced as the number of tissue types in a voxel decreased,
condition �12� plays an important role in boosting the effi-
ciency. Finally as the MAP-EM iteration moves on, conver-
gence is assumed when the following stopping rule is satis-
fied:

Max
��k
�n+1�

�k
�n� − 1�

k=1,2,3,4
� � � , �14�

where the maximum ratios of class mean difference between
�n+1�th and nth iterations to the nth class mean itself among
four different tissue types is less than the prespecified thresh-
old �. The threshold � was set to be 0.05 throughout our
study.

III.C. Electronic colon cleansing procedure based on
tissue mixture fractions ˆZik‰

Given the estimated ��k
�n� ,�k

�n� ,Zik
�n��, a �Zik

�n�� distribution
map of bone/TM can be obtained by extracting �Zi4� only.
Sometimes, a voxel i with 0�Zi4�1 is actually filled by TM
rather than bone because of their similar CT densities. In
such cases, TM can still be identified and separated from
bone to achieve the goal of ECC via the following two steps.

�1� Gravity ensures the existence of a flat interface between
air and TM, and by setting this interface as seeds, a 3D
growable area of TM in terms of �Zi4� can be built up via
region growing. The remaining voxels with mixture
fraction 0�Zi4�1 and location outside the identified
TM region are then labeled as bone.

�2� For voxel i inside the region of TM, adding its Zi4 back
to Zi1, i.e., Zi4+Zi1→Zi1, and then changing its CT den-

�n� �n� �n� �n� �n� �n�
sity as Zi1 �1 +Zi2 �2 +Zi3 �3 .
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III.D. Removal of small bowel by
connected-components and morphology analysis

Since colon is not the only air-filled structure in the ab-
domen, incomplete ECC cases inevitably exist because of the
presence of small bowel in the segmentation results, result-
ing in more false positives particularly when the folds inside
the small bowel mimic polyps inside the colon. A connected-
component and morphology analysis-based postprocessing
pipeline for small bowel removal, as well as other peripheral
structures such as lung, is developed complementary to the
MAP-EM image segmentation based on the extracted distri-
bution map of �Zi4�.

�1� Taking the central colon lumen without PV effect as a
seed region, i.e., those voxels whose Zi4=1, the whole
colon is categorized into two regions, with and without
PV effect via region growing. Figure 6 illustrates a typi-
cal PV distribution nearby the colon wall in two colors.

�2� Connected-component analysis is then applied to pure
colon voxel �the central area in Fig. 6� to form clustered
patches whose �Zi4� are all equivalent to 1’s. In doing so,
the central area is divided into separate connected com-
ponents of different sizes.

�3� In the perfect case that colon is connected as a whole
and is the largest connected component in the abdomen,
the easiest way to remove peripheral structures is to se-
lect the largest connected component and discard all the
remains. However, in the authors’ studies on the 52 pa-
tient CTC data sets downloaded from the website of the
VC Screening Resource Center, which are to be pre-
sented in Sec. IV, it was found that there are nearly 30%
cases with collapsed colon, and for the purpose of keep-
ing colon integrity, the total number of components to be
selected should be no more than three in 99% of the
collapsed cases.

�4� Finally, after colon and small bowel are satisfactorily
divided apart, the PV distribution around the lumen bor-
der is recovered through morphological dilation, i.e., the
outer area in Fig. 6 is recovered by empirically dilating
the central area three to five layers, which is the average
thickness of the mucosa layer. During dilation, only
those voxels pointing to the direction of decreasing �Zi4�
are candidates to be considered. Otherwise, neighboring
patches belonging to different entities �e.g., small

FIG. 6. Typical PV distribution around the border of the colon lumen.
bowel� could be erroneously included.
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Steps �1�–�4� have been proven to work well in terms of
removing not only small bowel, but also remaining bone and
even noise-induced streak artifacts. Most important, the tis-
sue mixture details, which are recovered by the MAP-EM
algorithm and the postsegmentation strategies, are well pre-
served during the removal of the small bowel and others. The
constructed ECC pipeline consisting of the MAP-EM seg-
mentation and the postsegmentation strategy was evaluated,
as presented in the following.

IV. EXPERIMENTAL DESIGN

The newly improved ECC pipeline, including the fully
automated low-level MAP-EM mixture-based segmentation
and high-level postprocessing strategies, was evaluated on
52 patient CTC studies downloaded from the website of the
VC Screening Resource Center. Each patient was scanned at
supine and prone positions, and each scan at a view is rep-
resented by a volume image data set of more than 300 slices
of 512�512 array size with spatial resolution roughly at
0.66 mm�0.66 mm�1 mm. The authors’ previous ECC
pipeline with restriction of no more than two tissue types32

was also applied to these 104 data sets as a reference for a
fair comparison, where two radiologists participated in the
visual judgments.

How radiologists participated in the data evaluation pro-
cedure, and how they got access to the data with hundreds of
slices each, were two major issues to be solved. Considering
the fact that radiologists’ clinical training and experiences
were deemed as the ground truth and a well-designed blinded
display system was the bridge to the ground truth, an agree-
ment on a three-step evaluation procedure was reached
among the radiologists.

�1� For each scan, two ECC results from the authors’ current
and previous pipelines were displayed and compared on
the same screen slice-by-slice with randomized display
position, i.e., one on the left and the other on the right.
The corresponding raw CT images were also displayed
on the side for reference.

�2� Radiologists started to review the slices of the highest
prioritization scores, which were assigned to indicate the
presence of true polyps given ground truth map. During
inspection, radiologists evaluated the paired slices �one
for each ECC pipeline� by the criterion of best represent-
ing polyps’ shape and texture. In reference to the origi-
nal data, radiologists scored “1” representing the poor-
est, “2” in the middle, and “3” the best. For more than
one polyp involving multiple slices, the scores for each
polyp were averaged to get a final one under this par-
ticular criterion.

�3� After step �2�, radiologists were guided to the slices of
the second highest priority scores, which were assigned
to indicate the presence of noticeable TM, small bowel,
or pseudoenhanced soft tissues based upon data charac-
teristics. Under this circumstance, three criteria were
raised, which were �i� which side on the display �either
left or right in each scan� showed better cleansing of the

residual fecal/fluid or TM; �ii� which side better pre-
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served the shape and texture information of the folds,
and �iii� which side better distinguished small bowel
from the colon. Similarly, three final scores were gener-
ated for the above-mentioned three criteria by averaging
the individual scores if multiple cases occurred for a
certain criterion. Even though no formal inter-rater reli-
ability was calculated, based on the authors’ ad-hoc
evaluation during the training sessions, the scoring
agreement between the two experienced radiologists was
high.

Although ECC is more useful in 3D fly-through reading
modes, the appearance of the 3D images alone does not nec-
essarily correlate to the accuracy of the ECC in preserving
the true underlying structure of the colon. A smoothing algo-
rithm after ECC could appear to give a pleasing image to the
interpreting radiologist even though key structures such as
folds have been thinned or removed. In this study, the 2D
images allowed the radiologist evaluator to determine the
underlying structures of the colon and the accuracy of pres-
ervation. The use of 3D fly-through mode to determine the
efficacy of preservation of folds while determining the com-
plete removal of tagged material is not readily possible since
the 3D images only evaluate the interface. If one compared
the 3D images prior to ECC and following ECC, the pre-
ECC images in three dimensions would not show the under-
lying structures and one could not assess the accuracy of
ECC in preservation of the structures. This analysis requires
the use of 2D images. The authors have looked at their algo-
rithm in three dimensions and some minor “corner effects”
are present which can be removed through the application of
smoothing algorithms which will be the subject of future
research. This was not the purpose of this project.

V. RESULTS

V.A. Evaluation results

The evaluation results of each ECC pipeline were summa-
rized by the mean scores and standard deviations for each of
the four evaluation criteria as shown in Table III. To meet the

TABLE III. Comparison of the two different ECC pipelines according to the
four comparison criteria stated earlier, where score is any value from �1, 2,
3� with “1” and “3” indicating the worst and best cases. The number N in the
left column indicates the number of samples collected for the evaluation of
each criterion.

Criterion �N� ECC Mean s.d. p value

Cleanse residuals or
tagged materials �31�

Previous ECC 2.61 0.81
0.33

Current ECC 2.81 0.60
Preserve shape and
texture of polyps �52�

Previous ECC 1.60 0.85
�0.001

Current ECC 2.73 0.60
Preserve shape and
texture of folds �32�

Previous ECC 1.03 0.18
�0.001

Current ECC 2.78 0.49
Differentiate the small
bowel from colon �66�

Previous ECC 1.06 0.35
�0.001

Current ECC 2.95 0.21
goal of comparing two different ECC pipelines using the
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same set of samples, the paired t-tests were employed in this
study because of their effectiveness in comparing the mean
difference between two populations when one believes that
some dependency exists in terms of p value.42,43 For the two
different pipelines, the higher the mean value in Table III, the
better the corresponding ECC pipeline performance. For
three out of the four criteria, the new ECC pipelines showed
statistically significantly better results �p value �0.001�.
Even though “cleanse residuals or tagged materials” was not
statistically significant, the current ECC pipeline also scored
better than the old ECC pipeline.

V.B. Convergence performance of the MAP-EM
segmentation algorithm

In the authors’ studies, the threshold � for convergence in
Eq. �14� was set to 0.05. Taking the data set �numbered 043
at the website of the VC Screening Resource Center� at the
prone position as an example, Fig. 7 reflects the converging
speed of the MAP-EM algorithm as iteration proceeds.

(a) Raw CT images

(b) Segmentation results from our previous MAP-EM algorithm

(c) Segmentation results from our current MAP-EM algorithm

FIG. 8. Comparison between the authors’ current and previous MAP-EM
algorithms in segmenting partially pseudoenhanced soft tissues: �a� The
original CT images, �b� the segmentation results from the previous algo-
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V.C. Capacity of overcoming pseudoenhanced soft
tissues

Figures 8 and 9 illustrate examples of partially and fully
pseudoenhanced soft tissues, respectively, which are exactly
located on the border between air and TM where significant
PV effect is present. The raw CT images on the leftmost
sides of Figs. 8 and 9, as well as the image density profiles
along vertical direction are shown in Fig. 1. For highlighting
purpose, the small boxes of white dots indicate the location
of the concerned soft tissue. It is therefore concluded that by
taking sophisticated initialization procedure and other imple-
mentation optimization, the differences in CT density be-
tween TMs and pseudoenhanced soft tissues have been sat-
isfactorily captured via the combination of VQ/PCA strategy,
such that good �Zik

�0�� ensures much better segmentation per-
formance of the MAP-EM algorithm compared to the au-
thors’ previous version in terms of overcoming the PE distri-
bution.

V.D. Capacity of removing small bowel and other
peripheral structures

Small bowel, in the vicinity of colon as illustrated by the
left picture in Fig. 10�a�, is sometimes incorrectly segmented
as part of colon, i.e., an example of incomplete ECC cases.
Although such problem could be avoided under the inspec-
tion of radiologists, it still imposes challenges for computers
to automatically divide them apart. In addition, segmentation
of colon even suffers from remaining bone which encom-
passes the colon, as well as lung and stomach represented by
the middle and right pictures in Fig. 10�a�. The authors’ pre-
vious segmentation results shown in Fig. 10�b� fully describe
such incomplete ECC cases which are worthy to be solved.
By the use of the authors’ improved ECC pipeline coupled
with effective postprocessing procedure, a noticeable differ-
ence is observed as depicted in Fig. 10�c�, successfully dis-

(a) Raw CT images

(b) Segmentation results from our previous MAP-EM algorithm

(c) Segmentation results from our current MAP-EM algorithm

FIG. 9. Comparison between the authors’ current and previous MAP-EM
algorithms in segmenting fully pseudoenhanced soft tissues: �a� The original
CT images, �b� the segmentation results from the previous algorithm, and �c�
the segmentation results obtained by the current algorithm.
carding all other peripheral structures.
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V.E. Computational complexity

For clinical applications in CTC, the MAP-EM algorithm
has to adjust the number of tissue types in each voxel at each
iteration, although the total number of tissue types is four. By
the introduced conditions of Eqs. �12� and �13�, the authors
eliminated those cases of estimating the fractions of zero
value. Only those fractions of nonzero values were computed
in a voxel. This resulted in a speed-up of convergence. The
computing efficiency is seen by Fig. 11, where the average
computing time for each MAP-EM iteration is approximately
35 s, which is believed to be acceptable for clinical use. The
algorithm was directly programmed using C�� language
and the source code was complied in a Visual C�� environ-

(a) Original CT images

(b) Segmentation results from our previous MAP-EM algorithm

(c) Segmentation results from our current MAP-EM algorithm

FIG. 10. Comparison between the authors’ current and previous ECC pipe-
lines in overcoming incomplete cleansing problem: �a� The original CT
images, �b� the segmentation results from the previous algorithm, �c� and the
segmentation results obtained by the current algorithm.
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ment on a HP XW8000 PC platform �2.4 GHz CPU and
2.0 Gbytes RAM� and run up to ten iterations to ensure a
stable solution is achieved.

VI. DISCUSSION AND CONCLUSION

As a concluding remark, Eqs. �1�–�11� briefly reviewed
the theoretical part of this presented MAP-EM mixture-based
segmentation algorithm, which has been described math-
ematically in detail and analyzed numerically in Ref. 33. For
CTC studies, several significant issues remain to be ad-
dressed, including parameter initialization, strategy to maxi-
mally preserve the consistency between nth and �n+1�th it-
erations, update on the number of tissue types in a voxel at
each iteration, etc., in addition to the postsegmentation op-
erations for removal of the small bowel and other interfering
structures in the segmented results.

By relieving the constraint of the authors’ previous seg-
mentation algorithm32 that each voxel contains no more than
two tissue types, improving the parameter initialization, and
utilizing both the neighboring anatomical information for up-
date iterated results, this current ECC pipeline has shown
noticeable improvement over the previous one.32 In addition,
the postprocessing procedure of employing connected-
components and morphology analysis has achieved great
success in distinguishing small bowel from colon, improving
the efficiency for following 3D fly-through navigation, quan-
titative analysis, and computer aided detection �CAD�
studies.

The presented MAP-EM algorithm was evaluated by two
radiologists’ subjective assessment on the segmented results.
Quantitative improvement over the authors’ previous
MAP-EM algorithm was documented. Further evaluation on
polyp detection by both radiologists �human observer� and
CAD �computer observer� will involve a significant effort
and is currently in progress. The authors intend that the the-
oretical solution to the PV effect and the innovative strategy
to recover the pseudoenhanced soft tissues will benefit
computer-aided polyp detection, which is currently one of
the major research topics in developing VC toward a screen-
ing modality.

One point the authors would like to emphasize in this
application work is the effect of the PV segmentation for
polyp detection and quantification. In the PV layer between
air and colon wall/polyps, the size of a polyp could be over-
estimated because the PV effect goes from the polyp border
to the air. In the PV layer between tagged material and colon
wall/polyps, the size of a polyp could be underestimated be-
cause the PV effect goes from the border of the tagged ma-
terial to the polyp, i.e., part of the polyp will be submerged
inside the tagged material. Only the PV effect is accurately
resolved, the under- and overestimation can be corrected
consistently. In the authors’ PV segmentation, the percentage
of each tissue type in a voxel is computed by a statistical
MAP principle. If a voxel contains 10% polyp tissue type,
then this voxel has 10% volume inside the polyp. Since the
PV effect occurs on the border of a polyp, the volume of the

polyp V is proportional to the third power of the radius r
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�assuming a sphere�, i.e., V�r3. A small error on the mea-
sure of the border will render a huge error on the measure of
the volume.
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