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Summary
Multiple signaling pathways initiate and specify the formation of synapses in the central nervous
system. General principles that organize nascent synapses have emerged from studies in multiple
model organisms. These include the synapse-organizing roles of dedicated synaptic adhesion
molecules, synaptic signaling following receptor-ligand interactions, and the regulation of synapse
formation by secreted molecules. Intracellularly, a range of effectors subsequently regulates signaling
steps and cytoskeletal changes. Together, a blueprint of synapse formation is emerging into which
these distinct signaling steps will need to be integrated temporally and spatially.

Introduction
Synapse formation is a key process in brain development. It occurs subsequent to the birth and
migration of neurons and their initial differentiation, and is central to the formation of neuronal
networks. Synaptogenesis remains important in the adult brain for the activity-dependent
reorganization of neuronal networks. Understanding these processes on the molecular level
not only provides insights into a fundamental problem of cellular neuroscience. It is also
biomedically relevant, as aberrations in synapse-organizing molecules are linked to autism-
spectrum disorders, mental retardation, and neurological disorders.

Synaptic structures develop in consecutive assembly steps [1,2]. Cell-cell interactions mediate
the initial contact of apposed neuronal membranes. This is followed by the differentiation of
these membranes into pre- and postsynaptic specializations, a process shaped by cytoskeletal
changes. Later steps include the pruning of synapses and finally their elimination. Along this
path, different signals assemble protein complexes to give rise to the diverse types of central
synapses, which vary in their target specificity, neurotransmitter use, and morphology.

This review highlights the progress made in the last two years in our molecular understanding
of synapse formation. For a general overview, we would like to refer the reader to recent
reviews [3,4].

Adhesive interactions of neurexins and neuroligins organize developing
synapses

Trans-synaptic adhesion molecules can control the initial differentiation of nascent synapses.
This was first demonstrated for neuroligins, postsynaptic membrane proteins that bind the
presynaptic neurexins [5,6] (Fig.1). Three neuroligin genes are predominantly expressed in
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mouse brain, while three genes encode the neurexins. Each neurexin gene has two different
promoters, giving rise to a long α- or a short β-isoform that differ only in their extracellular
sequences. Through their transsynaptic interactions with neurexins, neuroligins induce neurons
to form presynaptic terminals. In turn, neurexins induce the assembly of neuroligin-containing
postsynaptic specializations.

Corresponding to early roles of neuroligins in synapse formation, they are part of mobile
dendritic protein complexes that are stabilized during synapse formation [7] and mark sites
where axons form terminals [8]. In addition, neuroligins contribute to synapse specification:
Neuroligins 1 and 2 differ in their relative propensity to promote excitatory and inhibitory
synaptic specializations, respectively, consistent with their differential localization to these
two synapse types [9–12]. Neuronal activity is required to achieve this enhancement of
excitatory and inhibitory transmission by neuroligins [12]. With respect to postsynaptic
specification through trans-synaptic binding, α-neurexin co-clusters neuroligin 2 with
inhibitory, but not excitatory markers [13]. Neurexins and neuroligins also affect synaptic
physiology, notably presynaptic release probability [14].

These interactions of the neuroligin/neurexin adhesion molecules are prominently regulated
by alternative splicing, which modulates their binding in trans. A short, splicing-controlled
insert in the extracellular sequence of neuroligin 1 that encodes an N-glycosylation site
negatively regulates its binding to α-neurexin [15] and decreases [11] or abolishes [10,15]
neuroligin binding to another splice isoform of β-neurexin. Further, the splicing of neuroligins
at this site controls their sorting to excitatory and inhibitory postsynaptic specializations [10].
Several findings demonstrate that alternative splicing also regulates neurexin and neuroligin
activities. First, splicing of β-neurexin can alter its ability to induce excitatory postsynaptic
assemblies preferentially [11] or specifically [10], without affecting β-neurexin’s parallel
induction of inhibitory sites. Neuronal activity regulates β-neurexin splicing, further pointing
to dynamic roles of splicing [13]. Second, the neuroligin 1 splice form capable of interacting
with α-neurexin promotes pre- and postsynaptic growth in addition to synapse formation
[15]. Third, splicing in the extracellular neuroligin 1 site referred to above has been reported
to switch its activity from promiscuously inducing excitatory and inhibitory postsynaptic sites
to being a specific excitatory synaptogenic molecule [10]. This effect was not observed in
another study [12], perhaps due to differences in expression levels or culturing conditions. In
addition to splicing, interactions in cis constitute another regulatory mechanism. A fraction of
neurexins was identified in postsynaptic membranes, where they can bind laterally to
neuroligins to silence them [16].

These studies in dissociated neuronal cultures helped to develop the concept of neuroligins as
synapse-inducing molecules with different roles in excitatory and inhibitory synapse
formation. From a general point of view, studies in vivo support a general synapse-organizing
role. Neuroligins specifically function in excitatory and inhibitory synaptic transmission, as
shown in single knock-out mice [12]. These combined activities are of vital importance:
Neuroligin triple knock-out mice die soon after birth due to imbalanced excitatory and
inhibitory transmission in brainstem and ensuing respiratory failure [17••]. However,
neuroligins do not affect synapse number or morphology in brainstem at the time of birth,
pointing to roles in synapse maturation. This discrepancy with the synaptogenic functions of
neuroligins in vitro remains to be resolved. It may involve redundancy with other synaptogenic
systems in vivo, as well as potential developmental changes in the synaptic functions of
neuroligins. Future studies using conditional neuroligin knock-out mice could address these
points by analyzing the acute loss of neuroligins in higher brain regions at later postnatal stages,
when most synaptogenesis occurs.
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Invertebrates offer less redundant systems to investigate synaptic adhesion molecules in vivo.
Two studies in Drosophila, which has only one α-neurexin and no β-isoform, now report effects
of neurexin on synapse ultrastructure and number in vivo [18,19]. They demonstrate that α-
neurexin is presynaptic at the fly neuromuscular junction (NMJ) and is required for the proper
apposition of active zones to postsynaptic densities, normal synapse density, and synaptic
transmission. In addition, Drosophila neurexin is sufficient to promote overall numbers of
presynaptic boutons [18].

Human genetic studies support the importance of neurexins and neuroligins in brain
development. Following previous studies of human neuroligin mutations in
neurodevelopmental disorders, mouse models with altered expression of neuroligins now
corroborate changes in synapse organization and autism-spectrum disorders (ASD)-linked
behavior [20•,21]. Recent linkage analyses also implicate imbalanced neurexin gene dosage
in ASD [22,23].

Together, neurexins and neuroligins have intriguing and essential synaptic functions. However,
the facts that synapses form normally in mice lacking neurexins and neuroligins at birth, and
that members of both families have overlapping synapse-specifying roles, point to the
importance of parallel synaptogenic interactions.

Synapse organization by Ig- and LRR-domain containing adhesion molecules
Adhesion molecules of the immunoglobulin (Ig) superfamily and proteins containing
extracellular leucine rich-repeats (LRR) additionally mediate the pre- and postsynaptic
differentiation of cultured hippocampal neurons (Fig.2).

The synaptic Ig-containing membrane protein SynCAM 1 (also named nectin-like 2) induces
neurons to form functional excitatory presynaptic specializations [24] similar to neuroligin 1
[25]. While capable of homophilic binding, SynCAM 1 preferentially interacts with the related
SynCAM 2 to form a trans-synaptic adhesion complex, and both proteins promote excitatory
synapse number and function [26•]. The differential neuronal expression and heterophilic
adhesion profiles of SynCAMs are reminiscent of an adhesive code and indicate distinct roles
in synapse organization and specification [27]. All four family members share intracellular
motifs binding to FERM domains of cytoskeletal adaptors and PDZ domains of scaffolding
molecules, pointing to these interactions as synaptogenic steps downstream of SynCAM
adhesion.

Other studies identified the LRR- and Ig-domain containing membrane proteins NGL2 (netrin
G-ligand 2) and SALMs (synaptic adhesion-like molecules). NGL2 is a postsynaptic partner
of the axonal, GPI-anchored protein netrin-G [28•]. Intracellularly, it binds to a PDZ domain
of the scaffolding molecule PSD-95 to assemble postsynaptic proteins of excitatory synapses.
Through its extracellular interactions, NGL2 in turn initiates presynaptic terminals [28•]. This
activity presumably involves both interactions with netrin-G and other, yet unknown
presynaptic transmembrane proteins that can signal into the terminal. Similar to NGL2, several
SALM family members interact intracellularly with PSD-95, but differ in their developmental
functions. At later stages of neuronal differentiation, SALM2 affects the clustering of
postsynaptic molecules and increases the number of excitatory synapses [29], while SALM1
promotes neurite outgrowth at early stages [30]. No effects of SALMs on presynaptic
organization are known. However, SALMs form distinct homo- and heterophilic interactions
[31], suggesting adhesive roles on both sides of synapses.

Ig superfamily members also specify the localization of nascent synapses in vertebrates. This
was shown in cerebellum, where the axons of stellate interneurons are guided by the Ig protein
CHL1 (close homolog of L1) on Bergman glial fibers towards Purkinje cell dendrites [32].
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Consequently, the interactions of CHL1 are required for the positioning and formation of these
GABAergic synapses.

How are adhesion molecules signaling across membranes to initiate
synapses?

The pathways downstream of synaptic adhesion remain insufficiently understood. Progress
was made for neurexins and SynCAMs with the finding that their induction of presynaptic
specializations involves the kinase Cdk5 [33•]. This indicates that both adhesion proteins
engage overlapping signaling pathways, consistent with their similar intracellular sequences.
Cdk5 also phosphorylates the adaptor molecule CASK, thereby regulating its interaction with
neurexins [33•]. Cdk5-mediated phosphorylation of CASK may provide a direct presynaptic
link from sites of neurexin-mediated adhesion to the CASK binding partner liprin-α, which
organizes active zone formation in C. elegans [34]. However, identifying the signaling
pathways of synapse-inducing adhesion molecules remains a critical open question.

Adhesion molecules also modulate synaptogenesis
Synaptic adhesion can not only signal the formation of synaptic specializations, it additionally
modulates nascent synapses. Cadherins, among the best studied synaptic adhesion molecules,
are not synaptogenic but set the pace of synaptic maturation [35,36]. This is in keeping with
their subsynaptic re-localization in development [37]. Cadherin signaling engages multiple
pathways on both sides of the developing synapse. Presynaptically, crosstalk of neurotrophin
and cadherin signaling occurs [38]. Neurotrophins, which regulate synapse formation, mobilize
synaptic vesicles and subsequently promote excitatory synapse numbers by disrupting the
interaction of cadherins with β-catenin, a multifactorial adaptor for signaling molecules and
transcription factors [38]. Postsynaptically, the cadherin partner p120-catenin controls Rho
family GTPases, whose functions include the regulation of the actin cytoskeleton as well as
cadherin levels themselves. Through these interactions, p120 modulates postsynaptic spine
differentiation and synapse density in the developing brain [39•].

Integrins are another prominent class of adhesion molecules that transduce signals from the
extracellular matrix. Recent evidence shows that they shape postsynaptic sites through
controlling tyrosine kinases and G proteins. The α5 integrin subunit regulates spine and synapse
formation through the non-receptor tyrosine kinase Src and the G protein regulator GIT1 (G
protein–coupled receptor kinase–interacting protein 1) [40]. Integrins also activate the non-
receptor tyrosine kinase Arg, which in turn inhibits the RhoGAP p190 [41]. Consequently, Arg
signaling modulates synapse maintenance and spine maturation in the maturing brain.

Signaling receptors in synaptogenesis
In contrast to adhesion molecules, transmembrane receptors can directly transduct
synaptogenic signals across synaptic membranes (Fig.3). Several receptor tyrosine kinases,
including EphB and Trk receptors, localize to synapses and help to instruct synaptogenesis.
EphB receptors, which are mostly postsynaptic, signal intracellularly through a tyrosine kinase
domain upon extracellular binding of their ephrinB ligands. The deletion of multiple EphB
receptors in mice reduces synapse density and alters spine morphology [42], demonstrating
that ephrin-to-EphB forward signaling controls excitatory synapses in vivo. A synaptogenic
role was also confirmed for presynaptic terminals in cultured hippocampal neurons. Here,
reverse EphB2 signaling from postsynaptic sites through ephrin binding into axons triggers
presynaptic differentiation [43•]. This occurs in parallel to EphB receptor-mediated
postsynaptic glutamate receptor assembly [43•]. Similarly, in the optic tectum of Xenopus,
EphB2 receptors engage presynaptic ephrinB ligands to trigger their reverse signaling, which
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increases the formation and maturation of retinotectal synapses and enhances synaptic
transmission and potentiation [44••].

What are the intracellular pathways of ephrin and EphB receptor signaling at the synapse? The
kinase activity of Eph receptors is known to signal through several small GTPases, including
Rho and Rac family members, thereby remodeling the actin cytoskeleton. Recent studies
expand this signaling repertoire. Tiam1, a guanine nucleotide exchange factor (GEF) that
activates Rac1, interacts postsynaptically with the EphB2 receptor after ephrin stimulation to
promote excitatory spine density [45]. In a parallel pathway, stimulated EphB receptors bind
focal adhesion kinase to activate RhoA through an intracellular signaling complex that shapes
postsynaptic sites [46].

However, ephrin ligands are not only presynaptic, but can also be present in excitatory
postsynaptic membranes where they mediate reverse EphB-to-ephrin signaling. Postsynaptic
ephrinB3 was identified to promote spine density and maturation after stimulation by the EphB
receptor, forming a complex with the G protein regulator GIT1 [47] that also functions
downstream of integrin signaling [40]. Postsynaptic ephrinB3 independently affects the subset
of excitatory synapses that are directly formed on the dendritic shaft, controlling the number
of these shaft synapses [48]. Reverse ephrin signaling is highly versatile, and includes the
negative regulation of synapse numbers in addition to the synaptogenic roles described above.
This was observed in mice lacking ephrinB3, which display an increase in excitatory synapses
in hippocampal neurons [49]. The pathways determining these contrasting effects of reverse
ephrinB signaling remain to be identified.

Important functions in synapse differentiation are shared by other transmembrane receptor
tyrosine kinases. These include the Trk receptors, which mediate neurotrophin signaling in
neuronal and synapse differentiation [50]. Signaling by the insulin receptor also regulates
synapse number and function. Studies in the Xenopus optic tectum identified that a dominant-
negative insulin receptor strongly reduces the density of functional synapses along the dendritic
tree, as well as the experience-dependent shaping of dendrites [51••]. This is consistent with a
synapse-promoting function of the insulin receptor in vivo. Another family of receptor tyrosine
kinases, the ErbB receptors, is already known to act in the formation of NMJs. Their roles in
central synapses are now emerging, too, with ErbB4 promoting excitatory transmission in
hippocampus [52] and its ligand neuregulin-1 enhancing GABA release from cortical
interneurons [53]. As neuregulin is a schizophrenia susceptibility gene, and as synaptic
alterations occur in this disorder, it will be of interest whether aberrations in this signaling
pathway underlie the disorganization of central synapses in schizophrenia.

Synaptic transmembrane signaling is of course not limited to receptor tyrosine kinases. Yet,
the finding that the ligand-gated cation channel TRPC6 (transient receptor potential canonical),
which belongs to the TRP family of calcium-permeable channels, mediates synapse-organizing
signaling across dendritic membranes was unexpected [54]. TRPC6 is localized to excitatory
postsynaptic sites and promotes synapse densities in hippocampal neurons via stimulating
CREB-controlled transcription, and alters hippocampus-dependent behavior. This opens up
functions for the diverse family of TRP channels and their yet unknown synaptogenic ligands
in the brain.

Soluble signals secreted by neurons and glia locally shape presynaptic sites
Control of synaptic differentiation is not restricted to the very short range that surface molecules
provide. Soluble signaling molecules, such as morphogens that pattern tissues, also affect
synapse formation and differentiation. One case are the synaptic functions of morphogenetic
Wnt signaling. In cerebellum and hippocampus, Wnt7 positively regulates the assembly of
presynaptic sites after its release by target neurons [55]. But at least in invertebrates, retrograde
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Wnt signaling also can inhibit synapse formation to ensure synaptic target specificity. This was
observed both at the Drosophila NMJ [56] and in C. elegans, where Wnt morphogens directly
control their receptor localization in axons to restrict presynaptic bouton formation to discrete
sites [57•].

Morphogens are not the only soluble signals that regulate synapse formation, and neither is
signaling limited to neuronderived factors. This is exemplified by synaptic netrin signaling in
C. elegans. Subsequent to its roles in axon guidance, netrin is locally secreted by glia cells to
promote the formation of presynaptic boutons by a specific neuron [58]. In vertebrates, the
glial cell line-derived neurotrophic factor (GDNF) promotes hippocampal synaptogenesis
through a less familiar type of receptor interaction. GDNF binding causes apposed receptor
molecules to homophilically bridge pre- and postsynaptic membranes, which initiates
presynaptic terminal differentiation [59]. Correspondingly, the lack of GDNF reduces synapse
density in vivo. These findings underline the importance of neuron-glia signaling in
synaptogenesis [60].

Cytoskeletal dynamics in synapse differentiation
Cytoskeletal changes underlie the differentiation of local plasma membrane surfaces into
synaptic specializations. These structural transformations of nascent synapses not only involve
the GEFs and GAPs for small G protein regulators of the actin cytoskeleton referred to above.
Actin dynamics at postsynaptic excitatory specializations are also regulated by NWASP, which
activates the actin-nucleating Arp2/3 complex to enhance the local formation of excitatory
spines and synapses by hippocampal neurons [61]. Correspondingly, a dominant-negative form
of the actin-binding protein spectrin interferes with postsynaptic assembly [62]. The
presynaptic cytoskeleton is regulated as well, as shown for ankyrin, a spectrin-binding protein
[63,64]. At the Drosophila NMJ, ankyrin forms a presynaptic lattice that organizes
microtubules and adhesion proteins to restrict bouton size and control synapse number.

Activity-dependence of synapse organization
A key question is how activity affects synaptogenic signaling, as this can underlie synaptic
homeostasis. The identification of activity-dependent functions of neuroligins represents one
advance in addressing this question [12]. But neurons alter synapse density globally to adjust
to activity levels, and insights into this process are being gained as well. The transcriptional
regulator MeCP2, which is mutated in the neurodevelopmental disorder Rett syndrome, was
identified as an activity-dependent positive regulator of excitatory synapse formation and
function [65•]. Conversely, the transcription factor MEF2 represses excitatory synapse density
in activated neurons [66]. While GABAergic synapse formation is less well understood than
excitatory synaptogenesis [6], its activity-dependence can be surprisingly direct: Changes in
the levels of GABA itself, which fluctuate in an activity-dependent manner in inhibitory
neurons, regulate inhibitory synapse formation in cortex [67].

Screens for synaptogenic molecules
To gain more insight into synaptogenic signaling in vertebrate neurons, non-biased approaches
need to extend the common analyses of candidate proteins. A beginning was made with a study
that combined transcriptional profiling with RNAi in hippocampal neurons [68]. It identified
that postsynaptic cadherins and membrane-bound semaphorins differentially control the
alignment of synaptic sites at nascent synapses. This approach can now be pursued in larger-
scale screens. Another approach was used in a genome-wide screen for molecules expressed
during synapse formation [69]. Such approaches in vertebrate neurons will be likely to
complement the genetic studies of synapse organization in invertebrates.
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Outlook: how do synaptic signaling mechanisms come together?
Synapse formation requires multiple signaling mechanisms that demarcate future synaptic
sites, align and specify them, and differentiate these nascent synapses to maturity. As reviewed
above, a number of proteins have recently been identified to contribute to these signaling
processes. Shared principles are emerging, such as the instructive roles of trans-synaptic
interactions by adhesion molecules, the synaptogenic functions of receptor tyrosine kinases,
and the modulation of synapse formation by secreted signaling molecules. However, it is now
a key task to define the temporal and spatial interplay of signaling molecules in synapse
assembly, maturation, and maintenance. This will lead to understanding how synapse
development is instructed and specified at different synapse types and across brain regions.

Future studies will also need to consider the differential contribution of signaling to synapse
formation or maintenance. The net outcome – an increase in synapse numbers – is the same,
but these two aspects of synapse organization likely employ very different pathways which
need to be elucidated. Additionally, the mechanisms that link activity-dependent changes to
synaptic differentiation remain to be characterized in detail. Another important goal will be to
better understand the signals that coordinate the converse process to synaptogenesis, namely
synapse elimination, which is unlikely to be just the reverse of synapse formation.

In summary, a range of molecular interactions provide for synapse formation. On the molecular
and cellular level, ongoing and future studies will identify both the signaling pathways that are
fundamentally shared in synaptogenesis and those that specify it. Ultimately, these processes
will have to be understood within the context of the brain itself [70].
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Figure 1.
A. Structure of neuroligins and neurexins. The neuroligin 1 splice site that regulates its α over
β-neurexin binding is highlighted by an asterisk. Pre, presynaptic membrane; post, postsynaptic
membrane.
B. Key insights recently gained from in vivo studies of neurexins and neuroligins.
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Figure 2.
Overview of members of the Ig superfamily and proteins containing extracellular leucine-rich-
repeats (LRR) that are involved in synapse differentiation.
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Figure 3.
Roles of signaling receptors in synaptic differentiation.
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